PC906 PC906 DC Input Type OPIC Photocoupler with Built-in ON/OFF Delay Circuit ■ Features ■ Outline Dimensions ( Unit : mm ) 2.54 ± 0.25 16 15 14 12 13 10 11 9 6.5 ± 0.5 1. Propagation delay time ( t PHL , t PLH : TYP. 0.75ms ) 2. High noise resistance type ( CM H , CM L : TYP. 2kV/ µ s ) 3. High sensitivity ( IFLH : MAX. 1.5 mA ) 4. Bi-directional input, 4-channel type PC906 Primary side mark 1 2 3 4 5 6 7 8 0.9 ± 0.2 1.2 ± 0.3 0.5TYP. 3.5 ± 0.5 19.82 ± 0.5 1. Programmable controllers 3.3 ± 0.5 3.0 ± 0.5 ■ Applications Epoxy resin 0.5 ± 0.1 15 14 A 13 12 A A 11 10 0.26 ± 0.1 θ = 0 to 13 ˚ Internal connection diagram 16 7.62 ± 0.3 9 A 1 2 3 7 8 4 6 5 1 V IN1a 5 V IN3a 9 V CC 13 V O2 2 V IN1b 6 V IN3b 10 V O4 14 GND 3 V IN2a 7 V IN4a 11 GND 15 V O1 4 V IN2b 8 V IN4b 12 V O3 16 V CC A : Light detecting portion + signal processing circuit * “ OPIC ” ( Optical IC ) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip. ■ Absoulte Maximum Ratings Parameter Forward current *1, *2 Peak forward current *1 Power dissipation Supply voltage *1, *4 Output voltage *1 Output current *3 Power dissipation *5 Isolation voltage Operating temperature Storage temperature *6 Soldering temperature *1 Input Output ( Ta = 25˚C ) Symbol IF I FM P V CC VO IO PO V iso T opr T stg T sol Ratings ± 26 ±1 40 7 7 4 200 4 000 - 25 to + 85 - 55 to + 125 260 Unit mA A mW V V mA mW V rms ˚C ˚C ˚C *1 Each channel *2 Pulse width<=100 µs, Duty ratio : 0.001 *3 All channel *4 Shall not exceed from supply voltage ( VCC ) . *5 40 to 60% RH, AC for 1min. *6 For 10 seconds “ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device. ” θ PC906 ■ Electro-optical Characteristics ( Shows characteristics value 1ch. at Vcc= 5V, Ta= 25˚C, ) unless otherwise specified Parameter Forward voltage Input Terminal capacitance Operating supply voltage Low level output voltage High level output voltage Output short-circuit current *7 Low level supply current Output *7 High level supply current *8 Power supply noise induction “ Output high level ” *9 Power supply noise induction “ Output low level ” “ Low→High ” threshold input current 1 “ Low→High ” threshold input current 2 *7 Isolation resistance “ Low→High” propagation time “ High→Low”propagation time Response Transfer time Rise time characterisics Fall time Instantaneous common mode rejection voltage ( High level output ) Instantaneous common mode rejection voltage ( Low level output ) *10 Input terminal noise-proof Conditions I F = ± 10mA V F = 0, f = 1MHz Symbol VF Ct V cc V OL V OH I OS I CCL I CCH PSNI H PSNI L I F = 0mA, I OL = 1.6mA I F = ± 4mA I F = ± 4mA I F = 0mA I F = ± 4mA R L = 4.0k Ω , I F = ± 4mA f AC = 100kHz R L = 4.0k Ω , I F = 0mA f AC = 100kHz I FLH1 MIN. 4.5 3.5 - 0.75 - TYP. 1.2 30 0.1 - 0.45 18 16 MAX. 1.4 250 5.5 0.4 - 0.25 30 28 Unit V pF V V V mA mA mA 0.5 - - Vp - p 0.5 - - Vp - p - 0.7 1.5 mA - - 0.7 - 1.5 mA R ISO t PLH t PHL tr tf CM H CM L SNI F DC500V, 40 to 60% RH 1.35 1.35 0.7 0.4 Ω ms ms µs µs I F = ± 4mA R L = 4.0k Ω R L = 4.0k Ω , I F = ± 4mA V CM = 600V ( peak ) V O ( MIN. ) = 2.0V R L = 4.0k Ω , I F = 0mA V CM = 600V ( peak ) V O ( MAX. ) = 0.8V R L = 4k Ω 1 2 3 4 5 R L = 4.0k Ω I FLH2 Fig. 6 5 x 1010 1 x 1011 0.75 0.75 0.3 0.05 - - 2 000 - V/ µ s - 2 000 - V/ µ s 10 - - mA - 7 8 *7 All channel *8 Maximum “ Peak to peak ” voltage of sine wave to keep Vo>= 3.5V when it is superposed 100kHz sine wave to Vcc. *9 Maximum “ Peak to peak ” voltage of sine wave to keep Vo<= 4.0V when it is superposed 100kHz sine wave to Vcc. *10 Maximum value which Vo can keep 0.4V MAX. when it inputs the pulse, I F ( 1 cycle : 1ms and pulse width : 1 µs ) . 9 PC906 ■ Test circuit Fig. 1 Fig. 2 PC906 IF PC906 VINa Vcc VINb Vo Vcc IF VINa Vcc VINb Vo Vcc V V GND GND Fig. 4 Fig. 3 PC906 IF PC906 Vcc VINa Vcc IF Vo VINb VINa Vcc VINb Vo A Vcc A GND GND Fig. 6 PC906 Fig. 5 PC906 IF IF VINa Vcc VINb Vo Vcc RL CRT GND VINa Vcc VINb Vo Vcc RL 0.1 µ F 5V GND f AC = 100kHz It measures the I F when output changes from “ Low level ” to “ High level ” . CRT PC906 Input waveform Fig. 7 PC906 IF Vcc RL 47Ω 0.1 µ F IF = 0mA t PLH VO waveform Vo VINb T IF = ± 4mA Vcc VINa T t PHL 90% CRT 1.5V GND tr ( Note ) T >= 50ms 10% tf Fig. 8 PC906 VCM(peak) SW B Vcc VINa A Vcc RL Vo VINb 0.1 µ F CRT VCM waveform CMH, V O waveform SW at B, I F = ± 4mA GND VOH VO(MIN.) = 2.0V GND GND CML, V O waveform + VCM - VO(MAX.) = 0.8V SW at A, I F = 0mA VOL GND Fig. 9 PC906 Input waveform IF VINa Vcc VINb Vo 90% Vcc RL 47Ω 0.1 µ F 50% CRT 10% GND 10ns 1µ s 10ns 1ms PC906 ■ Internal Equivalent Circuit Diagram ( 1ch. ) VCC 10k Ω Voltage regulator VO Comparator Decoder Q1 Q2 Q3 Q4 Q5 + U/D U/D Counter - CK Oscillation circuit GND Fig. 1 Forward Current vs. Ambient Temperature Fig. 2 Supply Current vs. Ambient Temperature I CCL (I F = 0mA ) Supply current I CCL , I CCH ( mA ) Forward current I F ( mA ) 50 40 30 26 20 10 0 - 25 V CC = 5V 15 I CCH (I F = ± 4mA ) 10 5 0 0 25 50 Ambient temperature T a - 25 75 85 100 ( ˚C) Fig. 3 Low Level Output Voltage vs. Ambient Temperature 0.20 0 25 50 75 Ambient temperature T a ( ˚C) 100 Fig. 4 Relative Threshold Input Current vs. Ambient Temperature 2.0 V CC = 5V I F = 0mA I OL = 1.6mA 0.15 Relative threshold input current Low level output voltage V OL ( V) 20 0.10 0.05 V CC = 5V R L = 4k Ω IFLH = 1 at T a = 25˚C 1.5 1.0 0.5 0 0 - 25 0 25 50 Ambient temperature T a ( ˚C) 75 100 - 25 0 25 50 Ambient temperature T a ( ˚C) 75 100 PC906 Fig. 5 Propagation Delay Time vs. Forward Current V CC = 5V I F = ± 4mA R L = 4k Ω ( ms ) RL = 4k Ω ( ms ) Ta = 25˚C 1.0 ,t PHL 1.0 PHL 0.75 0.5 0 t PLH , t PLH t PLH , t Propagation delay time t PHL Propagation delay time t PLH , t Fig. 6 Propagation Delay Time vs. Ambient Temperature 5 10 Forward current I F ( mA ) Fig. 7 Output Short-circuit Current vs. Ambient Temperature 0.5 0 15 PHL 0.75 - 25 0 25 50 75 Ambient temperature T a ( ˚C) 100 Fig. 8 Rise Time, Fall Time vs. Load Resistance 0 - 0.2 Rise time, fall time t r , t f ( µs ) Output short-circuit current I OS ( mA ) 0.6 I F = ± 4mA - 0.3 - 0.4 - 0.5 - 0.6 - 0.7 - 0.8 VCC = 5V I F = ± 4mA T a = 25˚C V CC = 5V - 0.1 - 25 0 25 50 Ambient temperature T a ( ˚C) 75 100 0.5 tr 0.4 0.3 0.2 0.1 tf 0 0.1 1 5 10 Load resistance RL ( k Ω ) 100 PC906 Fig. 9-a Supply Voltage/Output Voltage vs. Time ( 1 ) Supply voltage V CC ( V) 5 I F = ± 4mA R L = 4k Ω R L = 4k Ω T a = 25˚C dVcc = ± 0.1V/ms dt 4 3 2 V CC dVcc = ± 0.1V/ms dt 4 3 V CC 2 1 1 0 0 0 50 Time ( ms ) 0 100 50 Time ( ms ) 100 5 Output voltage V O ( V) 5 Output voltage VO ( V) T a = 25˚C 5 Supply voltage VCC ( V) I F = 0mA Fig. 9-b Supply Voltage/Output Voltage vs. Time ( 2 ) 4 3 2 4 3 2 VO 1 1 VO 0 0 0 50 100 Time ( ms ) ● Please refer to the chapter “Precautions for Use ”. 0 50 Time ( ms ) 100