PC912X PC912X Ultra-high Speed Response OPIC Photocoupler ■ Features ■ Outline Dimensions 1. Ultra-high speed response ( t PHL , t PLH : TYP. 40ns ) 2. High instantaneous common mode rejection voltage ( CM H : MIN. 3kV/ µ s ) 3. Capable of high speed digital transmission ( Transmission speed : MAX. 20Mb/s ) ( NRZ signal ) 2.54 ± 0.25 8 0.8 ± 0.2 7 6 2 8 4 0.85 ± 0.3 ■ Applications 6 5 Amp. 1 1 2 3 4 2 3 NC Anode Cathode NC 4 5 6 7 8 GND VO VE V CC 0.5TYP. 3.5 ± 0.5 7.62 ± 0.3 3.7 ± 0.5 9.22 ± 0.5 0.5 ± 0.1 7 6.5 ± 0.5 3 1.2 ± 0.3 1. Personal computers 2. Electrical music instruments Internal connection diagram 5 PC912 1 ( Unit : mm ) 0.26 ± 0.1 θ : 0 to 13 ˚ θ * “ OPIC ” ( Optical IC ) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip. ■ Absolute Maximum Ratings Parameter *1 Forward current Reverse voltage *1 Power dissipation Input Supply voltage Enable voltage High level output current Low level output current *1, 3 Collector power dissipation *4 Isolation voltage Operating temperature Storage temperature *5 Soldering temperature *2 Output ( Ta = 25˚C ) Symbol IF VR P Rating 20 5 40 Unit mA V mW V CC VE I OH I OL 7 7 - 8 25 V V mA mA PO 40 mW V iso T opr T stg T sol 2.5 0 to + 70 - 55 to + 125 260 kV rms ˚C ˚C ˚C *1 Ta = 0 to 70˚C *2 It shall not exceed 500mV or more over supply voltage ( VCC). *3 Applied to output terminal ( VO) *4 AC for 1 minute, 40 to 60% RH *5 For 10 seconds “ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device. ” PC912X ■ Electro-optical Characteristics Input Parameter Forward voltage Reverse current Terminal capacitance ( Unless specified : Ta = 0 to 70˚C ) Symbol VF IR Ct MIN. - TYP. 1.6 - MAX. 1.9 10 Unit V µA - 60 120 pF 2.4 - - V - 0.3 0.6 V 2.0 - - 0.2 0.8 100 - 0.4 V V µA mA - 13 23 mA - 15 25 mA High level output voltage V OH Low level output voltage V OL High level enable voltage Low level enable voltage High level enable current Low level enable current V EH V EL I EH I EL High level supply current I CCH Low level supply current I CCL High impedance supply current I CCZ V CC = 5.5V, V E = 0V - 16 26 mA Output leak current I OH V CC = 5.5V, V E = 2.0V V O = 5.5V, I F = 0.25mA - - 100 µA High impedance output current I OZH V CC = 5.5V, V E = 0.4V - - 100 µA Output short-circuit current I OS V CC = 5.5V, V O = 0V I F = 0mA 10ms or less - 10 - - 50 mA V CC = 5V V E = 2.0V 0.5 0.55 2.5 1.9 - 5 0.95 mA mA - 5 x 1010 1011 - Ω - 0.6 5 pF - 40 55 ns - 40 55 ns - - 15 ns - 15 30 ns - 40 70 ns - 40 70 ns 3 000 10 000 - V/ µ s - 3 000 10 000 - V/ µ s Output “High→Low ” threshold input current “Low→High ” threshold input current Hysteresis I FHL I FLH I FLH /I FHL Isolation resistance R ISO Floating capacitance Cf “ High→Low ” propagation delay time “ Low→High ” propagation delay time Transfer characteristics Conditions Ta = 25˚C, I F = 10mA Ta = 25˚C, V R = 5V Ta = 25˚C, V F = 0V f = 1MHz V CC = 4.5V, I OH = - 2mA I F = 0.25mA, V E = 2.0V V CC = 4.5V, V E = 2.0V I F = 5mA, I OL = 13mA V CC = 5.5V V CC = 5.5V V CC = 5.5V, V E = 5.5V V CC = 5.5V, V E = 0.5V V CC = 5.5V, I F = 0mA V E = 2.0V V CC = 5.5V, I F = 10mA V E = 2.0V Pulse width distortion Response t PHL - t PLH time Rise/fall time “ High→Low ” enable propagation delay time “ Low→High ” enable propagation delay time Instantaneous common mode rejection voltage ( High level output ) CMR Instantaneous common mode rejection voltage ( Low level output ) *6 Refer to Fig. 1 *7 Refer to Fig. 2 *8 Refer to Fig. 3 All typical values are at Ta = 25˚C, VCC = 5V. Ta = 25˚C, DC = 500V 40 to 60% RH Ta = 25˚C, V = 0V f=1MHz t PHL t PLH ∆ Tw Ta = 25˚C V CC = 5V CL = 15pF I F = 7.5mA *6 tr , t f t EHL t ELH CM H CM L Ta = 25˚C, VCC = 5V R L = 350 Ω , CL = 15pF I F = 7.5mA, V EH = 3V V EL = 0V, *7 Ta = 25˚C, VCC = 5V V CM = 50V, I F = 0mA V O( Min ) = 2V, *8 Ta = 25˚C, VCC = 5V V CM = 50V, I F = 5mA V O( Max ) = 0.8V, *8 PC912X ■ Recommended Operating Conditions Parameter Low level input current High level input current High level enable voltage Low level enable voltage Supply voltage Fan out ( TTL load ) Operating temperature Symbol I FL I FH V EH V EL V CC N Topr MIN. 0 7 2.0 0 4.5 0 MAX. 250 15 V CC 0.8 5.5 8 70 Unit µA mA V V V ˚C 1. When the enable input is not used, please connect to Vcc. 2. It is necessary to connect a by-pass ceramic capacitor ( 0.01 to 0.1 µ F ) between Vcc and GND at the position within 1cm from pin. ■ Block Diagram VCC 8 V CC 1.6kΩ (TYP.) 7 VE ( Enable ) 6 VO Anode 2 Cathode 3 5 GND 130Ω (TYP.) VE Buffer circuit (* Positive logic ) VO * Positive logic: VE L H Buffer output L H 1kΩ (TYP.) GND ■ Truth Table Input H L H L Enable H H L L Output L H Z Z L : Logic ( 0 ) H : Logic ( 1 ) Z : High impedance Fig. 1 Test Circuit for t PHL , t PLH , t r and t f 7.5mA 5V 0.1 µ F IF 47Ω 3.75mA IF t PHL VO CL 0mA t PLH 90% VO 10% tf * C L includes the probe and wiring capacitance. tr 5V 1.5V VOL PC912X Fig. 2 Test Circuit for t EHL and t ELH Pulse input V E 3V 5V IF = 7.5mA 0.1µF 1.5V VE 350Ω t EHL VO CL 0V t ELH 5V VO 1.5V VOL *CL includes the probe and wiring capacitance Fig. 3 Test Circuit for CM H and CM L 50V IF 0.1 µ F VCM 0V 5V VO(MIN.) VO CL (IF = 0mA) VO(MAX.) VOL VO VCM (IF = 5mA) Fig. 5 Low Level Output Voltage vs. Low Level Output Current Fig. 4 Forward Current vs. Forward Voltage 100 Low level output voltage VOL ( V) Forward current I F ( mA ) Ta = 70˚C 10 Ta = 50˚C 1 Ta = 25˚C Ta = 0˚C 0.1 0.01 1.2 VCC = 5V IF = 5mA 0.5 0.4 T a = 70˚C 0.3 Ta = 0˚C Ta = 0˚C Ta = 25˚C 0.2 0.1 Ta = 25˚C Ta = 70˚C 0 1.4 1.6 1.8 Forward voltage V F ( V) 2.0 2.2 0 10 Low level output current I 20 OL ( mA ) PC912X Fig. 6 High Level Output Voltage vs. High Level Output Current 100 V CC = 5V I F = 0.25mA V CC = 5V Propagation delay time t PHL , t PLH ( ns ) 4.5 High level output voltage VOH ( V) Fig. 7 Propagation Delay Time vs. Ambient Temperature T a = 70˚C 4.0 T a = 25˚C 3.5 3.0 T a = 0˚C 2.5 2.0 0 -2 -4 -6 -8 - 10 Fig. 8 Propagation Delay Time vs. Forward Current 100 T a = 25˚C 75 Propagation delay time t PHL , t PLH ( ns ) V CC = 5V 50 PLH t PHL 25 0 0 25 50 75 75 50 t PHL t PLH 25 0 0 25 50 75 Ambient temperature T a ( ˚C ) High level output current I OH ( mA ) t IF = 7.5mA 100 Forward current I F ( mA ) ● Please refer to the chapter “Precautions for Use ” 100