PC923 High Speed Photocoupler for MOS-FET / IGBT Drive PC923 ❈ Lead forming type ( I type ) and taping reel type ( P type ) are also available. ( PC923I/PC923P ) ❈❈ TÜV ( VDE 0884 ) approved type is also available as an option. ■ Outline Dimensions ( Unit : mm ) Internal connection diagram 1.2 ± 0.3 0.85 ± 0.2 6 7 6.5 ± 0.5 8 8 7 5 6 Tr1 5 Tr2 Interface PC923 Amp. 1 Anode mark 2 3 4 1 2 3 4 ±0.5 3.50.5 0.5TYP. 7.62 ± 0.3 9.66 ± 0.5 3.05 3.4 1. Built-in direct drive circuit for MOS-FET/ IGBT drive ( IO1P , I O2P : 0.4A) 2. High speed response ( t PLH , t PHL : MAX. 0.5 µ s ) 3. Wide operating supply voltage range ( Vcc : 15 to 30V, Ta = -10 to 60˚C ) 4. High noise reduction type ( CM H = MIN. - 1 500V/ µ s ) ( CM L = MIN. 1 500V/ µs ) 5. Recognized by UL, file No. E64380 6. High isolation voltage between input and output( VISO = 5 000 V rms ) ±0.5 ■ Features ■ Applications 0.5 ± 0.1 0.26 ± 0.1 2.54 ± 0.25 θ 1. Inverter controlled air conditioners 1 2 3 4 NC Anode Cathode NC 5 6 7 8 θ = 0 to 13 ˚ θ O1 O2 GND V CC * “ OPIC ” ( Optical IC ) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip. ■ Absolute Maximum Ratings Input Output Parameter Forward current *1 Reverse voltage Supply voltage O 1 output current *2 O1 peak output current O2 output current *2 O2 peak output current O1 output voltage Power dissipation Total power dissipation *3 Isolation voltage Operating temperature Storage temperature *4 Soldering temperature ( Ta = T opr unless otherwise specified ) Symbol IF VR V CC I1 I O1P I O2 I O2P V O1 PO P tot V iso T opr T stg T sol Rating 20 6 35 0.1 0.4 0.1 0.4 35 500 550 5 000 - 25 to + 80 - 55 to + 125 260 Unit mA V V A A A A V mW mW V rms ˚C ˚C ˚C *1 Ta = 25˚C *2 Puise width <= 0.15µs, Duty ratio:0.01 *3 40 to 60% RH, AC for 1 minute, Ta = 25˚C *4 For 10 seconds “ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device. ” PC923 ■ Electro-optical Characteristics Parameter Forward voltage Input Reverse current Terminal capacitance Output Transfer characteristics Symbol V F1 V F2 IR Ct Operating supply voltage V CC O1 low level output voltage V O1L O2 high level output voltage O2 low level output voltage O1 leak current O2 leak current V O2H V O2L I O1L I O2L High level supply current I CCH Low level supply current I CCL “ Low→High ” threshold input current Isolation resistance “ Low→High ” propagation delay time “ High→Low ” propagation delay time Rise time Fall time Response time *6 ( Ta = T opr unless otherwise specified ) I FLH R ISO t PLH t PHL tr tf Instantaneous common mode rejection voltage “ Output : High level ” CH M Instantaneous common mode rejection voltage “ Output : Low level ” CM L *5 Conditions Ta = 25˚C, I F = 10mA Ta = 25˚C, I F = 0.2mA Ta = 25˚C, V R = 5V Ta = 25˚C, V = 0, f = 1MHz Ta = - 10 to 60˚C VCC1 = 12V, VCC2 = - 12V I 01 = 0.1A, I F = 5mA V CC = V 01 = 24V, I 02 = - 0.1A, I F = 5mA V CC = 24V, I 02 = 0.1A, I F = 0 Ta = 25˚C, V CC = V 01 = 35V, I F = 0 Ta = 25˚C, V CC = V 02 = 35V, I F = 5mA Ta = 25˚C, V CC = 24V, I F = 5mA VCC = 24V, I F = 5mA Ta = 25˚C, V CC = 24V, I F = 0 VCC = 24V, I F = 0 Ta = 25˚C, V CC = 24V V CC = 24V Ta = 25˚C, DC = 500V, 40 to 60% RH Ta = 25˚C, V CC = 24V, I F = 5mA R C = 47 Ω , C G = 3 000pF Ta = 25˚C, V CM = 600V( peak ) IF = 5mA, V CC = 24V, ∆ V O2H = 2.0V Ta = 25˚C, V CM = 600V( peak ) I F = 0, V CC = 24V, ∆ V O2L = 2.0V MIN. 1.2 15 15 TYP. 1.6 1.5 30 - MAX. 1.75 10 250 30 24 Unit V V µA pF V V Fig. - - 0.2 0.4 V 1 18 0.3 0.2 5 x 1010 - 21 1.2 6 8 1.5 1011 0.3 0.3 0.2 0.2 2.0 500 500 10 14 13 17 3.0 5.0 0.5 0.5 0.5 0.5 V V µA µA mA mA mA mA mA mA Ω µs µs µs µs 2 3 4 5 - - 30 - kV/ µ s - 30 - kV/ µ s Input ON OFF O2 Output High level Low level Tr. 1 ON OFF Tr. 2 OFF ON 6 7 - 8 9 *5 When measuring output and transfer characteristics, connect a by-pass capacitor ( 0.01 µ F or more ) between V CC and GND near the PC923 . *6 I FLH represents forward current when O2output goes from low to high. ■ Truth Table - PC923 ■ Test Circuit Fig. 1 Fig. 2 8 2 5 IF PC923 6 8 VCC1 2 IF VCC PC923 6 VCC2 3 IO2 5 V V O1L 3 7 VO2H 7 Fig. 3 V Fig. 4 8 8 2 IF 5 VCC PC923 IF 6 3 A IO1L 2 5 PC923 VCC 6 V VO2L 3 7 7 Fig. 5 Fig. 6 8 5 IF A 8 2 2 A 5 VCC PC923 ICC IF 6 PC923 VCC 6 3 3 7 7 Fig. 7 Fig. 8 8 8 2 5 IF variable PC923 VCC VIN 6 V 3 tr = tf = 0.01 µ s Pulse width 5 µ s Duty ratio 50 % 2 5 PC923 7 VCC RG 6 3 VOUT CG 7 Fig. 9 8 A SW B 50% 2 VIN waveform 5 PC923 VCC tPHL tPLH 6 V VO2 3 90% 7 + - tr VCM VCM (Peak) VCM waveform GND CMH , V O2 waveform SW at A, I F = 5mA CML , V O2 waveform SW at B, I F = 0mA 50% 10% VOUT waveform VO2H ∆VO2L ∆VO2H VO2L GND tf PC923 Fig.11 Power Dissipation vs. Ambient Temperature 60 600 50 500 Power dissipation PO , P tot ( mW ) Forward current I F ( mA ) Fig.10 Forward Current vs. Ambient Temperature 40 30 20 10 0 - 25 0 25 50 75 80 100 Ambient temperature T a ( ˚C ) 100 0 25 50 1.2 Relative threshold input current Forward current I F ( mA ) 200 10 T a = 0˚C 1 25˚C 50˚C 70˚C 1.2 1.4 1.6 1.8 Forward voltage V F ( V ) 2.0 1.6 125 1.2 1.0 0.8 50 75 Ambient temperature T a ( ˚C ) 0.9 0.8 18 21 24 27 Supply voltage V CC ( V ) 30 Fig.15 O 1 Low Level Output Voltage vs. O1 Output Current O1 low level output voltage VO1L ( V ) 1.4 1.0 0.4 V CC = 24V I FLH = 1 at T a = 25˚C 25 100 T a = 25˚C I FLH = 1 at V CC = 24V 1.1 0.7 15 2.2 Fig.14 “ Low→High ” Relative Threshold Input Current vs. Ambient Temperature 0 75 80 Fig.13 “ Low→High ” Relative Threshold Input Current vs. Supply Voltage 0.1 Relative threshold input current 300 Ambient temperature T a ( ˚C ) 100 0.6 - 25 PO 0 - 40 125 Fig.12 Forward Current vs. Forward Voltage 0.01 1.0 P tot 400 100 0.2 V CC1 = 12V V CC2 = - 12V I F = 5mA T a = 25˚C 0.1 0.05 0.02 0.01 0.005 0.01 0.02 0.05 0.1 0.2 O1 output current I O1 ( A ) 0.5 1.0 PC923 Fig.16 O1 Low Level Output Voltage vs. Ambient Temperature Fig.17 O 2 High Level Output Voltage vs. Supply Voltage 30 V CC1 = 12V V CC2 = - 12V I F = 5mA 0.4 O2 high level output voltage VO2H ( V ) O1 low level output voltage V O1L ( V ) 0.5 0.3 I O1 = 0.1A 0.2 0.1 0 - 25 0 25 50 75 Ambient temperature T a ( ˚C ) 21 18 15 18 21 24 27 30 Fig.19 O 2 Low Level Output Voltage vs. O 2 Output Current 24 4 V CC = 24V I F = 5mA O2 low level output voltage VO2L ( V ) O2 high level output voltage VO2H ( V ) 24 Supply voltage V CC ( V ) Fig.18 O 2 High Level Output Voltage vs. Ambient Temperature 23 I O2 Nearly = 0A 22 - 0.1A 21 20 19 18 - 25 27 12 15 100 T a = 25˚C I F = 5mA 0 25 50 Ambient temperature T 75 a 2 1 0.5 0.2 0.1 0.05 0.01 100 V CC = 6V T a = 25˚C 0.02 ( ˚C ) 0.05 0.1 0.2 O2 output current I Fig.20 O2 Low Level Output Voltage vs. Ambient Temperature 02 0.5 1.0 (A) Fig.21 High Level Supply Current vs. Supply Voltage 1.5 12 High level supply current I CCH ( mA ) O2 low level output voltage VO2L ( V ) V CC = 24V IF = 0 1.4 1.3 I O2 = 0.1A 1.2 1.1 1.0 - 25 0 25 50 75 Ambient temperature T a ( ˚C ) 100 10 8 T a = - 25˚C 25˚C 6 80˚C 4 2 15 18 21 24 Supply voltage V CC ( V ) 27 30 PC923 Fig.22 Low Level Supply Current vs. Supply Voltage Fig.23 Propagation Delay Time vs. Forwrad current 1.0 VCC = 24V RG = 47 Ω C G = 3 000pF µ s) PLH ( 12 Propagation delay time t PHL , t Low level supply current I CCL ( mA ) 14 T a = - 25˚C 10 25˚C 8 80˚C 6 4 15 0.8 t PHL 0.6 T a = 75˚C 25˚C - 25˚C 0.4 0.2 75˚C t PLH T a = - 25˚C 25˚C 0 18 21 24 27 Supply voltage V CC ( V ) 30 0 5 10 15 20 Forwrad current I F ( mA ) 25 Fig.24 Propagation Delay Time vs. Ambient Temperature Propagation delay time tPHL , t PLH (µ s ) 1.0 V CC = 24V R G = 47 Ω CG = 3 000pF I F = 5mA 0.8 0.6 t PLH t PHL 0.4 0.2 0 - 25 0 25 50 75 Ambient temperature T a 100 ( ˚C ) ■ Application Circuit ( For Power MOS-FET Driving Inverter ) VCC Anode PC923 Cathode O1 + (+) VCC1 = 12V O2 GND TTL, microcomputer, etc. VCC2 = 12V + U V W Power supply (-) ● Please refer to the chapter “Precautions for Use.”