FQA11N90_F109 N-Channel QFET® MOSFET 900 V, 11.4 A, 960 mΩ Features Description • 11.4 A, 900 V, RDS(on) = 960 mΩ (Max.) @ VGS = 10 V, ID = 5.7 A This N-Channel enhancement mode power MOSFET is • Low Gate Charge (Typ. 72 nC) stripe and DMOS technology. This advanced MOSFET • Low Crss (Typ. 30 pF) technology has been especially tailored to reduce on-state • 100% Avalanche Tested resistance, and to provide superior switching performance and • RoHS compliant high avalanche energy strength. These devices are suitable produced using Fairchild Semiconductor’s proprietary planar for switched mode power supplies, active power factor correction (PFC), and electronic lamp ballasts. D G G D TO-3PN S S MOSFET Maximum Ratings TC = 25oC unless otherwise noted. Symbol VDSS Drain to Source Voltage Parameter FQA11N90_F109 900 ID Drain Current IDM Drain Current VGSS Gate to Source Voltage EAS Single Pulsed Avalanche Energy IAR Avalanche Current EAR Repetitive Avalanche Energy (Note 1) dv/dt Peak Diode Recovery dv/dt - Continuous (TC = 25oC) - Continuous (TC = 100oC) - Pulsed Power Dissipation TJ, TSTG Operating and Storage Temperature Range Maximum Lead Temperature for Soldering Purpose, 1/8” from Case for 5 Seconds TL - Derate above 25oC A 7.2 A A ± 30 V (Note 2) 1000 mJ (Note 1) 11.4 A 30 mJ 4.0 V/ns (Note 3) PD 11.4 45.6 (Note 1) (TC = 25oC) Unit V 300 W 2.38 W/°C -55 to +150 °C 300 °C Thermal Characteristics Symbol Parameter RθJC Thermal Resistance, Junction to Case, Max RθJA Thermal Resistance, Junction to Ambient, Max ©2006 Fairchild Semiconductor Corporation FQA11N90_F109 Rev. C1 FQA11N90_F109 1 Unit 0.42 o C/W 40 o C/W www.fairchildsemi.com FQA11N90_F109 — N-Channel QFET® MOSFET November 2013 Device Marking FQA11N90 Device FQA11N90_F109 Electrical Characteristics Symbol Package TO-3PN Reel Size Tube Tape Width N/A Quantity 30 units TC = 25°C unless otherwise noted. Parameter Test Conditions Min Typ Max Unit 900 -- -- V -- V/°C Off Characteristics BVDSS Drain-Source Breakdown Voltage VGS = 0 V, ID = 250 μA ΔBVDSS / ΔTJ Breakdown Voltage Temperature Coefficient ID = 250 μA, Referenced to 25°C -- 1.0 IDSS Zero Gate Voltage Drain Current IGSSF IGSSR VDS = 900 V, VGS = 0 V -- -- 10 μA VDS = 720 V, TC = 125°C -- -- 100 μA Gate-Body Leakage Current, Forward VGS = 30 V, VDS = 0 V -- -- 100 nA Gate-Body Leakage Current, Reverse VGS = -30 V, VDS = 0 V -- -- -100 nA VDS = VGS, ID = 250 μA 3.0 -- 5.0 V VGS = 10 V, ID = 5.7 A -- 0.75 0.96 Ω VDS = 50 V, ID = 5.7 A -- 12 -- S VDS = 25 V, VGS = 0 V, f = 1.0 MHz -- 2700 3500 pF -- 260 340 pF -- 30 40 pF On Characteristics VGS(th) RDS(on) gFS Gate Threshold Voltage Static Drain-Source On-Resistance Forward Transconductance Dynamic Characteristics Ciss Input Capacitance Coss Output Capacitance Crss Reverse Transfer Capacitance Switching Characteristics td(on) Turn-On Delay Time tr Turn-On Rise Time td(off) Turn-Off Delay Time tf Turn-Off Fall Time Qg Total Gate Charge Qgs Gate-Source Charge Qgd Gate-Drain Charge VDD = 450 V, ID = 11.4 A, RG = 25 Ω (note 4) VDS = 720 V, ID = 11.4 A, VGS = 10 V (note 4) -- 65 140 ns -- 135 280 ns -- 165 340 ns -- 90 190 ns -- 72 94 nC -- 16 -- nC -- 35 -- nC Drain-Source Diode Characteristics and Maximum Ratings IS Maximum Continuous Drain-Source Diode Forward Current -- -- 11.4 A ISM -- -- 45.6 A VSD Maximum Pulsed Drain-Source Diode Forward Current VGS = 0 V, IS = 11.4 A Drain-Source Diode Forward Voltage -- -- 1.4 V trr Reverse Recovery Time -- 850 -- ns Qrr Reverse Recovery Charge VGS = 0 V, IS = 11.4 A, dIF / dt = 100 A/μs -- 11.2 -- μC Notes : 1. Repetitive Rating : Pulse width limited by maximum junction temperature. 2. L = 15 mH, IAS = 11.4 A, VDD = 50 V, RG = 25 Ω, starting TJ = 25°C. 3. ISD ≤ 11.4 A, di/dt ≤ 200 A/μs, VDD ≤ BVDSS, starting TJ = 25°C. 4. Essentially independent of operating temperature. ©2006 Fairchild Semiconductor Corporation FQA11N90_F109 Rev. C1 2 www.fairchildsemi.com FQA11N90_F109 — N-Channel QFET® MOSFET Package Marking and Ordering Information VGS 15.0 V 10.0 V 8.0 V 7.0 V 6.5 V 6.0 V Bottom : 5.5 V Top : ID, Drain Current [A] 1 10 ID, Drain Current [A] 1 10 0 10 o 150 C o 25 C 0 10 o -55 C ※ Notes : 1. 250μ s Pulse Test 2. TC = 25℃ -1 10 ※ Notes : 1. VDS = 50V 2. 250μ s Pulse Test -1 -1 0 10 10 1 10 2 10 4 6 8 10 VGS, Gate-Source Voltage [V] VDS, Drain-Source Voltage [V] Figure 1. On-Region Characteristics Figure 2. Transfer Characteristics IDR, Reverse Drain Current [A] RDS(ON) [Ω ], Drain-Source On-Resistance 2.0 VGS = 10V 1.6 VGS = 20V 1.2 0.8 ※ Note : TJ = 25℃ 0.4 1 10 0 10 150℃ ※ Notes : 1. VGS = 0V 2. 250μ s Pulse Test -1 0 8 16 24 32 10 40 0.2 0.4 0.6 ID, Drain Current [A] 0.8 1.0 1.2 VSD, Source-Drain voltage [V] Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature 12 4500 Ciss 4000 Ciss = Cgs + Cgd (Cds = shorted) Coss = Cds + Cgd Crss = Cgd VGS, Gate-Source Voltage [V] 5000 3500 Capacitance [pF] 25℃ Coss 3000 2500 2000 ※ Notes : 1. VGS = 0 V 2. f = 1 MHz Crss 1500 1000 500 VDS = 180V 10 VDS = 450V VDS = 720V 8 6 4 2 ※ Note : ID = 11.4 A 0 -1 10 0 10 0 1 10 Figure 5. Capacitance Characteristics ©2006 Fairchild Semiconductor Corporation FQA11N90_F109 Rev. C1 0 10 20 30 40 50 60 70 80 QG, Total Gate Charge [nC] VDS, Drain-Source Voltage [V] Figure 6. Gate Charge Characteristics 3 www.fairchildsemi.com FQA11N90_F109 — N-Channel QFET® MOSFET Typical Characteristics (Continued) 3.0 RDS(ON), (Normalized) Drain-Source On-Resistance BVDSS, (Normalized) Drain-Source Breakdown Voltage 1.2 1.1 1.0 ※ Notes : 1. VGS = 0 V 2. ID = 250 μA 0.9 0.8 -100 -50 0 50 100 150 2.5 2.0 1.5 1.0 ※ Notes : 1. VGS = 10 V 2. ID = 5.7 A 0.5 0.0 -100 200 -50 o 0 50 100 150 200 o TJ, Junction Temperature [ C] TJ, Junction Temperature [ C] Figure 7. Breakdown Voltage Variation vs. Temperature Figure 8. On-Resistance Variation vs. Temperature 12 Operation in This Area is Limited by R DS(on) ID, Drain Current [A] 10 10 1 10 DC 1 ms 10 ms 100 μs 10 μs ID, Drain Current [A] 2 0 10 ※ Notes : -1 10 o 1. TC = 25 C 8 6 4 2 o 2. TJ = 150 C 3. Single Pulse -2 10 0 10 1 2 10 0 25 3 10 10 50 Figure 9. Maximum Safe Operating Area ZθJC(t), Thermal Response [oC/W] Zθ JC(t), Thermal Response 75 100 125 150 TC, Case Temperature [℃] VDS, Drain-Source Voltage [V] Figure 10. Maximum Drain Current vs. Case Temperature D = 0 .5 10 -1 ※ N o te s : 1 . Z θ J C ( t) = 0 . 4 2 ℃ /W M a x . 2 . D u ty F a c to r , D = t 1 /t 2 3 . T J M - T C = P D M * Z θ J C ( t) 0 .2 0 .1 PDM 0 .0 5 t1 0 .0 2 10 0 .0 1 -2 t2 s in g le p u ls e 10 -5 10 -4 10 -3 10 -2 10 -1 10 0 10 1 t 1 , S q u a r e W a v e P u ls e D u r a t io n [ s e c ] Figure 11. Transient Thermal Response Curve ©2006 Fairchild Semiconductor Corporation FQA11N90_F109 Rev. C1 4 www.fairchildsemi.com FQA11N90_F109 — N-Channel QFET® MOSFET Typical Characteristics FQA11N90_F109 — N-Channel QFET® MOSFET Figure 12. Gate Charge Test Circuit & Waveform VGS Same Type as DUT 50KΩ 200nF 12V Qg 10V 300nF VDS VGS Qgs Qgd DUT IG = const. 3mA Charge Figure 13. Resistive Switching Test Circuit & Waveforms VDS RG RL VDS 90% VDD VGS VGS DUT V 10V GS 10% td(on) tr td(off) t on tf t off Figure 14. Unclamped Inductive Switching Test Circuit & Waveforms BVDSS 1 EAS = ---- L IAS2 -------------------2 BVDSS - VDD L VDS BVDSS IAS ID RG V 10V GS GS VDD ID (t) tp ©2006 Fairchild Semiconductor Corporation FQA11N90_F109 Rev. C1 VDS (t) VDD DUT tp 5 Time www.fairchildsemi.com FQA11N90_F109 — N-Channel QFET® MOSFET Figure 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms DUT + VDS _ I SD L Driver RG VGS VGS ( Driver ) Same Type as DUT VDD • dv/dt controlled by RG • ISD controlled by pulse period Gate Pulse Width D = -------------------------Gate Pulse Period 10V IFM , Body Diode Forward Current I SD ( DUT ) di/dt IRM Body Diode Reverse Current VDS ( DUT ) Body Diode Recovery dv/dt VSD VDD Body Diode Forward Voltage Drop ©2006 Fairchild Semiconductor Corporation FQA11N90_F109 Rev. C1 6 www.fairchildsemi.com FQA11N90_F109 — N-Channel QFET® MOSFET Mechanical Dimensions TO-3PN 3L Figure 16. 3LD, T03, Plastic, EIAJ SC-65 Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products. Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings: http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TT3P0-003 Dimension in Millimeters ©2006 Fairchild Semiconductor Corporation FQA11N90_F109 Rev. C1 7 www.fairchildsemi.com tm *Trademarks of System General Corporation, used under license by Fairchild Semiconductor. DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used here in: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. ANTI-COUNTERFEITING POLICY Fairchild Semiconductor Corporation’s Anti-Counterfeiting Policy. Fairchild’s Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild’s quality standards for handing and storage and provide access to Fairchild’s full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Formative / In Design Datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Preliminary First Production Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. No Identification Needed Full Production Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. Obsolete Not In Production Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only. Rev. I66 ©2006 Fairchild Semiconductor Corporation FQA11N90_F109 Rev. C1 8 www.fairchildsemi.com FQA11N90_F109 — N-Channel QFET® MOSFET TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. AccuPower™ Sync-Lock™ F-PFS™ ® AX-CAP®* FRFET® ®* ® SM Global Power Resource PowerTrench BitSiC™ GreenBridge™ PowerXS™ Build it Now™ TinyBoost® Programmable Active Droop™ Green FPS™ CorePLUS™ TinyBuck® ® QFET Green FPS™ e-Series™ CorePOWER™ TinyCalc™ QS™ Gmax™ CROSSVOLT™ TinyLogic® Quiet Series™ GTO™ CTL™ TINYOPTO™ RapidConfigure™ IntelliMAX™ Current Transfer Logic™ TinyPower™ ISOPLANAR™ DEUXPEED® ™ TinyPWM™ Dual Cool™ Marking Small Speakers Sound Louder TinyWire™ Saving our world, 1mW/W/kW at a time™ EcoSPARK® and Better™ TranSiC™ EfficentMax™ SignalWise™ MegaBuck™ TriFault Detect™ ESBC™ SmartMax™ MICROCOUPLER™ TRUECURRENT®* SMART START™ MicroFET™ ® μSerDes™ Solutions for Your Success™ MicroPak™ SPM® MicroPak2™ Fairchild® STEALTH™ MillerDrive™ Fairchild Semiconductor® UHC® SuperFET® MotionMax™ FACT Quiet Series™ ® Ultra FRFET™ SuperSOT™-3 mWSaver FACT® UniFET™ OptoHiT™ SuperSOT™-6 FAST® VCX™ OPTOLOGIC® SuperSOT™-8 FastvCore™ VisualMax™ OPTOPLANAR® SupreMOS® FETBench™ VoltagePlus™ SyncFET™ FPS™ XS™