TS4890 RAIL TO RAIL OUTPUT 1W AUDIO POWER AMPLIFIER WITH STANDBY MODE ■ OPERATING FROM VCC = 2.2V to 5.5V ■ 1W RAI L TO RAIL OUTPUT POWER @ PIN CONNECTIONS (Top View) Vcc=5V, THD=1%, f=1kHz, with 8Ω Load TS4890IS, TS4890IST - MiniSO8 ■ ULTRA LOW CONSUMPTION IN STANDBY MODE (10nA) ■ 75dB PSRR @ 217Hz from 5 to 2.2V ■ POP & CLICK REDUCTION CIRCUITRY ■ ULTRA LOW DISTORTION (0.1%) ■ UNITY GAIN STABLE ■ AVAILABLE IN MiniSO8 & SO8 Standby 1 8 VOUT2 Bypass 2 7 GND VIN+ 3 6 VCC VIN- 4 5 VOUT1 DESCRIPTION The TS4890 (MiniSO8 & SO8) is an Audio Power Amplifier capable of delivering 1W of continuous RMS. ouput power into 8Ω load @ 5V. This Audio Amplifier is exhibiting 0.1% distortion level (THD) from a 5V supply for a Pout = 250mW RMS. An external standby mode control reduces the supply current to less than 10nA. An internal thermal shutdown protection is also provided. The TS4890 have been designed for high quality audio applications such as mobile phones and to minimize the number of external components. TS4890ID, TS4890IDT - SO8 Standby 1 8 VOUT2 Bypass 2 7 GND VIN+ 3 6 VCC VIN- 4 5 VOUT1 The unity-gain stable amplifier can be configured by external gain setting resistors. APPLICATIONS TYPICAL APPLICATION SCHEMATIC ■ Mobile Phones (Cellular / Cordless) ■ Laptop / Notebook Computers ■ PDAs ■ Portable Audio Devices Cfeed Rfeed ORDER CODE TS4890IST TS4890IDT Rin -40, +85°C S 3 VinVin+ - Vout1 5 + RL 8 Ohms Vcc D • • 4 2 Bypass 1 Standby Av=-1 + Rstb Cb Vout2 8 Bias GND Part Number Package Cs Vcc Audio Input Cin Temperature Range Vcc 6 TS4890 7 S = MiniSO Package (MiniSO) - also available in Tape & Reel (ST) D = Small Outline Package (SO) - also available in Tape & Reel (DT) November 2001 1/31 TS4890 ABSOLUTE MAXIMUM RATINGS Symbol VCC Vi Supply voltage Input Voltage 2) Value Unit 6 V GND to VCC V Toper Operating Free Air Temperature Range -40 to + 85 °C Tstg Storage Temperature -65 to +150 °C 150 °C Tj R thja Pd ESD ESD 1. 2. 3. 4. Parameter 1) Maximum Junction Temperature Thermal Resistance Junction to SO8 MiniSO8 °C/W Ambient3) 175 215 See Power Derating Curves Fig. 24 2 200 Class A 260 Power Dissipation 4) Human Body Model Machine Model Latch-up Immunity Lead Temperature (soldering, 10sec) W kV V °C All voltages values are measured with respect to the ground pin. The magnitude of input signal must never exceed VCC + 0.3V / GND - 0.3V Device is protected in case of over temperature by a thermal shutdown active @ 150°C. Exceeding the power derating curves during a long period may involve abnormal working of the device. OPERATING CONDITIONS Symbol Parameter Value Unit VCC Supply Voltage 2.2 to 5.5 V VICM Common Mode Input Voltage Range GND + 1V to VCC V VSTB Standby Voltage Input : Device ON Device OFF 1.5 ≤ VSTB ≤ V CC GND ≤ V STB ≤ 0.5 V RL R thja Load Resistor 4 - 32 Thermal Resistance Junction to Ambient SO8 MiniSO8 1. This thermal resistance can be reduced with a suitable PCB layout (see Power Derating Curves Fig. 24) 2/31 Ω °C/W 1) 150 190 TS4890 ELECTRICAL CHARACTERISTICS VCC = +5V, GND = 0V, Tamb = 25°C (unless otherwise specified) Symbol Typ. Max. Unit Supply Current No input signal, no load 6 8 mA Standby Current 1) No input signal, Vstdby = GND, RL = 8Ω 10 1000 nA Voo Output Offset Voltage No input signal, RL = 8Ω 5 20 mV Po Output Power THD = 1% Max, f = 1kHz, RL = 8Ω 1 W 0.15 % Power Supply Rejection Ratio2) f = 217Hz, RL = 8Ω, RFeed = 22KΩ, Vripple = 200mV rms 77 dB ΦM Phase Margin at Unity Gain RL = 8Ω, CL = 500pF 70 Degrees GM Gain Margin RL = 8Ω, CL = 500pF 20 dB GBP Gain Bandwidth Product RL = 8Ω 2 MHz ICC ISTANDBY THD + N PSRR Parameter Min. Total Harmonic Distortion + Noise Po = 250mW rms, Gv = 2, 20Hz < f < 20kHz, RL = 8Ω 1. Standby mode is actived when Vstdby is tied to GND 2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the surimposed sinus signal to Vcc @ f = 217Hz VCC = +3.3V, GND = 0V, Tamb = 25°C (unless otherwise specified) Symbol Typ. Max. Unit Supply Current No input signal, no load 5.5 8 mA Standby Current 1) No input signal, Vstdby = GND, RL = 8Ω 10 1000 nA Voo Output Offset Voltage No input signal, RL = 8Ω 5 20 mV Po Output Power THD = 1% Max, f = 1kHz, RL = 8Ω 450 mW Total Harmonic Distortion + Noise Po = 250mW rms, Gv = 2, 20Hz < f < 20kHz, RL = 8Ω 0.15 % Power Supply Rejection Ratio2) f = 217Hz, RL = 8Ω, RFeed = 22KΩ, Vripple = 200mV rms 77 dB ΦM Phase Margin at Unity Gain RL = 8Ω, CL = 500pF 70 Degrees GM Gain Margin RL = 8Ω, CL = 500pF 20 dB GBP Gain Bandwidth Product RL = 8Ω 2 MHz ICC ISTANDBY THD + N PSRR Parameter Min. 1. Standby mode is actived when Vstdby is tied to GND 2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the surimposed sinus signal to Vcc @ f = 217Hz 3/31 TS4890 VCC = 2.6V, GND = 0V, Tamb = 25°C (unless otherwise specified) Symbol Typ. Max. Unit Supply Current No input signal, no load 5 8 mA Standby Current 1) No input signal, Vstdby = GND, RL = 8Ω 10 1000 nA Voo Output Offset Voltage No input signal, RL = 8Ω 5 20 mV Po Output Power THD = 1% Max, f = 1kHz, RL = 8Ω 260 mW Total Harmonic Distortion + Noise Po = 200mW rms, Gv = 2, 20Hz < f < 20kHz, RL = 8Ω 0.15 % Power Supply Rejection Ratio2) f = 217Hz, RL = 8Ω, RFeed = 22KΩ, Vripple = 200mV rms 77 dB ΦM Phase Margin at Unity Gain RL = 8Ω, CL = 500pF 70 Degrees GM Gain Margin RL = 8Ω, CL = 500pF 20 dB GBP Gain Bandwidth Product RL = 8Ω 2 MHz ICC ISTANDBY THD + N PSRR Parameter Min. 1. Standby mode is actived when Vstdby is tied to GND 2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the surimposed sinus signal to Vcc @ f = 217Hz VCC = 2.2V, GND = 0V, Tamb = 25°C (unless otherwise specified) Symbol Typ. Max. Unit Supply Current No input signal, no load 5 8 mA Standby Current 1) No input signal, Vstdby = GND, RL = 8Ω 10 1000 nA Voo Output Offset Voltage No input signal, RL = 8Ω 5 20 mV Po Output Power THD = 1% Max, f = 1kHz, RL = 8Ω 180 mW Total Harmonic Distortion + Noise Po = 200mW rms, Gv = 2, 20Hz < f < 20kHz, RL = 8Ω 0.15 % Power Supply Rejection Ratio2) f = 217Hz, RL = 8Ω, RFeed = 22KΩ, Vripple = 100mV rms 77 dB ΦM Phase Margin at Unity Gain RL = 8Ω, CL = 500pF 70 Degrees GM Gain Margin RL = 8Ω, CL = 500pF 20 dB GBP Gain Bandwidth Product RL = 8Ω 2 MHz ICC ISTANDBY THD + N PSRR Parameter Min. 1. Standby mode is actived when Vstdby is tied to GND 2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the surimposed sinus signal to Vcc @ f = 217Hz 4/31 TS4890 Components Functiona l Description Rin Inverting input resistor which sets the closed loop gain in conjunction with Rfeed. This resistor also forms a high pass filter with Cin (fc = 1 / (2 x Pi x Rin x Cin)) Cin Input coupling capacitor which blocks the DC voltage at the amplifier input terminal Rfeed Feed back resistor which sets the closed loop gain in conjunction with Rin Cs Supply Bypass capacitor which provides power supply filtering Cb Bypass pin capacitor which provides half supply filtering Cfeed Rstb Gv Low pass filter capacitor allowing to cut the high frequency (low pass filter cut-off frequency 1 / (2 x Pi x Rfeed x Cfeed)) Pull-down resistor which fixes the right supply level on the standby pin Closed loop gain in BTL configuration = 2 x (Rfeed / Rin) REMARKS 1. All measurements, except PSRR measurements, are made with a supply bypass capacitor Cs = 100µF. 1. External resistors are not needed for having better stability when supply @ Vcc down to 3V. The quiescent current still remains the same. 2. The standby response time is about 1µs. 5/31 TS4890 Fig. 1 : Open Loop Frequency Response Fig. 2 : Open Loop Frequency Response 0 -80 Gain (dB) 20 -100 -120 0 -140 40 Gain (dB) -60 Phase Vcc = 5V ZL = 8 Ω + 560pF Tamb = 25 C Gain -40 Phase (Deg) 40 60 -80 20 -100 -120 0 -140 -160 -180 -20 -180 -200 -40 0.3 1 10 100 1000 10000 -200 -220 -40 0.3 1 10 Fig. 3 : Open Loop Frequency Response 0 Vcc = 3.3V RL = 8Ω Tamb = 25 C 10000 80 -40 -60 -100 -120 20 -140 0 Vcc = 3.3V ZL = 8Ω + 560pF Tamb = 25 C Gain 60 -160 Phase (Deg) Phase -20 Phase 100 1000 10000 -140 -160 -180 -20 -200 -220 -240 -40 0.3 1 10 Frequency (kHz) 80 1000 10000 80 0 -20 Vcc = 2.6V ZL = 8Ω + 560pF Tamb = 25 C Gain -40 60 -60 -100 20 -120 -140 0 -160 40 Gain (dB) Phase -200 -100 20 -120 -140 0 -160 -180 -200 -20 -220 1 10 100 Frequency (kHz) 6/31 1000 10000 -240 -40 -80 Phase -180 -20 -20 -60 -80 Phase (Deg) Gain (dB) 40 -40 0.3 -240 Fig. 6 : Open Loop Frequency Response 0 Vcc = 2.6V RL = 8Ω Tamb = 25 C Gain 100 Frequency (kHz) Fig. 5 : Open Loop Frequency Response 60 -60 -120 -220 10 -40 -100 20 0 -200 1 -20 -80 40 -180 -40 0.3 -220 0 -20 -80 40 Gain (dB) 1000 Fig. 4 : Open Loop Frequency Response Gain (dB) 80 Gain 100 Frequency (kHz) Frequency (kHz) 60 -40 -60 Phase -160 -20 -20 Phase (Deg) Gain 0 -20 Phase (Deg) Vcc = 5V RL = 8Ω Tamb = 25 C -220 -40 0.3 1 10 100 Frequency (kHz) 1000 10000 -240 Phase (Deg) 60 TS4890 Fig. 7 : Open Loop Frequency Response 0 0 Vcc = 2.2V ZL = 8Ω + 560pF Tamb = 25 C Gain -40 60 -60 -100 20 -120 -140 0 -160 40 Gain (dB) Phase -80 Phase -100 -120 20 -140 0 -160 -180 -20 -180 -200 -20 -200 -220 1 10 100 1000 Frequency (kHz) 10000 -220 -240 -40 0.3 Fig. 9 : Open Loop Frequency Response 80 Phase 60 -80 100 -100 80 -120 60 Gain (dB) Gain -140 40 -160 20 -180 0 -40 0.3 1 1000 -140 40 -160 20 -180 10000 -200 Vcc = 3.3V CL = 560pF Tamb = 25 C -40 0.3 1 -220 10 100 80 -100 80 Phase -120 -140 40 -160 20 -180 0 -200 Vcc = 2.6V CL = 560pF Tamb = 25 C 100 10000 -240 1000 10000 -80 -100 Phase -120 60 Gain (dB) Gain Phase (Deg) Gain (dB) 60 Frequency (kHz) 1000 Fig. 12 : Open Loop Frequency Response -80 10 100 Frequency (kHz) 100 1 -100 0 Fig. 11 : Open Loop Frequency Response -40 0.3 -240 -120 Frequency (kHz) -20 10000 Gain -220 100 100 1000 Frequency (kHz) Phase -20 10 10 -80 -200 Vcc = 5V CL = 560pF Tamb = 25 C -20 Phase (Deg) 100 1 Fig. 10 : Open Loop Frequency Response Gain (dB) -40 0.3 -40 -60 -80 Phase (Deg) Gain (dB) 40 -20 Gain -140 40 -160 20 -180 0 -200 Vcc = 2.2V CL = 560pF Tamb = 25 C -220 -20 -240 -40 0.3 1 Phase (Deg) Gain 60 80 -20 Phase (Deg) Vcc = 2.2V RL = 8Ω Tamb = 25 C Phase (Deg) 80 Fig. 8 : Open Loop Frequency Response -220 10 100 1000 10000 -240 Frequency (kHz) 7/31 TS4890 Fig. 13 : Power Supply Rejection Ratio (PSRR) vs Power supply Fig. 14 : Power Supply Rejection Ratio (PSRR) vs Feedback Capacitor −30 −50 −60 −20 −30 PSRR (dB) PSRR (dB) −40 −10 Vripple = 200mVrms Rfeed = 22kΩ Input = floating RL = 8Ω Tamb = 25°C Vcc = 5V to 2.2V Cb = 1µF & 0.1µF −40 −50 Vcc = 5 to 2.2V Cb = 1µF & 0.1µF Rfeed = 22kΩ Vripple = 200mVrms Input = floating RL = 8Ω Tamb = 25°C Cfeed=0 Cfeed=150pF Cfeed=330pF −60 −70 −70 −80 10 100 1000 10000 Frequency (Hz) Fig. 15 : Power Supply Rejection Ratio (PSRR) vs Bypass Capacitor −10 Cb=10µF Vcc = 5 to 2.2V Rfeed = 22k Rin = 22k, Cin = 1µF Rg = 100Ω, RL = 8Ω Tamb = 25°C −40 Cb=47µF −50 1000 10000 Frequency (Hz) Cin=1µF 100000 Vcc = 5 to 2.2V Rfeed = 22k, Rin = 22k Cb = 1µF Rg = 100Ω , RL = 8Ω Tamb = 25°C Cin=330nF −20 PSRR (dB) Cb=1µF −30 PSRR (dB) 100 Fig. 16 : Power Supply Rejection Ratio (PSRR) vs Input Capacitor −10 −20 Cfeed=680pF −80 10 100000 Cin=220nF −30 −40 −60 Cin=100nF −50 −70 Cin=22nF Cb=100µF −80 10 100 1000 10000 −60 10 100000 100 Frequency (Hz) Fig. 17 : Power Supply Rejection Ratio (PSRR) vs Feedback Resistor −40 Rfeed=110kΩ Rfeed=47kΩ −50 −60 Rfeed=22kΩ −70 −80 10 1.2 1.0 Gv = 2 & 10 Cb = 1 F F = 1kHz BW < 125kHz Tamb = 25 C 8Ω 6Ω 4Ω 0.8 16 Ω 0.6 0.4 0.2 32 Ω Rfeed=10k Ω 100 1000 Frequency (Hz) 8/31 100000 1.4 Vcc = 5 to 2.2V Cb = 1µF & 0.1µF Vripple = 200mVrms Input = floating RL = 8Ω Tamb = 25°C Output power @ 1% THD + N (W) PSRR (dB) −30 10000 Fig. 18 : Pout @ THD + N = 1% vs Supply Voltage vs RL −10 −20 1000 Frequency (Hz) 10000 100000 0.0 2.5 3.0 3.5 4.0 Vcc (V) 4.5 5.0 TS4890 Fig. 20 : Power Dissipation vs Pout 1.4 2.0 Gv = 2 & 10 1.8 Cb = 1 F F = 1kHz 1.6 BW < 125kHz 1.4 Tamb = 25 C 8Ω 4Ω Power Dissipation (W) Output power @ 10% THD + N (W) Fig. 19 : Pout @ THD + N = 10% vs Supply Voltage vs RL 6Ω 1.2 1.0 16 Ω 0.8 0.6 Vcc=5V 1.2 F=1kHz THD+N<1% RL=4Ω 1.0 0.8 0.6 RL=8Ω 0.4 0.4 0.0 2.5 0.2 32 Ω 0.2 3.0 3.5 4.0 4.5 RL=16Ω 0.0 0.0 5.0 0.2 0.4 Vcc (V) Fig. 21 : Power Dissipation vs Pout RL=4Ω Power Dissipation (W) Power Dissipation (W) 1.0 1.2 1.4 0.40 Vcc=3.3V F=1kHz 0.5 THD+N<1% 0.4 0.3 0.2 RL=8Ω Vcc=2.6V 0.35 F=1kHz THD+N<1% 0.30 0.20 0.15 RL=8Ω 0.05 RL=16Ω 0.2 0.4 RL=4Ω 0.25 0.10 0.1 0.6 RL=16Ω 0.00 0.0 0.8 0.1 0.2 Output Power (W) 0.4 Fig. 24 : Power Derating Curves 0.40 SO8 on demoboard RL=4Ω 0.25 0.20 0.15 RL=8Ω 0.10 Power Dissipation (W) 1.2 Vcc=2.6V 0.35 F=1kHz THD+N<1% 0.30 0.3 Output Power (W) Fig. 23 : Power Dissipation vs Pout Power Dissipation (W) 0.8 Fig. 22 : Power Dissipation vs Pout 0.6 0.0 0.0 0.6 Output Power (W) 1.0 MiniSO8 on demoboard 0.8 0.6 0.4 MiniSO8 SO8 0.2 0.05 0.00 0.0 RL=16Ω 0.0 0.1 0.2 Output Power (W) 0.3 0 25 50 75 100 125 150 Ambiant Temperature (°C) 9/31 TS4890 Fig. 25 : THD + N vs Output Power Fig. 26 : THD + N vs Output Power 10 Rl = 4 Ω Vcc = 5V Gv = 2 Cb = Cin = 1 F BW < 125kHz Tamb = 25 C RL = 4Ω, Vcc = 5V Gv = 10 Cb = Cin = 1 F BW < 125kHz, Tamb = 25 C THD + N (%) THD + N (%) 10 1 20kHz 20kHz 1 20Hz 20Hz, 1kHz 0.1 1E-3 0.01 0.1 Output Power (W) 1kHz 0.1 1E-3 1 Fig. 27 : THD + N vs Output Power 1 Fig. 28 : THD + N vs Output Power 10 10 RL = 4Ω, Vcc = 3.3V Gv = 2 Cb = Cin = 1 F BW < 125kHz Tamb = 25 C THD + N (%) THD + N (%) 0.01 0.1 Output Power (W) 1 RL = 4 Ω, Vcc = 3.3V Gv = 10 Cb = Cin = 1 F BW < 125kHz Tamb = 25 C 20kHz 1 20kHz 0.1 20Hz 1kHz 20Hz, 1kHz 0.1 1E-3 0.01 0.1 Output Power (W) Fig. 29 : THD + N vs Output Power 1E-3 0.01 0.1 Output Power (W) 1 Fig. 30 : THD + N vs Output Power 10 RL = 4Ω, Vcc = 2.6V Gv = 2 Cb = Cin = 1 F BW < 125kHz Tamb = 25 C THD + N (%) THD + N (%) 10 1 1 RL = 4Ω , Vcc = 2.6V Gv = 10 Cb = Cin = 1 F BW < 125kHz Tamb = 25 C 1 20kHz 20kHz 20Hz 0.1 1kHz 20Hz, 1kHz 0.1 1E-3 10/31 0.01 0.1 Output Power (W) 1E-3 0.01 0.1 Output Power (W) TS4890 Fig. 31 : THD + N vs Output Power Fig. 32 : THD + N vs Output Power 10 10 RL = 4Ω , Vcc = 2.2V Gv = 10 Cb = Cin = 1 F BW < 125kHz Tamb = 25 C THD + N (%) THD + N (%) RL = 4Ω, Vcc = 2.2V Gv = 2 Cb = Cin = 1 F BW < 125kHz Tamb = 25 C 1 20kHz 1 20kHz 20Hz 0.1 20Hz, 1kHz 0.1 1E-3 0.01 Output Power (W) 0.1 1E-3 Fig. 33 : THD + N vs Output Power 0.01 Output Power (W) 0.1 Fig. 34 : THD + N vs Output Power 10 10 RL = 8Ω Vcc = 5V Gv = 2 Cb = Cin = 1 F BW < 125kHz Tamb = 25 C 1 20Hz, 1kHz THD + N (%) THD + N (%) 1kHz 20kHz RL = 8Ω Vcc = 5V Gv = 10 Cb = Cin = 1 F BW < 125kHz Tamb = 25 C 1 20Hz 20kHz 0.1 0.1 1kHz 1E-3 0.01 0.1 Output Power (W) 1E-3 1 1 Fig. 36 : THD + N vs Output Power Fig. 35 : THD + N vs Output Power 10 10 RL = 8Ω, Vcc = 3.3V Gv = 2 Cb = Cin = 1 F BW < 125kHz Tamb = 25 C THD + N (%) THD + N (%) 0.01 0.1 Output Power (W) 1 20Hz, 1kHz RL = 8Ω, Vcc = 3.3V Gv = 10 Cb = Cin = 1 F BW < 125kHz Tamb = 25 C 1 20Hz 20kHz 20kHz 0.1 0.1 1kHz 1E-3 0.01 0.1 Output Power (W) 1 1E-3 0.01 0.1 Output Power (W) 1 11/31 TS4890 Fig. 37 : THD + N vs Output Power Fig. 38 : THD + N vs Output Power 10 RL = 8Ω, Vcc = 2.6V Gv = 2 Cb = Cin = 1 F BW < 125kHz Tamb = 25 C THD + N (%) THD + N (%) 10 1 20Hz, 1kHz 1 20Hz 1kHz 0.1 1E-3 0.01 0.1 Output Power (W) 1E-3 Fig. 39 : THD + N vs Output Power 10 THD + N (%) RL = 8Ω, Vcc = 2.2V Gv = 2 Cb = Cin = 1 F BW < 125kHz Tamb = 25 C 1 1kHz RL = 8Ω , Vcc = 2.2V Gv = 10 Cb = Cin = 1 F BW < 125kHz Tamb = 25 C 1 20Hz 20kHz 20kHz 20Hz 0.1 1kHz 0.1 1E-3 0.01 0.1 1E-3 Output Power (W) 0.01 0.1 Output Power (W) Fig. 41 : THD + N vs Output Power Fig. 42 : THD + N vs Output Power 10 10 RL = 8Ω, Vcc = 5V, Gv = 10 Cb = 0.1 F, Cin = 1 F BW < 125kHz, Tamb = 25 C RL = 8Ω Vcc = 5V Gv = 2 Cb = 0.1 F, Cin = 1 F BW < 125kHz Tamb = 25 C 20kHz 20Hz 1kHz THD + N (%) THD + N (%) 0.01 0.1 Output Power (W) Fig. 40 : THD + N vs Output Power 10 1 20kHz 20kHz 0.1 THD + N (%) RL = 8Ω , Vcc = 2.6V Gv = 10 Cb = Cin = 1 F BW < 125kHz Tamb = 25 C 20Hz 1 20kHz 1kHz 0.1 1E-3 12/31 0.1 0.01 0.1 Output Power (W) 1 1E-3 0.01 0.1 Output Power (W) 1 TS4890 Fig. 43 : THD + N vs Output Power Fig. 44 : THD + N vs Output Power 10 RL = 8Ω, Vcc = 3.3V, Gv = 10 Cb = 0.1 F, Cin = 1 F BW < 125kHz, Tamb = 25 C RL = 8Ω, Vcc = 3.3V Gv = 2 Cb = 0.1 F, Cin = 1 F BW < 125kHz Tamb = 25 C THD + N (%) THD + N (%) 10 1 20Hz 20kHz 1 20kHz 20Hz 1kHz 1kHz 0.1 0.1 1E-3 0.01 0.1 Output Power (W) 1 Fig. 45 : THD + N vs Output Power 1 10 RL = 8Ω, Vcc = 2.6V Gv = 2 Cb = 0.1 F, Cin = 1 F BW < 125kHz Tamb = 25 C RL = 8Ω, Vcc = 2.6V, Gv = 10 Cb = 0.1 F, Cin = 1 F BW < 125kHz, Tamb = 25 C 1 20Hz 20kHz 1 20kHz 1kHz 20Hz 1kHz 0.1 0.1 1E-3 0.01 0.1 Output Power (W) 1E-3 Fig. 47 : THD + N vs Output Power 10 0.01 Output Power (W) 0.1 Fig. 48 : THD + N vs Output Power 10 RL = 8Ω, Vcc = 2.2V Gv = 2 Cb = 0.1 F, Cin = 1 F BW < 125kHz Tamb = 25 C RL = 8Ω, Vcc = 2.2V, Gv = 10 Cb = 0.1 F, Cin = 1 F BW < 125kHz, Tamb = 25 C THD + N (%) THD + N (%) 0.01 0.1 Output Power (W) Fig. 46 : THD + N vs Output Power THD + N (%) THD + N (%) 10 1E-3 1 20Hz 20kHz 1 20kHz 1kHz 1kHz 0.1 1E-3 20Hz 0.1 0.01 Output Power (W) 0.1 1E-3 0.01 0.1 Output Power (W) 13/31 TS4890 Fig. 49 : THD + N vs Output Power Fig. 50 : THD + N vs Output Power 10 10 20kHz RL = 16Ω , Vcc = 5V Gv = 10 Cb = Cin = 1 F BW < 125kHz Tamb = 25 C 1 THD + N (%) THD + N (%) 1 RL = 16Ω, Vcc = 5V Gv = 2 Cb = Cin = 1 F BW < 125kHz Tamb = 25 C 20kHz 0.1 0.1 1kHz 20Hz, 1kHz 0.01 1E-3 0.01 0.1 Output Power (W) 1 Fig. 51 : THD + N vs Output Power 0.01 1E-3 0.01 0.1 Output Power (W) 10 THD + N (%) RL = 16Ω, Vcc = 3.3V Gv = 2 Cb = Cin = 1 F BW < 125kHz Tamb = 25 C 1 20kHz 0.1 1 RL = 16Ω Vcc = 3.3V Gv = 10 Cb = Cin = 1 F BW < 125kHz Tamb = 25 C 20kHz 0.1 1kHz 20Hz 20Hz, 1kHz 0.01 1E-3 0.01 Output Power (W) 0.01 1E-3 0.1 Fig. 53 : THD + N vs Output Power THD + N (%) THD + N (%) 0.1 10 RL = 16Ω Vcc = 2.6V Gv = 2 Cb = Cin = 1 F BW < 125kHz Tamb = 25 C 20kHz 0.1 1 RL = 16Ω Vcc = 2.6V Gv = 10 Cb = Cin = 1 F BW < 125kHz Tamb = 25 C 20Hz 20kHz 0.1 20Hz, 1kHz 0.01 1E-3 14/31 0.01 Output Power (W) Fig. 54 : THD + N vs Output Power 10 1 1 Fig. 52 : THD + N vs Output Power 10 THD + N (%) 20Hz 0.01 Output Power (W) 1kHz 0.1 0.01 1E-3 0.01 Output Power (W) 0.1 TS4890 Fig. 55 : THD + N vs Output Power Fig. 56 : THD + N vs Output Power 1 10 RL = 16Ω Vcc = 2.2V Gv = 10, Cb = Cin = 1 F BW < 125kHz, Tamb = 25 C RL = 16Ω Vcc = 2.2V Gv = 2 Cb = Cin = 1 F BW < 125kHz Tamb = 25 C THD + N (%) THD + N (%) 10 20kHz 20Hz 0.1 1 20kHz 0.1 20Hz 1kHz 0.01 1E-3 1kHz 0.01 Output Power (W) Fig. 57 : THD + N vs Frequency 1 Pout = 1.2W 100 1000 RL = 4 Ω, Vcc = 5V Gv = 10 Cb = 1µF BW < 125kHz Tamb = 25°C 0.01 20 10000 Pout = 600mW 0.1 100 Frequency (Hz) 1000 Fig. 60 : THD + N vs Frequency RL = 4Ω , Vcc = 3.3V Gv = 2 Cb = 1µF BW < 125kHz Tamb = 25°C RL = 4Ω, Vcc = 3.3V Gv = 10 Cb = 1µF BW < 125kHz Tamb = 25°C THD + N (%) THD + N (%) 1 Pout = 540mW Pout = 540mW Pout = 270mW 0.1 20 100 1000 Frequency (Hz) 10000 Frequency (Hz) Fig. 59 : THD + N vs Frequency 1 0.1 Pout = 1.2W RL = 4Ω , Vcc = 5V Gv = 2 Cb = 1µF BW < 125kHz Tamb = 25°C Pout = 600mW 0.1 20 0.01 Output Power (W) Fig. 58 : THD + N vs Frequency THD + N (%) THD + N (%) 1 0.01 1E-3 0.1 Pout = 270mW 10000 0.1 20 100 1000 10000 Frequency (Hz) 15/31 TS4890 Fig. 61 : THD + N vs Frequency RL = 4Ω , Vcc = 2.6V Gv = 2 Cb = 1µF BW < 125kHz Tamb = 25°C RL = 4Ω, Vcc = 2.6V Gv = 10 Cb = 1µF BW < 125kHz Tamb = 25°C 1 Pout = 240mW THD + N (%) THD + N (%) 1 Fig. 62 : THD + N vs Frequency Pout = 240 & 120mW Pout = 120mW 0.1 20 100 1000 0.1 20 10000 100 Frequency (Hz) Fig. 63 : THD + N vs Frequency 10000 Fig. 64 : THD + N vs Frequency RL = 4Ω , Vcc = 2.2V Gv = 2 Cb = 1µF BW < 125kHz Tamb = 25°C 1 THD + N (%) THD + N (%) 1 1000 Frequency (Hz) Pout = 175mW RL = 4Ω, Vcc = 2.2V Gv = 10 Cb = 1µF BW < 125kHz Tamb = 25°C Pout = 175mW Pout = 88mW Pout = 88mW 0.1 20 100 1000 0.1 20 10000 100 Frequency (Hz) 1000 10000 Frequency (Hz) Fig. 65 : THD + N vs Frequency Fig. 66 : THD + N vs Frequency 1 Cb = 0.1µF Cb = 1µF RL = 8Ω Vcc = 5V Gv = 2 Pout = 450mW BW < 125kHz Tamb = 25°C THD + N (%) THD + N (%) 1 RL = 8Ω Vcc = 5V Gv = 2 Pout = 900mW BW < 125kHz Tamb = 25°C Cb = 0.1µF Cb = 1µF 0.1 20 100 1000 Frequency (Hz) 16/31 10000 0.1 20 100 1000 Frequency (Hz) 10000 TS4890 Fig. 68 : THD + N vs Frequency RL = 8Ω, Vcc = 5V Gv = 10 Pout = 900mW BW < 125kHz Tamb = 25°C THD + N (%) 1 Cb = 0.1µF 1 Cb = 0.1µF Cb = 1µF Cb = 1µF 0.1 20 0.1 100 1000 Frequency (Hz) 10000 20 100 10000 Fig. 70 : THD + N vs Frequency 1 1 Cb = 0.1µF Cb = 1µF RL = 8Ω , Vcc = 3.3V Gv = 2 Pout = 200mW BW < 125kHz Tamb = 25°C THD + N (%) THD + N (%) RL = 8Ω , Vcc = 3.3V Gv = 2 Pout = 400mW BW < 125kHz Tamb = 25°C 0.1 Cb = 0.1µF Cb = 1µF 0.1 100 1000 10000 20 100 Frequency (Hz) 10000 Fig. 72 : THD + N vs Frequency Cb = 0.1µF Cb = 1µF RL = 8Ω, Vcc = 3.3V Gv = 10 Pout = 200mW BW < 125kHz Tamb = 25°C 1 THD + N (%) RL = 8 Ω, Vcc = 3.3V Gv = 10 Pout = 400mW BW < 125kHz Tamb = 25°C 1 1000 Frequency (Hz) Fig. 71 : THD + N vs Frequency THD + N (%) 1000 Frequency (Hz) Fig. 69 : THD + N vs Frequency 20 RL = 8Ω, Vcc = 5V Gv = 10 Pout = 450mW BW < 125kHz Tamb = 25°C THD + N (%) Fig. 67 : THD + N vs Frequency Cb = 0.1µF Cb = 1µF 0.1 0.1 20 100 1000 Frequency (Hz) 10000 20 100 1000 10000 Frequency (Hz) 17/31 TS4890 Fig. 73 : THD + N vs Frequency Fig. 74 : THD + N vs Frequency 1 1 Cb = 1µF RL = 8 Ω, Vcc = 2.6V Gv = 2 Pout = 110mW BW < 125kHz Tamb = 25°C THD + N (%) THD + N (%) Cb = 0.1µF RL = 8Ω , Vcc = 2.6V Gv = 2 Pout = 220mW BW < 125kHz Tamb = 25°C Cb = 0.1µF Cb = 1µF 0.1 20 0.1 100 1000 10000 20 100 Frequency (Hz) Fig. 75 : THD + N vs Frequency Cb = 0.1µF RL = 8Ω, Vcc = 2.6V Gv = 10 Pout = 110mW BW < 125kHz Tamb = 25°C 1 Cb = 0.1µF THD + N (%) THD + N (%) 10000 Fig. 76 : THD + N vs Frequency RL = 8Ω, Vcc = 2.6V Gv = 10 Pout = 220mW BW < 125kHz Tamb = 25°C 1 1000 Frequency (Hz) Cb = 1µF Cb = 1µF 0.1 0.1 20 100 1000 10000 20 100 Frequency (Hz) 1000 10000 Frequency (Hz) Fig. 77 : THD + N vs Frequency Fig. 78 : THD + N vs Frequency 1 1 Cb = 1µF RL = 8Ω , Vcc = 2.2V Gv = 2 Pout = 75mW BW < 125kHz Tamb = 25°C THD + N (%) THD + N (%) Cb = 0.1µF RL = 8Ω , Vcc = 2.2V Gv = 2 Pout = 150mW BW < 125kHz Tamb = 25°C Cb = 0.1µF Cb = 1µF 0.1 20 0.1 100 1000 Frequency (Hz) 18/31 10000 20 100 1000 Frequency (Hz) 10000 TS4890 Fig. 80 : THD + N vs Frequency RL = 8Ω , Vcc = 2.2V Gv = 10 Pout = 150mW BW < 125kHz Tamb = 25°C THD + N (%) 1 Cb = 0.1µF RL = 8Ω, Vcc = 2.2V Gv = 10 Pout = 75mW BW < 125kHz Tamb = 25°C 1 Cb = 0.1µF THD + N (%) Fig. 79 : THD + N vs Frequency Cb = 1µF Cb = 1µF 0.1 0.1 20 100 1000 20 10000 100 10000 Fig. 82 : THD + N vs Frequency Fig. 81 : THD + N vs Frequency 1 1 RL = 16Ω, Vcc = 5V Gv = 10, Cb = 1µF BW < 125kHz Tamb = 25°C THD + N (%) RL = 16Ω , Vcc = 5V Gv = 2, Cb = 1µF BW < 125kHz Tamb = 25°C THD + N (%) 1000 Frequency (Hz) Frequency (Hz) Pout = 310mW 0.1 Pout = 620mW 0.1 Pout = 310mW Pout = 620mW 0.01 20 100 1000 Frequency (Hz) 10000 0.01 20 1000 10000 Frequency (Hz) Fig. 84 : THD + N vs Frequency Fig. 83 : THD + N vs Frequency 1 1 THD + N (%) RL = 16Ω, Vcc = 3.3V Gv = 2, Cb = 1µF BW < 125kHz Tamb = 25°C THD + N (%) 100 Pout = 270mW 0.1 RL = 16Ω , Vcc = 3.3V Gv = 10 Cb = 1µF BW < 125kHz Tamb = 25°C Pout = 270mW 0.1 Pout = 135mW Pout = 135mW 0.01 20 100 1000 Frequency (Hz) 10000 20 100 1000 10000 Frequency (Hz) 19/31 TS4890 Fig. 86 : THD + N vs Frequency Fig. 85 : THD + N vs Frequency 1 1 RL = 16Ω, Vcc = 2.6V Gv = 2, Cb = 1µF BW < 125kHz Tamb = 25°C Pout = 160mW THD + N (%) THD + N (%) RL = 16Ω, Vcc = 2.6V Gv = 10, Cb = 1µF BW < 125kHz Tamb = 25°C 0.1 Pout = 80mW 0.1 Pout = 80mW 0.01 20 100 1000 Frequency (Hz) Pout = 160mW 0.01 20 10000 1000 10000 Frequency (Hz) Fig. 88 : THD + N vs Frequency Fig. 87 : THD + N vs Frequency 1 1 RL = 16Ω, Vcc = 2.2V Gv = 10, Cb = 1µF BW < 125kHz Tamb = 25°C THD + N (%) RL = 16Ω, Vcc = 2.2V Gv = 2, Cb = 1µF BW < 125kHz Tamb = 25°C THD + N (%) 100 Pout = 50 & 100mW 0.1 Pout = 50mW 0.1 Pout = 100mW 0.01 20 100 1000 0.01 20 10000 100 Fig. 89 : Signal to Noise Ratio vs Power Supply with Unweighted Filter (20Hz to 20kHz) 90 90 80 RL=4Ω RL=8Ω SNR (dB) SNR (dB) RL=16Ω 80 70 Gv = 2 Cb = Cin = 1µF THD+N < 0.4% Tamb = 25°C 60 2.5 3.0 3.5 Vcc (V) 20/31 10000 Fig. 90 :Signal to Noise Ratio Vs Power Supply with Unweighted Filter (20Hz to 20kHz) 100 50 2.2 1000 Frequency (Hz) Frequency (Hz) 4.0 4.5 5.0 RL=8Ω 70 RL=4Ω RL=16Ω Gv = 10 Cb = Cin = 1µF THD+N < 0.7% Tamb = 25°C 60 50 2.2 2.5 3.0 3.5 Vcc (V) 4.0 4.5 5.0 TS4890 Fig. 91 : Signal to Noise Ratio vs Power Supply with Weighted Filter type A Fig. 92 : Signal to Noise Ratio vs Power Supply with Weighted Filter Type A 100 110 100 90 90 RL=4Ω RL=16Ω SNR (dB) SNR (dB) RL=8Ω 80 Gv = 2 Cb = Cin = 1µF THD+N < 0.4% Tamb = 25°C 70 60 2.2 2.5 3.0 3.5 Vcc (V) 4.0 4.5 5 6 -15 Icc (mA) Gain (dB) Cfeed = 680pF -10 Cfeed = 2.2nF -25 10 100 1000 Frequency (Hz) 5.0 Vstandby = Vcc Tamb = 25°C 3 0 1 2 3 4 5 Vcc (V) Fig. 96 : Current Consumption vs Standby Voltage @ Vcc = 3.3V 7 6 6 5 5 4 4 Icc (mA) Icc (mA) 4.5 4 0 10000 Fig. 95 : Current Consumption vs Standby Voltage @ Vcc = 5V 3 3 2 2 1 0 0.0 4.0 1 Rin = Rfeed = 22kΩ Tamb = 25 C Cin = 82nF 3.5 Vcc (V) 2 Cin = 22nF -20 3.0 5 Cfeed = 330pF Cin = 470nF 2.5 Fig. 94 : Current Consumption vs Power Supply Voltage (no load) 7 -5 Gv = 10 Cb = Cin = 1µF THD+N < 0.7% Tamb = 25°C 60 2.2 10 0 RL=4Ω 70 5.0 Fig. 93 : Frequency Response Gain vs Cin, & Cfeed RL=8Ω RL=16Ω 80 Vcc = 5V Tamb = 25°C 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Vstandby (V) 4.0 4.5 5.0 1 0 0.0 Vcc = 3.3V Tamb = 25°C 0.5 1.0 1.5 2.0 2.5 3.0 Vstandby (V) 21/31 TS4890 Fig. 97 : Current Consumption vs Standby Voltage @ Vcc = 2.6V Fig. 98 : Current Consumption vs Standby Voltage @ Vcc = 2.2V 6 5 5 4 Icc (mA) Icc (mA) 4 3 3 2 2 1 1 Vcc = 2.6V Tamb = 25°C 0 0.0 0.5 1.0 1.5 Vstandby (V) 2.0 Vcc = 2.2V Tamb = 25 C 0 0.0 2.5 2.0 1.0 Tamb = 25 C 0.9 0.8 Vout1 & Vout2 Clipping Voltage Low side (V) Vout1 & Vout2 Clipping Voltage High side (V) 1.5 Fig. 100 :Clipping Voltage vs Power Supply Voltage and Load Resistor 1.0 0.7 0.6 0.5 RL = 4Ω RL = 8Ω 0.4 0.3 0.2 0.1 0.0 2.2 RL = 16Ω 2.5 3.0 3.5 4.0 Power supply Voltage (V) 22/31 1.0 Vstandby (V) Fig. 99 : Clipping Voltage vs Power Supply Voltage and Load Resistor 0.9 0.5 4.5 5.0 Tamb = 25 C 0.8 0.7 0.6 RL = 4Ω 0.5 RL = 8Ω 0.4 0.3 0.2 0.1 0.0 2.2 RL = 16Ω 2.5 3.0 3.5 4.0 Power supply Voltage (V) 4.5 5.0 TS4890 APPLICATION INFORMATION Fig. 101 : Demoboard Schematic C1 R2 C2 R1 S1 Vcc Vcc Vcc S2 GND C6 + 100µ R3 6 C3 C5 R4 C4 Pos input S6 Vcc Neg. input P1 C7 100n 4 R5 VinVin+ 3 - Vout1 5 C9 + 470µ + S5 Positive Input mode P2 Vcc 2 Bypass 1 Standby Av=-1 + R8 10k Vout2 8 C10 + 470µ Bias GND S8 Standby GND S4 GND S7 R6 - R7 1.5k OUT1 S3 D1 PW ON TS4890 7 + C11 + C12 1u C8 Fig. 102 : SO8 & MiniSO8 Demoboard Components Side 23/31 TS4890 Fig. 103 : SO8 & MiniSO8 Demoboard Top Solder Layer The output power is : Pout = (2 VoutRMS )2 (W) RL For the same power supply voltage, the output power in BTL configuration is four times higher than the output power in single ended configuration. ■ Gain In Typical Application Schematic (cf. page 1) In flat region (no effect of Cin), the output voltage of the first stage is : Rfeed Vout1 = −Vin (V) Rin For the second stage : Vout2 = -Vout1 (V) Fig. 104 : SO8 & MiniSO8 Demoboard Bottom Solder Layer The differential output voltage is Rfeed Vout 2 − Vout1 = 2 Vin (V) Rin The differential gain named gain (Gv) for more convenient usage is : Gv = Vout 2 − Vout1 Rfeed =2 Vin Rin Remark : Vout2 is in phase with Vin and Vout1 is 180 phased with Vin. It means that the positive terminal of the loudspeaker should be connected to Vout2 and the negative to Vout1. ■ Low and high frequency response ■ BTL Configuration Principle The TS4890 is a monolithic power amplifier with a BTL output type. BTL (Bridge Tied Load) means that each end of the load are connected to two single ended output amplifiers. Thus, we have : Single ended output 1 = Vout1 = Vout (V) Single ended output 2 = Vout2 = -Vout (V) And Vout1 - Vout2 = 2Vout (V) 24/31 In low frequency region, the effect of Cin starts. Cin with Rin forms a high pass filter with a -3dB cut off frequency . FCL = 1 2πRinCin (Hz) In high frequency region, you can limit the bandwidth by adding a capacitor (Cfeed) in parallel on Rfeed. Its form a low pass filter with a -3dB cut off frequency . 1 FCH = (Hz) 2π Rfeed Cfeed TS4890 ■ Power dissipation and efficiency Hypothesis : • Voltage and current in the load are sinusoidal (Vout and Iout) • Supply voltage is a pure DC source (Vcc) Regarding the load we have : VOUT = VPEAK sin ωt (V) VOUT ( A) RL and 2 POUT V = PEAK (W) 2 RL Then, the average current delivered by the supply voltage is V Icc AVG = 2 PEAK (A) π RL The power delivered by the supply voltage is Psupply = Vcc IccAVG (W) Then, the power dissipated by the amplifier is Pdiss = Psupply - Pout (W) Pdiss = 2 2 Vcc π RL POUT − POUT (W ) and the maximum value is obtained when ∂Pdiss =0 ∂POUT and its value is Pdiss max = 2 Vcc 2 π2RL π = 78.5% 4 ■ Decoupling of the circuit Two capacitors are needed to bypass properly the TS4890. A power supply bypass capacitor Cs and a bias voltage bypass capacitor Cb. Cs has especially an influence on the THD+N in high frequency (above 7kHz) and indirectly on the power supply disturbances. With 100µF, you can expect similar THD+N performances like shown in the datasheet. and IOUT = The maximum theoretical value is reached when Vpeak = Vcc, so (W) If Cs is lower than 100µF, in high frequency increase THD+N and disturbances on the power supply rail are less filtered. To the contrary, if Cs is higher than 100µF, those disturbances on the power supply rail are more filtered. Cb has an influence on THD+N in lower frequency, but its function is critical on the final result of PSRR with input grounded in lower frequency. If Cb is lower than 1µF, THD+N increase in lower frequency (see THD+N vs frequency curves) and the PSRR worsens up If Cb is higher than 1µF, the benefit on THD+N in lower frequency is small but the benefit on PSRR is substantial (see PSRR vs. Cb curves). Note that Cin has a non-negligible effect on PSRR in lower frequency. Lower is its value, higher is the PSRR (see fig. 13). ■ Pop and Click performance In order to have the best performances with the pop and click circuitry, the formula below must be follow : τin ≤ τb Remark : This maximum value is only depending on power supply voltage and load values. With The efficiency is the ratio between the output power and the power supply and POUT π VPEAK η= = P sup ply 4 Vcc τin = (Rin + Rfeed ) × Cin (s) τb = 50kΩ × Cb (s) 25/31 TS4890 ■ Power amplifier design examples Given : • Load impedance : 8Ω • Output power @ 1% THD+N : 0.5W • Input impedance : 10kΩ min. • Input voltage peak to peak : 1Vpp • Bandwidth frequency : 20Hz to 20kHz (0, -3dB) • THD+N in 20Hz to 20kHz < 0.5% @Pout=0.45W • Ambient temperature max = 50°C • SO8 package First of all, we must calculate the minimum power supply voltage to obtain 0.5W into 8Ω. See curves in fig. 15, we can read 3.5V. Thus, the power supply voltage value min. will be 3.5V. Following the equation : maximum Pdiss max = power 2 Vcc2 π2RL dissipation (W) with 3.5V we have Pdissmax=0.31W. Refer to power derating curves (fig. 24), with 0.31W the maximum ambient temperature will be 100°C. This last value could be higher if you follow the example layout shows on the demoboard (better dissipation). The gain of the amplifier in flat region will be : GV = VOUTPP 2 2RLPOUT = = 5.65 VINPP VINPP We have Rin > 10kΩ. Let’s take Rin = 10kΩ, then Rfeed = 28.25kΩ. We could use for Rfeed = 30kΩ in normalized value and the gain will be Gv = 6. The first amplifier has a gain of Rfeed =3 Rin and the theoretical value of the -3dB cut of higher frequency is 2MHz/3 = 660kHz. We can keep this value or limiting the bandwidth by adding a capacitor Cfeed, in parallel on Rfeed. Then CFEED = 1 = 795nF 2π Rin FCL So, we could use for Cin a 1µF capacitor value that gives 16Hz. In Higher frequency we want 20kHz (-3dB cut off frequency). The Gain Bandwidth Product of the TS4890 is 2MHz typical and doesn’t change when the amplifier delivers power into the load. 26/31 2π RFEED FCH = 265pF So, we could use for Cfeed a 220pF capacitor value that gives 24kHz. Now, we can choose the value of Cb with the constraint THD+N in 20Hz to 20kHz < 0.5% @ Pout=0.45W. If you refer to the closest THD+N vs frequency measurement : fig. 71 (Vcc=3.3V, Gv=10), with Cb = 1µF, the THD+N vs frequency is always below 0.4%. As the behaviour is the same with Vcc = 5V (fig. 67), Vcc = 2.6V (fig. 67). As the gain for these measurements is higher (worst case), we can consider with Cb = 1µF, Vcc = 3.5V and Gv = 6, that the THD+N in 20Hz to 20kHz range with Pout = 0.45W will be lower than 0.4%. In the following tables, you could find three another examples with values required for the demoboard. Remark : components with (*) marking are optional. Application n°1 : 20Hz to 20kHz bandwidth and 6dB gain BTL power amplifier. Components : In lower frequency we want 20 Hz (-3dB cut off frequency). Then CIN = 1 Designator Part Type R1 22k / 0.125W R4 22k / 0.125W R6 Short Cicuit R7* (Vcc-Vf_led)/If_led R8 10k / 0.125W C5 470nF C6 100µF TS4890 Designator Part Type C7 100nF C9 Short Circuit C10 Short Circuit C12 1µF S1, S2, S6, S7 2mm insulated Plug 10.16mm pitch S8 3 pts connector 2.54mm pitch P1 PCB Phono Jack D1* Led 3mm U1 TS4890ID or TS4890IS Application n°3 : 50Hz to 10kHz bandwidth and 10dB gain BTL power amplifier. Components : Designator Application n°2 : 20Hz to 20kHz bandwidth and 20dB gain BTL power amplifier. Part Type R1 33k / 0.125W R2 Short Circuit R4 22k / 0.125W R6 Short Cicuit R7* (Vcc-Vf_led)/If_led R8 10k / 0.125W C2 470pF C5 150nF C6 100µF C7 100nF C9 Short Circuit C10 Short Circuit C12 1µF S1, S2, S6, S7 2mm insulated Plug 10.16mm pitch S8 3 pts connector 2.54mm pitch P1 PCB Phono Jack D1* Led 3mm U1 TS4890ID or TS4890IS Components : Designator Part Type R1 110k / 0.125W R4 22k / 0.125W R6 Short Cicuit R7* (Vcc-Vf_led)/If_led R8 10k / 0.125W C5 470nF C6 100µF C7 100nF C9 Short Circuit C10 Short Circuit C12 1µF S1, S2, S6, S7 2mm insulated Plug 10.16mm pitch S8 3 pts connector 2.54mm pitch P1 PCB Phono Jack D1* Led 3mm U1 TS4890ID or TS4890IS Application n°4 : Differential inputs BTL power amplifier. In this configuration, we need to place these components : R1, R4, R5, R6, R7, C4, C5, C12. We have also : R4 = R5, R1 = R6, C4 = C5. The gain of the amplifier is : GVDIFF = 2 R1 (Pos. Input − Neg. Input ) R4 For a 20Hz to 20kHz bandwidth and 6dB gain BTL power amplifier you could follow the bill of material below. 27/31 TS4890 Components : Designator Part Type In reality we want a value about -70dB. So, we need a gain of 34dB ! Now, on fig. 15 we can see the effect of Cb on the PSRR (input grounded) vs. frequency. With Cb=100µF, we can reach the -70dB value. R1 22k / 0.125W R4 22k / 0.125W R5 22k / 0.125W R6 22k / 0.125W R7* (Vcc-Vf_led)/If_led R8 10k / 0.125W The process to obtain the final curve (Cb=100µF, Cin=100nF, Rin=Rfeed=22kΩ) is a simple transfer point by point on each frequency of the curve on fig. 16 to the curve on fig. 15. The measurement result is shown on the next figure. C4 470nF Fig. 105 : PSRR changes with Cb C5 470nF C6 100µF C7 100nF −40 Short Circuit C10 Short Circuit C12 1µF −60 D1* Led 3mm −70 S1, S2, S6, S7 2mm insulated Plug 10.16mm pitch S8 3 pts connector 2.54mm pitch P1, P2 PCB Phono Jack U1 TS4890ID or TS4890IS (page 8) We have finished a design and we have chosen for the components : • Rin=Rfeed=22kΩ • Cin=100nF • Cb=1µF Now, on fig. 16, we can see the PSRR (input grounded) vs frequency curves. At 217Hz, we have a PSRR value of -36dB. 28/31 PSRR (dB) C9 ■ Note on how to use the PSRR curves Vcc = 5 to 2.2V Rfeed = 22k, Rin = 22k Rg = 100Ω , RL = 8Ω Tamb = 25°C −30 Cin=100nF Cb=1µF −50 10 Cin=100nF Cb=100µF 100 1000 Frequency (Hz) 10000 100000 TS4890 ■ Note on PSRR measurement ■ Principle of operation What is the PSRR ? • We fixed the DC voltage supply (Vcc) • We fixed the AC sinusoidal ripple voltage (Vripple) • No bypass capacitor Cs is used The PSRR is the Power Supply Rejection Ratio. It’s a kind of SVR in a determined frequency range. The PSRR of a device, is the ratio between a power supply disturbance and the result on the output. We can say that the PSRR is the ability of a device to minimize the impact of power supply disturbances to the output. The PSRR value for each frequency is : Rms (Vripple ) PSRR(dB) = 20 × Log10 Rms (Vs + − Vs − ) Remark : The measure of the Rms voltage is not a Rms selective measure but a full range (2 Hz to 125 kHz) Rms measure. It means that we measure the effective Rms signal + the noise. How we measure the PSRR ? Fig. 106 : PSRR measurement schematic Rfeed 6 Vcc Vripple Vcc 4 Rin 3 VinVin+ - Vout1 5 Vs- + Cin RL Bypass 1 Standby Av=-1 + Cb Vout2 8 Vs+ Bias GND Rg 100 Ohms 2 TS4890 7 29/31 TS4890 PACKAGE MECHANICAL DATA 8 PINS - PLASTIC MICROPACKAGE (SO) s b1 b a1 A a2 C c1 a3 L E e3 D M 5 1 4 F 8 Millimeters Inches Dim. Min. A a1 a2 a3 b b1 C c1 D E e e3 F L M S 30/31 Typ. Max. Min. Typ. Max. 0.65 1.75 0.25 1.65 0.85 0.026 0.069 0.010 0.065 0.033 0.35 0.19 0.25 0.48 0.25 0.5 0.014 0.007 0.010 0.019 0.010 0.020 4.8 5.8 5.0 6.2 0.189 0.228 0.197 0.244 0.1 0.004 45° (typ.) 1.27 3.81 3.8 0.4 0.050 0.150 4.0 1.27 0.6 0.150 0.016 8° (max.) 0.157 0.050 0.024 TS4890 PACKAGE MECHANICAL DATA 8 PINS - PLASTIC MICROPACKAGE (miniSO) k 0,25mm .010inch GAGEPLANE C SEATING PLANE E1 L1 L c A E A2 A1 4 8 1 e C ccc b D 5 PIN1IDENTIFICA TION Dim. A A1 A2 b c D E E1 e L L1 k aaa Millimeters Min. Typ. 0.050 0.780 0.250 0.130 2.900 4.750 2.900 0.100 0.860 0.330 0.180 3.000 4.900 3.000 0.650 0.550 0.950 3d 0.400 0d Inches Max. Min. Typ. 1.100 0.150 0.940 0.400 0.230 3.100 5.050 3.100 0.002 0.031 0.010 0.005 0.114 0.187 0.114 0.700 0.016 6d 0.100 0d 0.004 0.034 0.013 0.007 0.118 0.193 0.118 0.026 0.022 0.037 3d Max. 0.043 0.006 0.037 0.016 0.009 0.122 0.199 0.122 0.028 6d 0.004 Information furni shed is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringe ment of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publ ication supersedes and replaces all infor mation previously suppl ied. STMicroelectronics products are not authorized for use as critical compon ents in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics 2001 STMicroelectronics - Printed in Italy - All Right s Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Swit zerland - United Kingdom - United States http://w ww.st.com 31/31