SHARP PC906

PC906
PC906
DC Input Type OPIC
Photocoupler with Built-in
ON/OFF Delay Circuit
■ Features
■ Outline Dimensions
( Unit : mm )
2.54 ± 0.25
16
15
14
12
13
10
11
9
6.5 ± 0.5
1. Propagation delay time
( t PHL , t PLH : TYP. 0.75ms )
2. High noise resistance type
( CM H , CM L : TYP. 2kV/ µ s )
3. High sensitivity
( IFLH : MAX. 1.5 mA )
4. Bi-directional input, 4-channel type
PC906
Primary
side
mark
1
2
3
4
5
6
7
8
0.9 ± 0.2
1.2 ± 0.3
0.5TYP. 3.5 ± 0.5
19.82 ± 0.5
1. Programmable controllers
3.3 ± 0.5
3.0 ± 0.5
■ Applications
Epoxy resin
0.5 ± 0.1
15
14
A
13
12
A
A
11
10
0.26 ± 0.1
θ = 0 to 13 ˚
Internal connection diagram
16
7.62 ± 0.3
9
A
1
2
3
7
8
4
6
5
1 V IN1a 5 V IN3a 9 V CC 13 V O2
2 V IN1b 6 V IN3b 10 V O4 14 GND
3 V IN2a 7 V IN4a 11 GND 15 V O1
4 V IN2b 8 V IN4b 12 V O3 16 V CC
A : Light detecting portion + signal processing circuit
* “ OPIC ” ( Optical IC ) is a trademark of the SHARP Corporation.
An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip.
■ Absoulte Maximum Ratings
Parameter
Forward current
*1, *2
Peak forward current
*1
Power dissipation
Supply voltage
*1, *4
Output voltage
*1
Output current
*3
Power dissipation
*5
Isolation voltage
Operating temperature
Storage temperature
*6
Soldering temperature
*1
Input
Output
( Ta = 25˚C )
Symbol
IF
I FM
P
V CC
VO
IO
PO
V iso
T opr
T stg
T sol
Ratings
± 26
±1
40
7
7
4
200
4 000
- 25 to + 85
- 55 to + 125
260
Unit
mA
A
mW
V
V
mA
mW
V rms
˚C
˚C
˚C
*1 Each channel
*2 Pulse width<=100 µs, Duty ratio : 0.001
*3 All channel
*4 Shall not exceed from supply voltage ( VCC ) .
*5 40 to 60% RH, AC for 1min.
*6 For 10 seconds
“ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device. ”
θ
PC906
■ Electro-optical Characteristics
( Shows characteristics value 1ch. at Vcc= 5V, Ta= 25˚C,
)
unless otherwise specified
Parameter
Forward voltage
Input
Terminal capacitance
Operating supply voltage
Low level output voltage
High level output voltage
Output short-circuit current
*7
Low level supply current
Output
*7
High level supply current
*8
Power supply noise induction
“ Output high level ”
*9
Power supply noise induction
“ Output low level ”
“ Low→High ” threshold input
current 1
“ Low→High ” threshold input
current 2
*7
Isolation resistance
“ Low→High” propagation time
“ High→Low”propagation time
Response
Transfer
time
Rise time
characterisics
Fall time
Instantaneous common mode
rejection voltage
( High level output )
Instantaneous common mode
rejection voltage
( Low level output )
*10
Input terminal noise-proof
Conditions
I F = ± 10mA
V F = 0, f = 1MHz
Symbol
VF
Ct
V cc
V OL
V OH
I OS
I CCL
I CCH
PSNI H
PSNI L
I F = 0mA, I OL = 1.6mA
I F = ± 4mA
I F = ± 4mA
I F = 0mA
I F = ± 4mA
R L = 4.0k Ω , I F = ± 4mA
f AC = 100kHz
R L = 4.0k Ω , I F = 0mA
f AC = 100kHz
I FLH1
MIN.
4.5
3.5
- 0.75
-
TYP.
1.2
30
0.1
- 0.45
18
16
MAX.
1.4
250
5.5
0.4
- 0.25
30
28
Unit
V
pF
V
V
V
mA
mA
mA
0.5
-
-
Vp - p
0.5
-
-
Vp - p
-
0.7
1.5
mA
-
- 0.7
- 1.5
mA
R ISO
t PLH
t PHL
tr
tf
CM H
CM L
SNI F
DC500V, 40 to 60% RH
1.35
1.35
0.7
0.4
Ω
ms
ms
µs
µs
I F = ± 4mA
R L = 4.0k Ω
R L = 4.0k Ω , I F = ± 4mA
V CM = 600V ( peak )
V O ( MIN. ) = 2.0V
R L = 4.0k Ω , I F = 0mA
V CM = 600V ( peak )
V O ( MAX. ) = 0.8V
R L = 4k Ω
1
2
3
4
5
R L = 4.0k Ω
I FLH2
Fig.
6
5 x 1010 1 x 1011
0.75
0.75
0.3
0.05
-
- 2 000
-
V/ µ s
-
2 000
-
V/ µ s
10
-
-
mA
-
7
8
*7 All channel
*8 Maximum “ Peak to peak ” voltage of sine wave to keep Vo>= 3.5V when it is superposed 100kHz sine wave to Vcc.
*9 Maximum “ Peak to peak ” voltage of sine wave to keep Vo<= 4.0V when it is superposed 100kHz sine wave to Vcc.
*10 Maximum value which Vo can keep 0.4V MAX. when it inputs the pulse, I F ( 1 cycle : 1ms and pulse width : 1 µs ) .
9
PC906
■ Test circuit
Fig. 1
Fig. 2
PC906
IF
PC906
VINa
Vcc
VINb
Vo
Vcc
IF
VINa
Vcc
VINb
Vo
Vcc
V
V
GND
GND
Fig. 4
Fig. 3
PC906
IF
PC906
Vcc
VINa
Vcc
IF
Vo
VINb
VINa
Vcc
VINb
Vo
A
Vcc
A
GND
GND
Fig. 6
PC906
Fig. 5
PC906
IF
IF
VINa
Vcc
VINb
Vo
Vcc
RL
CRT
GND
VINa
Vcc
VINb
Vo
Vcc
RL
0.1 µ F
5V
GND
f AC
= 100kHz
It measures the I F when output changes
from “ Low level ” to “ High level ” .
CRT
PC906
Input
waveform
Fig. 7
PC906
IF
Vcc
RL
47Ω
0.1 µ F
IF = 0mA
t PLH
VO
waveform
Vo
VINb
T
IF = ± 4mA
Vcc
VINa
T
t PHL
90%
CRT
1.5V
GND
tr
( Note ) T >= 50ms
10%
tf
Fig. 8
PC906
VCM(peak)
SW
B
Vcc
VINa
A
Vcc
RL
Vo
VINb
0.1 µ F
CRT
VCM
waveform
CMH, V O
waveform
SW at B, I F = ± 4mA
GND
VOH
VO(MIN.) = 2.0V
GND
GND
CML, V O
waveform
+
VCM
-
VO(MAX.) = 0.8V
SW at A, I F = 0mA
VOL
GND
Fig. 9
PC906
Input
waveform
IF
VINa
Vcc
VINb
Vo
90%
Vcc
RL
47Ω
0.1 µ F
50%
CRT
10%
GND
10ns
1µ s
10ns
1ms
PC906
■ Internal Equivalent Circuit Diagram ( 1ch. )
VCC
10k Ω
Voltage regulator
VO
Comparator Decoder
Q1 Q2 Q3 Q4 Q5
+
U/D
U/D Counter
-
CK
Oscillation
circuit
GND
Fig. 1 Forward Current vs. Ambient
Temperature
Fig. 2 Supply Current vs. Ambient
Temperature
I CCL
(I F = 0mA )
Supply current I CCL , I CCH ( mA )
Forward current I F ( mA )
50
40
30
26
20
10
0
- 25
V CC = 5V
15
I CCH
(I F = ± 4mA )
10
5
0
0
25
50
Ambient temperature T
a
- 25
75 85 100
( ˚C)
Fig. 3 Low Level Output Voltage vs.
Ambient Temperature
0.20
0
25
50
75
Ambient temperature T a ( ˚C)
100
Fig. 4 Relative Threshold Input Current vs.
Ambient Temperature
2.0
V CC = 5V
I F = 0mA
I OL = 1.6mA
0.15
Relative threshold input current
Low level output voltage V OL ( V)
20
0.10
0.05
V CC = 5V
R L = 4k Ω
IFLH = 1 at
T a = 25˚C
1.5
1.0
0.5
0
0
- 25
0
25
50
Ambient temperature T a ( ˚C)
75
100
- 25
0
25
50
Ambient temperature T a ( ˚C)
75
100
PC906
Fig. 5 Propagation Delay Time vs.
Forward Current
V CC = 5V
I F = ± 4mA
R L = 4k Ω
( ms )
RL = 4k Ω
( ms )
Ta = 25˚C
1.0
,t
PHL
1.0
PHL
0.75
0.5
0
t PLH , t
PLH
t PLH , t
Propagation delay time t
PHL
Propagation delay time t PLH , t
Fig. 6 Propagation Delay Time vs.
Ambient Temperature
5
10
Forward current I F ( mA )
Fig. 7 Output Short-circuit Current vs.
Ambient Temperature
0.5
0
15
PHL
0.75
- 25
0
25
50
75
Ambient temperature T a ( ˚C)
100
Fig. 8 Rise Time, Fall Time vs.
Load Resistance
0
- 0.2
Rise time, fall time t r , t f ( µs )
Output short-circuit current I OS ( mA )
0.6
I F = ± 4mA
- 0.3
- 0.4
- 0.5
- 0.6
- 0.7
- 0.8
VCC = 5V
I F = ± 4mA
T a = 25˚C
V CC = 5V
- 0.1
- 25
0
25
50
Ambient temperature T a ( ˚C)
75
100
0.5
tr
0.4
0.3
0.2
0.1
tf
0
0.1
1
5
10
Load resistance RL ( k Ω )
100
PC906
Fig. 9-a Supply Voltage/Output Voltage vs.
Time ( 1 )
Supply voltage V CC ( V)
5
I F = ± 4mA R L = 4k Ω
R L = 4k Ω
T a = 25˚C
dVcc
= ± 0.1V/ms
dt
4
3
2
V CC
dVcc
= ± 0.1V/ms
dt
4
3
V CC
2
1
1
0
0
0
50
Time ( ms )
0
100
50
Time ( ms )
100
5
Output voltage V O ( V)
5
Output voltage VO ( V)
T a = 25˚C
5
Supply voltage VCC ( V)
I F = 0mA
Fig. 9-b Supply Voltage/Output Voltage vs.
Time ( 2 )
4
3
2
4
3
2
VO
1
1
VO
0
0
0
50
100
Time ( ms )
● Please refer to the chapter “Precautions for Use ”.
0
50
Time ( ms )
100