SHARP GP1A57

GP1A57HR
GP1A57HR
Wide Gap Type OPIC Photointerrupter
■ Features
■ Outline Dimensions
( Unit : mm )
Internal connection
diagram
Voltage
regulator
Amp.
2
(15kΩ ) 3
4
5.0
1. Wide gap between LED and detector ( 10mm )
2. High accuracy mounting type with
positioning pin
3. Built-in schmidt-trigger circuit
4. PWB mounting type package
5
■ Applications
1
18.6
10.0
Slit width
(Detector side )
1.8 ± 0.1
C1.0
0.7
1.5
φ 1.5
(15.2)
φ 0.7
5- 0.45
(1.25 )
(1.27)
8.95
2.0
5
3.0
15.2
1A57HR
5- 0.4
C0.3
(1.5)
3 V CC
4 VO
5 GND
4.0MIN.
1. Cameras, video cameras
2. OA equipmet, such as copiers etc.
3. Facsimiles
Detector center
(2.5)
1 Anode
2 Cathode
3 4
*Tolerance:± 0.2mm
*( ) : Reference dimensions
2 1
*“ OPIC” ( Optical IC ) is a trademark of the SHARP Corporation.
An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip.
■ Absolute Maximum Ratings
Parameter
Forward current
*1
Peak forward current
Input
Reverse voltage
Power dissipation
Supply voltage
Output
Output current
Power dissipation
Operating temperature
Storage temperature
*2
Soldering temperature
( Ta = 25˚C )
Symbol
IF
I FM
VR
P
V CC
IO
PO
T opr
T stg
T sol
Rating
50
1
6
75
- 0.5 to + 17
50
250
- 25 to + 85
- 40 to + 100
260
Unit
mA
A
V
mW
V
mA
mW
˚C
˚C
˚C
*1 Pulse width<=100 µs, Duty ratio = 0.01
*2 For 5 seconds
“ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.”
GP1A57HR
■ Electro-optical Characteristics
Transfer
characteristics
time
Output
Response
Input
Paramerter
Forward voltage
Reverse current
Operating supply voltage
Low level output voltage
High level output voltage
Low level supply current
High level supply current
*3
“ Low→High”
threshold input current
*4
Hysteresis
“ Low→High”
propagation delay time
“ High→Low”
propagation delay time
( Ta = 25˚C )
Symbol
VF
IR
V CC
V OL
V OH
I CCL
I CCH
I FLH
I FHL /I
FLH
Conditions
I F = 7mA
V R = 3V
V CC = 5V, I F = 0, I OL = 16mA
V CC = 5V, I F = 7mA
V CC = 5V, I F = 0
V CC = 5V, I F = 7mA
MIN.
4.5
4.9
-
Rise time
Fall time
MAX.
1.4
10.0
17.0
0.4
3.8
2.2
Unit
V
µA
V
V
V
mA
mA
V CC = 5V
-
1.0
7.0
mA
V CC = 5V
0.55
0.75
0.95
-
-
3.0
9.0
-
5.0
15.0
-
0.1
0.05
0.5
0.5
t PLH
t PHL
TYP.
1.1
0.15
1.7
0.7
V CC = 5V, I F = 7mA
R L = 280Ω
tr
tf
µs
*3 I FLH represents forward current when output changes from low to high.
*4 I FHL represents forward current when output changes from high to low.
Hysteresis stands for IFHL /I FLH .
Fig. 2 Output Power Dissipation vs.
Ambient Temperature
60
300
50
250
Output power dissipation P O ( mW )
Forward current I F ( mA )
Fig. 1 Forward Current vs. Ambient
Temperature
40
30
20
10
0
- 25
0
25
50
75 85
Ambient temperature Ta ( ˚C)
100
200
150
100
50
0
- 25
0
25
50
75 85
Ambient temperature Ta ( ˚C)
100
GP1A57HR
Fig. 4 Forward Current vs. Forward Voltage
60
500
50
200
25˚C
T a = 75˚C
0˚C
50˚C
Forward current I F ( mA )
Low level output current I OL ( mA )
Fig. 3 Low Level Output Current vs.
Ambient Temperature
40
30
20
- 25˚C
100
50
20
10
5
10
2
0
- 25
0
25
50
75 85
Ambient temperature T a ( ˚C)
1
100
Fig. 5 Relative Threshold Input Current vs.
Supply Voltage
0.5
1
1.5
2
2.5
Forward voltage VF ( V)
1.6
Relative threshold input current I FHL , I FLH
T a = 25˚C
I FLH
1.0
0.9
0.8
I FHL
0.7
0.6
I FLH = 1 at V
CC =
5V
10
5
0
15
20
V CC= 5V
1.4
1.2
I FLH
1.0
0.8
25
I FHL
0.6
I FLH = 1 at T a = 25˚C
0.4
- 25
0.5
0
Supply voltage VCC ( V)
25
50
75
100
Ambient temperature T a ( ˚C)
Fig. 7 Low Level Output Voltage vs.
Low Level Output Current
Fig. 8 Low Level Output Voltage vs.
Ambient Temperature
0.6
1.0
V CC = 5V
V CC= 5V
0.5 T a = 25˚C
Low level output voltage VOL ( V)
Low level output voltage VOL ( V)
3
Fig. 6 Relative Threshold Input Current vs.
Ambient Temperature
1.1
Relative threshold input current I FHL , I FLH
0
0.2
0.1
0.05
0.02
0.5
0.4
0.3
I OL = 30mA
0.2
16mA
0.1
5mA
0.01
1
2
5
10
20
Low level output current I OL ( mA )
50
100
0
- 25
0
25
50
75
Ambient temperature T a ( ˚C)
100
GP1A57HR
Fig. 9 Supply Current vs.
Ambient Temperature
Fig.10 Propagation Delay Time vs.
Forward Current
3.0
V CC= 17V
2.0
}
10V
1.5
5V
ICCL
1.0
V CC= 17V
}I CCH
0.5
5V
10V
0
- 25
Propagation delay time t PLH , t
Supply current I CC ( mA )
2.5
V CC = 5V
RL = 280Ω
T a = 25˚C
10
8
6
4
t PLH
2
0
0
25
50
75
Ambient temperature T a ( ˚C)
100
Fig.11 Rise Time, Fall Time vs. Load Resistance
0
IF = 7mA
Input
T a = 25˚C
VCC = 5V
I F = 7mA
0.7
0.6
10
20
30
40
Forward current I F ( mA )
Voltage regulator
+ 5V
280 Ω
(15kΩ )
t r = tf = 0.01 µ s
Zo = 50 Ω
0.5
47 Ω
0.4
60
50
Test Circuit for Response Time
0.8
Rise time, fall time t r , t f ( µ s )
t PHL
PHL
( µs )
12
Output
0.01 µ F
Amp.
tr
GND
0.3
0.2
50%
Input
0.1
tPLH
tf
tPHL
0
0.1 0.2
0.5
1
2
5
10
Load resistance RL ( k Ω)
20
50
Output
10%
tr
V
90% OH
1.5V
tf
■ Precautions for Use
( 1 ) In case of cleaning, use only the following type of cleaning solvent.
Ethyl alcohol, Methyl alcohol, Isopropyl alcohol
( 2 ) In order to stabilize power supply line, connect a by-pass capacitor of more than 0.01 µ F between Vcc and GND near the device.
( 3 ) As for other general cautions, refer to the chapter “Precautions for Use ” .
VOL