SHARP PC923

PC923
High Speed Photocoupler for
MOS-FET / IGBT Drive
PC923
❈ Lead forming type ( I type ) and taping reel type ( P type ) are also available. ( PC923I/PC923P )
❈❈ TÜV ( VDE 0884 ) approved type is also available as an option.
■ Outline Dimensions
( Unit : mm )
Internal connection diagram
1.2 ± 0.3
0.85 ± 0.2
6
7
6.5 ± 0.5
8
8
7
5
6
Tr1
5
Tr2
Interface
PC923
Amp.
1
Anode mark
2
3
4
1
2
3
4
±0.5
3.50.5
0.5TYP.
7.62 ± 0.3
9.66 ± 0.5
3.05
3.4
1. Built-in direct drive circuit for MOS-FET/
IGBT drive
( IO1P , I O2P : 0.4A)
2. High speed response
( t PLH , t PHL : MAX. 0.5 µ s )
3. Wide operating supply voltage range
( Vcc : 15 to 30V, Ta = -10 to 60˚C )
4. High noise reduction type
( CM H = MIN. - 1 500V/ µ s )
( CM L = MIN. 1 500V/ µs )
5. Recognized by UL, file No. E64380
6. High isolation voltage between input
and output( VISO = 5 000 V rms )
±0.5
■ Features
■ Applications
0.5 ± 0.1
0.26 ± 0.1
2.54 ± 0.25
θ
1. Inverter controlled air conditioners
1
2
3
4
NC
Anode
Cathode
NC
5
6
7
8
θ = 0 to 13 ˚
θ
O1
O2
GND
V CC
* “ OPIC ” ( Optical IC ) is a trademark of the SHARP Corporation.
An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip.
■ Absolute Maximum Ratings
Input
Output
Parameter
Forward current
*1
Reverse voltage
Supply voltage
O 1 output current
*2
O1 peak output current
O2 output current
*2
O2 peak output current
O1 output voltage
Power dissipation
Total power dissipation
*3
Isolation voltage
Operating temperature
Storage temperature
*4
Soldering temperature
( Ta = T opr unless otherwise specified )
Symbol
IF
VR
V CC
I1
I O1P
I O2
I O2P
V O1
PO
P tot
V iso
T opr
T stg
T sol
Rating
20
6
35
0.1
0.4
0.1
0.4
35
500
550
5 000
- 25 to + 80
- 55 to + 125
260
Unit
mA
V
V
A
A
A
A
V
mW
mW
V rms
˚C
˚C
˚C
*1 Ta = 25˚C
*2 Puise width <= 0.15µs,
Duty ratio:0.01
*3 40 to 60% RH, AC for 1 minute,
Ta = 25˚C
*4 For 10 seconds
“ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device. ”
PC923
■ Electro-optical Characteristics
Parameter
Forward voltage
Input
Reverse current
Terminal capacitance
Output
Transfer
characteristics
Symbol
V F1
V F2
IR
Ct
Operating supply voltage
V CC
O1 low level output voltage
V O1L
O2 high level output voltage
O2 low level output voltage
O1 leak current
O2 leak current
V O2H
V O2L
I O1L
I O2L
High level supply current
I CCH
Low level supply current
I CCL
“ Low→High ” threshold
input current
Isolation resistance
“ Low→High ” propagation delay time
“ High→Low ” propagation delay time
Rise time
Fall time
Response time
*6
( Ta = T opr unless otherwise specified )
I FLH
R ISO
t PLH
t PHL
tr
tf
Instantaneous common mode rejection
voltage “ Output : High level ”
CH M
Instantaneous common mode rejection
voltage “ Output : Low level ”
CM L
*5
Conditions
Ta = 25˚C, I F = 10mA
Ta = 25˚C, I F = 0.2mA
Ta = 25˚C, V R = 5V
Ta = 25˚C, V = 0, f = 1MHz
Ta = - 10 to 60˚C
VCC1 = 12V, VCC2 = - 12V
I 01 = 0.1A, I F = 5mA
V CC = V 01 = 24V, I 02 = - 0.1A, I F = 5mA
V CC = 24V, I 02 = 0.1A, I F = 0
Ta = 25˚C, V CC = V 01 = 35V, I F = 0
Ta = 25˚C, V CC = V 02 = 35V, I F = 5mA
Ta = 25˚C, V CC = 24V, I F = 5mA
VCC = 24V, I F = 5mA
Ta = 25˚C, V CC = 24V, I F = 0
VCC = 24V, I F = 0
Ta = 25˚C, V CC = 24V
V CC = 24V
Ta = 25˚C, DC = 500V, 40 to 60% RH
Ta = 25˚C, V CC = 24V,
I F = 5mA
R C = 47 Ω , C G = 3 000pF
Ta = 25˚C, V CM = 600V( peak )
IF = 5mA, V CC = 24V, ∆ V O2H = 2.0V
Ta = 25˚C, V CM = 600V( peak )
I F = 0, V CC = 24V, ∆ V O2L = 2.0V
MIN.
1.2
15
15
TYP.
1.6
1.5
30
-
MAX.
1.75
10
250
30
24
Unit
V
V
µA
pF
V
V
Fig.
-
-
0.2
0.4
V
1
18
0.3
0.2
5 x 1010
-
21
1.2
6
8
1.5
1011
0.3
0.3
0.2
0.2
2.0
500
500
10
14
13
17
3.0
5.0
0.5
0.5
0.5
0.5
V
V
µA
µA
mA
mA
mA
mA
mA
mA
Ω
µs
µs
µs
µs
2
3
4
5
-
- 30
-
kV/ µ s
-
30
-
kV/ µ s
Input
ON
OFF
O2 Output
High level
Low level
Tr. 1
ON
OFF
Tr. 2
OFF
ON
6
7
-
8
9
*5 When measuring output and transfer characteristics, connect a by-pass capacitor ( 0.01 µ F or more ) between V CC and GND
near the PC923 .
*6 I FLH represents forward current when O2output goes from low to high.
■ Truth Table
-
PC923
■ Test Circuit
Fig. 1
Fig. 2
8
2
5
IF
PC923
6
8
VCC1
2
IF
VCC
PC923
6
VCC2
3
IO2
5
V V
O1L
3
7
VO2H
7
Fig. 3
V
Fig. 4
8
8
2
IF
5
VCC
PC923
IF
6
3
A IO1L
2
5
PC923
VCC
6
V VO2L
3
7
7
Fig. 5
Fig. 6
8
5
IF
A
8
2
2
A
5
VCC
PC923
ICC
IF
6
PC923
VCC
6
3
3
7
7
Fig. 7
Fig. 8
8
8
2
5
IF
variable
PC923
VCC
VIN
6
V
3
tr = tf = 0.01 µ s
Pulse width 5 µ s
Duty ratio 50 %
2
5
PC923
7
VCC
RG
6
3
VOUT
CG
7
Fig. 9
8
A
SW
B
50%
2
VIN waveform
5
PC923
VCC
tPHL
tPLH
6
V VO2
3
90%
7
+
-
tr
VCM
VCM
(Peak)
VCM waveform
GND
CMH , V O2 waveform
SW at A, I F = 5mA
CML , V O2 waveform
SW at B, I F = 0mA
50%
10%
VOUT waveform
VO2H
∆VO2L
∆VO2H
VO2L
GND
tf
PC923
Fig.11 Power Dissipation vs.
Ambient Temperature
60
600
50
500
Power dissipation PO , P tot ( mW )
Forward current I F ( mA )
Fig.10 Forward Current vs.
Ambient Temperature
40
30
20
10
0
- 25
0
25
50
75 80 100
Ambient temperature T a ( ˚C )
100
0
25
50
1.2
Relative threshold input current
Forward current I F ( mA )
200
10
T a = 0˚C
1
25˚C
50˚C
70˚C
1.2
1.4
1.6
1.8
Forward voltage V F ( V )
2.0
1.6
125
1.2
1.0
0.8
50
75
Ambient temperature T a ( ˚C )
0.9
0.8
18
21
24
27
Supply voltage V CC ( V )
30
Fig.15 O 1 Low Level Output Voltage vs.
O1 Output Current
O1 low level output voltage VO1L ( V )
1.4
1.0
0.4
V CC = 24V
I FLH = 1
at T a = 25˚C
25
100
T a = 25˚C
I FLH = 1
at V CC = 24V
1.1
0.7
15
2.2
Fig.14 “ Low→High ” Relative Threshold
Input Current vs. Ambient Temperature
0
75 80
Fig.13 “ Low→High ” Relative Threshold
Input Current vs. Supply Voltage
0.1
Relative threshold input current
300
Ambient temperature T a ( ˚C )
100
0.6
- 25
PO
0
- 40
125
Fig.12 Forward Current vs.
Forward Voltage
0.01
1.0
P tot
400
100
0.2
V CC1 = 12V
V CC2 = - 12V
I F = 5mA
T a = 25˚C
0.1
0.05
0.02
0.01
0.005
0.01 0.02
0.05
0.1
0.2
O1 output current I O1 ( A )
0.5
1.0
PC923
Fig.16 O1 Low Level Output Voltage vs.
Ambient Temperature
Fig.17 O 2 High Level Output Voltage vs.
Supply Voltage
30
V CC1 = 12V
V CC2 = - 12V
I F = 5mA
0.4
O2 high level output voltage VO2H ( V )
O1 low level output voltage V O1L ( V )
0.5
0.3
I O1 = 0.1A
0.2
0.1
0
- 25
0
25
50
75
Ambient temperature T a ( ˚C )
21
18
15
18
21
24
27
30
Fig.19 O 2 Low Level Output Voltage vs.
O 2 Output Current
24
4
V CC = 24V
I F = 5mA
O2 low level output voltage VO2L ( V )
O2 high level output voltage VO2H ( V )
24
Supply voltage V CC ( V )
Fig.18 O 2 High Level Output Voltage vs.
Ambient Temperature
23
I O2 Nearly = 0A
22
- 0.1A
21
20
19
18
- 25
27
12
15
100
T a = 25˚C
I F = 5mA
0
25
50
Ambient temperature T
75
a
2
1
0.5
0.2
0.1
0.05
0.01
100
V CC = 6V
T a = 25˚C
0.02
( ˚C )
0.05
0.1
0.2
O2 output current I
Fig.20 O2 Low Level Output Voltage vs.
Ambient Temperature
02
0.5
1.0
(A)
Fig.21 High Level Supply Current vs.
Supply Voltage
1.5
12
High level supply current I CCH ( mA )
O2 low level output voltage VO2L ( V )
V CC = 24V
IF = 0
1.4
1.3
I O2 = 0.1A
1.2
1.1
1.0
- 25
0
25
50
75
Ambient temperature T a ( ˚C )
100
10
8
T a = - 25˚C
25˚C
6
80˚C
4
2
15
18
21
24
Supply voltage V CC ( V )
27
30
PC923
Fig.22 Low Level Supply Current vs.
Supply Voltage
Fig.23 Propagation Delay Time vs.
Forwrad current
1.0
VCC = 24V
RG = 47 Ω
C G = 3 000pF
µ s)
PLH (
12
Propagation delay time t PHL , t
Low level supply current I CCL ( mA )
14
T a = - 25˚C
10
25˚C
8
80˚C
6
4
15
0.8
t PHL
0.6
T a = 75˚C
25˚C
- 25˚C
0.4
0.2
75˚C
t PLH
T a = - 25˚C
25˚C
0
18
21
24
27
Supply voltage V CC ( V )
30
0
5
10
15
20
Forwrad current I F ( mA )
25
Fig.24 Propagation Delay Time vs.
Ambient Temperature
Propagation delay time tPHL , t
PLH
(µ s )
1.0
V CC = 24V
R G = 47 Ω
CG = 3 000pF
I F = 5mA
0.8
0.6
t PLH
t PHL
0.4
0.2
0
- 25
0
25
50
75
Ambient temperature T
a
100
( ˚C )
■ Application Circuit ( For Power MOS-FET Driving Inverter )
VCC
Anode
PC923
Cathode
O1
+
(+)
VCC1 = 12V
O2
GND
TTL, microcomputer, etc.
VCC2 = 12V
+
U
V
W
Power supply
(-)
● Please refer to the chapter “Precautions for Use.”