SHARP PC912X

PC912X
PC912X
Ultra-high Speed Response
OPIC Photocoupler
■ Features
■ Outline Dimensions
1. Ultra-high speed response
( t PHL , t PLH : TYP. 40ns )
2. High instantaneous common mode rejection
voltage ( CM H : MIN. 3kV/ µ s )
3. Capable of high speed digital transmission
( Transmission speed : MAX. 20Mb/s )
( NRZ signal )
2.54 ± 0.25
8
0.8 ± 0.2
7
6
2
8
4
0.85 ± 0.3
■ Applications
6
5
Amp.
1
1
2
3
4
2
3
NC
Anode
Cathode
NC
4
5
6
7
8
GND
VO
VE
V CC
0.5TYP. 3.5 ± 0.5
7.62 ± 0.3
3.7 ± 0.5
9.22 ± 0.5
0.5 ± 0.1
7
6.5 ± 0.5
3
1.2 ± 0.3
1. Personal computers
2. Electrical music instruments
Internal connection
diagram
5
PC912
1
( Unit : mm )
0.26 ± 0.1
θ : 0 to 13 ˚
θ
* “ OPIC ” ( Optical IC ) is a trademark of the SHARP Corporation.
An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip.
■ Absolute Maximum Ratings
Parameter
*1
Forward current
Reverse voltage
*1
Power dissipation
Input
Supply voltage
Enable voltage
High level output current
Low level output current
*1, 3
Collector power
dissipation
*4
Isolation voltage
Operating temperature
Storage temperature
*5
Soldering temperature
*2
Output
( Ta = 25˚C )
Symbol
IF
VR
P
Rating
20
5
40
Unit
mA
V
mW
V CC
VE
I OH
I OL
7
7
- 8
25
V
V
mA
mA
PO
40
mW
V iso
T opr
T stg
T sol
2.5
0 to + 70
- 55 to + 125
260
kV rms
˚C
˚C
˚C
*1 Ta = 0 to 70˚C
*2 It shall not exceed 500mV or more over supply voltage ( VCC).
*3 Applied to output terminal ( VO)
*4 AC for 1 minute, 40 to 60% RH
*5 For 10 seconds
“ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device. ”
PC912X
■ Electro-optical Characteristics
Input
Parameter
Forward voltage
Reverse current
Terminal capacitance
( Unless specified : Ta = 0 to 70˚C )
Symbol
VF
IR
Ct
MIN.
-
TYP.
1.6
-
MAX.
1.9
10
Unit
V
µA
-
60
120
pF
2.4
-
-
V
-
0.3
0.6
V
2.0
-
- 0.2
0.8
100
- 0.4
V
V
µA
mA
-
13
23
mA
-
15
25
mA
High level output voltage
V OH
Low level output voltage
V OL
High level enable voltage
Low level enable voltage
High level enable current
Low level enable current
V EH
V EL
I EH
I EL
High level supply current
I CCH
Low level supply current
I CCL
High impedance supply
current
I CCZ
V CC = 5.5V, V E = 0V
-
16
26
mA
Output leak current
I OH
V CC = 5.5V, V E = 2.0V
V O = 5.5V, I F = 0.25mA
-
-
100
µA
High impedance output
current
I OZH
V CC = 5.5V, V E = 0.4V
-
-
100
µA
Output short-circuit current
I OS
V CC = 5.5V, V O = 0V
I F = 0mA
10ms or less
- 10
-
- 50
mA
V CC = 5V
V E = 2.0V
0.5
0.55
2.5
1.9
-
5
0.95
mA
mA
-
5 x 1010
1011
-
Ω
-
0.6
5
pF
-
40
55
ns
-
40
55
ns
-
-
15
ns
-
15
30
ns
-
40
70
ns
-
40
70
ns
3 000
10 000
-
V/ µ s
- 3 000
10 000
-
V/ µ s
Output
“High→Low ” threshold input current
“Low→High ” threshold input current
Hysteresis
I FHL
I FLH
I FLH /I FHL
Isolation resistance
R ISO
Floating capacitance
Cf
“ High→Low ” propagation
delay time
“ Low→High ” propagation
delay time
Transfer
characteristics
Conditions
Ta = 25˚C, I F = 10mA
Ta = 25˚C, V R = 5V
Ta = 25˚C, V F = 0V
f = 1MHz
V CC = 4.5V, I OH = - 2mA
I F = 0.25mA, V E = 2.0V
V CC = 4.5V, V E = 2.0V
I F = 5mA, I OL = 13mA
V CC = 5.5V
V CC = 5.5V
V CC = 5.5V, V E = 5.5V
V CC = 5.5V, V E = 0.5V
V CC = 5.5V, I F = 0mA
V E = 2.0V
V CC = 5.5V, I F = 10mA
V E = 2.0V
Pulse width distortion
Response t
PHL - t PLH
time
Rise/fall time
“ High→Low ” enable
propagation delay time
“ Low→High ” enable
propagation delay time
Instantaneous common
mode rejection voltage
( High level output )
CMR
Instantaneous common
mode rejection voltage
( Low level output )
*6 Refer to Fig. 1 *7 Refer to Fig. 2 *8 Refer to Fig. 3
All typical values are at Ta = 25˚C, VCC = 5V.
Ta = 25˚C, DC = 500V
40 to 60% RH
Ta = 25˚C, V = 0V
f=1MHz
t PHL
t PLH
∆ Tw
Ta = 25˚C
V CC = 5V
CL = 15pF
I F = 7.5mA
*6
tr , t f
t EHL
t ELH
CM H
CM L
Ta = 25˚C, VCC = 5V
R L = 350 Ω , CL = 15pF
I F = 7.5mA, V EH = 3V
V EL = 0V, *7
Ta = 25˚C, VCC = 5V
V CM = 50V, I F = 0mA
V O( Min ) = 2V, *8
Ta = 25˚C, VCC = 5V
V CM = 50V, I F = 5mA
V O( Max ) = 0.8V, *8
PC912X
■ Recommended Operating Conditions
Parameter
Low level input current
High level input current
High level enable voltage
Low level enable voltage
Supply voltage
Fan out ( TTL load )
Operating temperature
Symbol
I FL
I FH
V EH
V EL
V CC
N
Topr
MIN.
0
7
2.0
0
4.5
0
MAX.
250
15
V CC
0.8
5.5
8
70
Unit
µA
mA
V
V
V
˚C
1. When the enable input is not used, please connect to Vcc.
2. It is necessary to connect a by-pass ceramic capacitor
( 0.01 to 0.1 µ F ) between Vcc and GND at the position within
1cm from pin.
■ Block Diagram
VCC
8 V CC
1.6kΩ
(TYP.)
7 VE
( Enable )
6 VO
Anode 2
Cathode 3
5 GND
130Ω
(TYP.)
VE
Buffer
circuit
(* Positive logic )
VO
*
Positive logic:
VE
L
H
Buffer output
L
H
1kΩ
(TYP.)
GND
■ Truth Table
Input
H
L
H
L
Enable
H
H
L
L
Output
L
H
Z
Z
L : Logic ( 0 )
H : Logic ( 1 )
Z : High impedance
Fig. 1 Test Circuit for t PHL , t PLH , t r and t f
7.5mA
5V
0.1 µ F
IF
47Ω
3.75mA
IF
t PHL
VO
CL
0mA
t PLH
90%
VO
10%
tf
* C L includes the probe and wiring capacitance.
tr
5V
1.5V
VOL
PC912X
Fig. 2 Test Circuit for t EHL and t ELH
Pulse input V
E
3V
5V
IF = 7.5mA
0.1µF
1.5V
VE
350Ω
t EHL
VO
CL
0V
t ELH
5V
VO
1.5V
VOL
*CL includes the probe and wiring capacitance
Fig. 3 Test Circuit for CM
H
and CM L
50V
IF
0.1 µ F
VCM
0V
5V
VO(MIN.)
VO
CL
(IF = 0mA)
VO(MAX.)
VOL
VO
VCM
(IF = 5mA)
Fig. 5 Low Level Output Voltage vs.
Low Level Output Current
Fig. 4 Forward Current vs.
Forward Voltage
100
Low level output voltage VOL ( V)
Forward current I F ( mA )
Ta = 70˚C
10
Ta = 50˚C
1
Ta = 25˚C
Ta = 0˚C
0.1
0.01
1.2
VCC = 5V
IF = 5mA
0.5
0.4
T a = 70˚C
0.3
Ta = 0˚C
Ta = 0˚C
Ta = 25˚C
0.2
0.1
Ta = 25˚C Ta = 70˚C
0
1.4
1.6
1.8
Forward voltage V F ( V)
2.0
2.2
0
10
Low level output current I
20
OL
( mA )
PC912X
Fig. 6 High Level Output Voltage vs.
High Level Output Current
100
V CC = 5V
I F = 0.25mA
V CC = 5V
Propagation delay time t PHL , t PLH ( ns )
4.5
High level output voltage VOH ( V)
Fig. 7 Propagation Delay Time vs.
Ambient Temperature
T a = 70˚C
4.0
T a = 25˚C
3.5
3.0
T a = 0˚C
2.5
2.0
0
-2
-4
-6
-8
- 10
Fig. 8 Propagation Delay Time vs.
Forward Current
100
T a = 25˚C
75
Propagation delay time t PHL , t
PLH
( ns )
V CC = 5V
50
PLH
t
PHL
25
0
0
25
50
75
75
50
t
PHL
t
PLH
25
0
0
25
50
75
Ambient temperature T a ( ˚C )
High level output current I OH ( mA )
t
IF = 7.5mA
100
Forward current I F ( mA )
● Please refer to the chapter “Precautions for Use ”
100