GP1A57HR GP1A57HR Wide Gap Type OPIC Photointerrupter ■ Features ■ Outline Dimensions ( Unit : mm ) Internal connection diagram Voltage regulator Amp. 2 (15kΩ ) 3 4 5.0 1. Wide gap between LED and detector ( 10mm ) 2. High accuracy mounting type with positioning pin 3. Built-in schmidt-trigger circuit 4. PWB mounting type package 5 ■ Applications 1 18.6 10.0 Slit width (Detector side ) 1.8 ± 0.1 C1.0 0.7 1.5 φ 1.5 (15.2) φ 0.7 5- 0.45 (1.25 ) (1.27) 8.95 2.0 5 3.0 15.2 1A57HR 5- 0.4 C0.3 (1.5) 3 V CC 4 VO 5 GND 4.0MIN. 1. Cameras, video cameras 2. OA equipmet, such as copiers etc. 3. Facsimiles Detector center (2.5) 1 Anode 2 Cathode 3 4 *Tolerance:± 0.2mm *( ) : Reference dimensions 2 1 *“ OPIC” ( Optical IC ) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip. ■ Absolute Maximum Ratings Parameter Forward current *1 Peak forward current Input Reverse voltage Power dissipation Supply voltage Output Output current Power dissipation Operating temperature Storage temperature *2 Soldering temperature ( Ta = 25˚C ) Symbol IF I FM VR P V CC IO PO T opr T stg T sol Rating 50 1 6 75 - 0.5 to + 17 50 250 - 25 to + 85 - 40 to + 100 260 Unit mA A V mW V mA mW ˚C ˚C ˚C *1 Pulse width<=100 µs, Duty ratio = 0.01 *2 For 5 seconds “ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.” GP1A57HR ■ Electro-optical Characteristics Transfer characteristics time Output Response Input Paramerter Forward voltage Reverse current Operating supply voltage Low level output voltage High level output voltage Low level supply current High level supply current *3 “ Low→High” threshold input current *4 Hysteresis “ Low→High” propagation delay time “ High→Low” propagation delay time ( Ta = 25˚C ) Symbol VF IR V CC V OL V OH I CCL I CCH I FLH I FHL /I FLH Conditions I F = 7mA V R = 3V V CC = 5V, I F = 0, I OL = 16mA V CC = 5V, I F = 7mA V CC = 5V, I F = 0 V CC = 5V, I F = 7mA MIN. 4.5 4.9 - Rise time Fall time MAX. 1.4 10.0 17.0 0.4 3.8 2.2 Unit V µA V V V mA mA V CC = 5V - 1.0 7.0 mA V CC = 5V 0.55 0.75 0.95 - - 3.0 9.0 - 5.0 15.0 - 0.1 0.05 0.5 0.5 t PLH t PHL TYP. 1.1 0.15 1.7 0.7 V CC = 5V, I F = 7mA R L = 280Ω tr tf µs *3 I FLH represents forward current when output changes from low to high. *4 I FHL represents forward current when output changes from high to low. Hysteresis stands for IFHL /I FLH . Fig. 2 Output Power Dissipation vs. Ambient Temperature 60 300 50 250 Output power dissipation P O ( mW ) Forward current I F ( mA ) Fig. 1 Forward Current vs. Ambient Temperature 40 30 20 10 0 - 25 0 25 50 75 85 Ambient temperature Ta ( ˚C) 100 200 150 100 50 0 - 25 0 25 50 75 85 Ambient temperature Ta ( ˚C) 100 GP1A57HR Fig. 4 Forward Current vs. Forward Voltage 60 500 50 200 25˚C T a = 75˚C 0˚C 50˚C Forward current I F ( mA ) Low level output current I OL ( mA ) Fig. 3 Low Level Output Current vs. Ambient Temperature 40 30 20 - 25˚C 100 50 20 10 5 10 2 0 - 25 0 25 50 75 85 Ambient temperature T a ( ˚C) 1 100 Fig. 5 Relative Threshold Input Current vs. Supply Voltage 0.5 1 1.5 2 2.5 Forward voltage VF ( V) 1.6 Relative threshold input current I FHL , I FLH T a = 25˚C I FLH 1.0 0.9 0.8 I FHL 0.7 0.6 I FLH = 1 at V CC = 5V 10 5 0 15 20 V CC= 5V 1.4 1.2 I FLH 1.0 0.8 25 I FHL 0.6 I FLH = 1 at T a = 25˚C 0.4 - 25 0.5 0 Supply voltage VCC ( V) 25 50 75 100 Ambient temperature T a ( ˚C) Fig. 7 Low Level Output Voltage vs. Low Level Output Current Fig. 8 Low Level Output Voltage vs. Ambient Temperature 0.6 1.0 V CC = 5V V CC= 5V 0.5 T a = 25˚C Low level output voltage VOL ( V) Low level output voltage VOL ( V) 3 Fig. 6 Relative Threshold Input Current vs. Ambient Temperature 1.1 Relative threshold input current I FHL , I FLH 0 0.2 0.1 0.05 0.02 0.5 0.4 0.3 I OL = 30mA 0.2 16mA 0.1 5mA 0.01 1 2 5 10 20 Low level output current I OL ( mA ) 50 100 0 - 25 0 25 50 75 Ambient temperature T a ( ˚C) 100 GP1A57HR Fig. 9 Supply Current vs. Ambient Temperature Fig.10 Propagation Delay Time vs. Forward Current 3.0 V CC= 17V 2.0 } 10V 1.5 5V ICCL 1.0 V CC= 17V }I CCH 0.5 5V 10V 0 - 25 Propagation delay time t PLH , t Supply current I CC ( mA ) 2.5 V CC = 5V RL = 280Ω T a = 25˚C 10 8 6 4 t PLH 2 0 0 25 50 75 Ambient temperature T a ( ˚C) 100 Fig.11 Rise Time, Fall Time vs. Load Resistance 0 IF = 7mA Input T a = 25˚C VCC = 5V I F = 7mA 0.7 0.6 10 20 30 40 Forward current I F ( mA ) Voltage regulator + 5V 280 Ω (15kΩ ) t r = tf = 0.01 µ s Zo = 50 Ω 0.5 47 Ω 0.4 60 50 Test Circuit for Response Time 0.8 Rise time, fall time t r , t f ( µ s ) t PHL PHL ( µs ) 12 Output 0.01 µ F Amp. tr GND 0.3 0.2 50% Input 0.1 tPLH tf tPHL 0 0.1 0.2 0.5 1 2 5 10 Load resistance RL ( k Ω) 20 50 Output 10% tr V 90% OH 1.5V tf ■ Precautions for Use ( 1 ) In case of cleaning, use only the following type of cleaning solvent. Ethyl alcohol, Methyl alcohol, Isopropyl alcohol ( 2 ) In order to stabilize power supply line, connect a by-pass capacitor of more than 0.01 µ F between Vcc and GND near the device. ( 3 ) As for other general cautions, refer to the chapter “Precautions for Use ” . VOL