Freescale Semiconductor Technical Data Document Number: MRF7S18170H Rev. 0, 10/2006 RF Power Field Effect Transistors MRF7S18170HR3 MRF7S18170HSR3 N - Channel Enhancement - Mode Lateral MOSFETs Designed for CDMA base station applications with frequencies from 1805 to 1880 MHz. Suitable for CDMA and multicarrier amplifier applications. To be used in Class AB and Class C for PCN - PCS/cellular radio and WLL applications. • Typical Single - Carrier W - CDMA Performance: VDD = 28 Volts, IDQ = 1400 mA, Pout = 50 Watts Avg., Full Frequency Band, 3GPP Test Model 1, 64 DPCH with 50% Clipping, Channel Bandwidth = 3.84 MHz, Input Signal PAR = 7.5 dB @ 0.01% Probability on CCDF. Power Gain — 17.5 dB Drain Efficiency — 31% Device Output Signal PAR — 6.2 dB @ 0.01% Probability on CCDF ACPR @ 5 MHz Offset — - 37 dBc in 3.84 MHz Channel Bandwidth • Capable of Handling 5:1 VSWR, @ 32 Vdc, 1840 MHz, 170 Watts CW Peak Tuned Output Power • Pout @ 1 dB Compression Point w 170 Watts CW Features • 100% PAR Tested for Guaranteed Output Power Capability • Characterized with Series Equivalent Large - Signal Impedance Parameters • Internally Matched for Ease of Use • Integrated ESD Protection • Greater Negative Gate - Source Voltage Range for Improved Class C Operation • Designed for Digital Predistortion Error Correction Systems • RoHS Compliant • In Tape and Reel. R3 Suffix = 250 Units per 56 mm, 13 inch Reel. 1805 - 1880 MHz, 50 W AVG., 28 V SINGLE W - CDMA LATERAL N - CHANNEL RF POWER MOSFETs CASE 465B - 03, STYLE 1 NI - 880 MRF7S18170HR3 CASE 465C - 02, STYLE 1 NI - 880S MRF7S18170HSR3 Table 1. Maximum Ratings Rating Symbol Value Unit Drain - Source Voltage VDSS - 0.5, +65 Vdc Gate - Source Voltage VGS - 6.0, +10 Vdc Operating Voltage VDD 32, +0 Vdc Storage Temperature Range Tstg - 65 to +150 °C TC 150 °C TJ 225 °C Symbol Value (2,3) Unit Case Operating Temperature Operating Junction Temperature (1,2) Table 2. Thermal Characteristics Characteristic Thermal Resistance, Junction to Case Case Temperature 84°C, 170 W CW Case Temperature 79°C, 50 W CW RθJC 0.27 0.30 °C/W 1. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.freescale.com/rf. Select Tools/Software/Application Software/Calculators to access the MTTF calculators by product. 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1955. © Freescale Semiconductor, Inc., 2006. All rights reserved. RF Device Data Freescale Semiconductor MRF7S18170HR3 MRF7S18170HSR3 1 Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22 - A114) IA (Minimum) Machine Model (per EIA/JESD22 - A115) B (Minimum) Charge Device Model (per JESD22 - C101) IV (Minimum) Table 4. Electrical Characteristics (TC = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit Zero Gate Voltage Drain Leakage Current (VDS = 65 Vdc, VGS = 0 Vdc) IDSS — — 10 μAdc Zero Gate Voltage Drain Leakage Current (VDS = 28 Vdc, VGS = 0 Vdc) IDSS — — 1 μAdc Gate - Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) IGSS — — 1 μAdc Gate Threshold Voltage (VDS = 10 Vdc, ID = 372 μAdc) VGS(th) 1.2 2 2.7 Vdc Gate Quiescent Voltage (VDS = 28 Vdc, ID = 1400 mAdc) VGS(Q) — 2.7 — Vdc Fixture Gate Quiescent Voltage (1) (VDS = 28 Vdc, ID = 1400 mAdc, Measured in Functional Test) VGG(Q) 4 5.4 7.6 Vdc Drain - Source On - Voltage (VGS = 10 Vdc, ID = 3.72 Adc) VDS(on) 0.1 0.15 0.3 Vdc Reverse Transfer Capacitance (VDS = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Crss — 0.87 — pF Output Capacitance (VDS = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Coss — 703 — pF Off Characteristics On Characteristics Dynamic Characteristics (2) Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 1400 mA, Pout = 50 W Avg., f = 1807.5 MHz and f = 1877.5 MHz, Single - Carrier W - CDMA, 3GPP Test Model 1, 64 DPCH, 50% Clipping, PAR = 7.5 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset. Power Gain Gps 16 17.5 19 dB Drain Efficiency ηD 29 31 — % 5.8 5.7 6.2 6.2 — — ACPR — - 37 - 35 dBc IRL — - 15 -9 dB Output Peak - to - Average Ratio @ 0.01% Probability on CCDF MRF7S18170HR3 MRF7S18170HSR3 Adjacent Channel Power Ratio Input Return Loss PAR dB 1. VGG = 2 x VGS(Q). Parameter measured on Freescale Test Fixture, due to resistive divider network on the board. Refer to Test Circuit schematic. 2. Part internally matched both on input and output. (continued) MRF7S18170HR3 MRF7S18170HSR3 2 RF Device Data Freescale Semiconductor Table 4. Electrical Characteristics (TC = 25°C unless otherwise noted) (continued) Characteristic Symbol Min Typ Max Unit Typical Performances (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 1400 mA, 1805 - 1880 MHz Bandwidth Video Bandwidth (Tone Spacing from 100 kHz to VBW) ΔIMD3 = IMD3 @ VBW frequency - IMD3 @ 100 kHz <1 dBc (both sidebands) VBW MHz — 25 — Gain Flatness in 75 MHz Bandwidth @ Pout = 170 W CW GF — 0.4 — dB Deviation from Linear Phase in 75 MHz Bandwidth @ Pout = 170 W CW Φ — 2.5 — ° Delay — 4.2 — ns Part - to - Part Insertion Phase Variation @ Pout = 170 W CW, f = 1840 MHz ΔΦ — 15 — ° Gain Variation over Temperature ΔG — 0.015 — dB/°C ΔP1dB — 0.01 — dBm/°C Group Delay @ Pout = 170 W CW, f = 1840 MHz Output Power Variation over Temperature MRF7S18170HR3 MRF7S18170HSR3 RF Device Data Freescale Semiconductor 3 Z16 R3 VBIAS VSUPPLY + R2 RF INPUT C4 C3 C2 Z5 C10 Z2 Z3 Z4 C19 Z8 Z6 C1 C18 C11 C12 C13 Z7 R1 Z1 C17 Z9 Z10 Z11 Z12 C9 Z13 RF OUTPUT Z15 Z14 DUT C20 C14 C15 C8 Z17 C5 Z1 Z2* Z3* Z4 Z5 Z6 Z7 Z8 Z9 0.410″ x 0.083″ Microstrip 0.480″ x 0.083″ Microstrip 0.710″ x 0.083″ Microstrip 0.180″ x 0.147″ Microstrip 0.850″ x 0.091″ Microstrip 0.383″ x 1.109″ Microstrip 1.110″ x 1.360″ Microstrip 0.480″ x 1.360″ Microstrip 0.060″ x 1.098″ Microstrip Z10* Z11* Z12 Z13 Z14* Z15* Z16, Z17 PCB C16 C6 C7 0.900″ x 0.161″ Microstrip 0.140″ x 0.161″ Microstrip 0.094″ x 0.220″ Microstrip 0.070″ x 0.220″ Microstrip 0.140″ x 0.083″ Microstrip 0.160″ x 0.083″ Microstrip 1.120″ x 0.080″ Microstrip Taconic TLX8 - 0300, 0.030″, εr = 2.55 * Variable for tuning Figure 1. MRF7S18170HR3 Test Circuit Schematic — NI - 880 Table 5. MRF7S18170HR3 Test Circuit Component Designations and Values — NI - 880 Part Description Part Number Manufacturer C1 0.8 pF Chip Capacitor 100B0R8BW ATC C2, C8, C9 6.8 pF Chip Capacitors 100B6R8BW ATC C3 100 pF Chip Capacitor 100B101JW ATC C4 100 nF Chip Capacitor 100B104JW ATC C5, C10 5.6 pF Chip Capacitors 100B5R6BW ATC C6, C7, C11, C12 10 μF Chip Capacitors C5750X5R1H106MT TDK C13 470 μF, 63 V Electrolytic Capacitor, Radial 13661471 Philips C14 0.5 pF Chip Capacitor 600B0R5BW ATC C15, C20 0.2 pF Chip Capacitors 100B0R2BW ATC C16, C17 4.7 pF Chip Capacitors 100B4R7BW ATC C18 2 pF Chip Capacitor 600B2R0BW ATC C19 0.3 pF Chip Capacitor 100B0R3BW ATC R1 10 W, 1/4 W Chip Resistor 232272461009 Phycomp R2, R3 10 kW, 1/4 W Chip Resistors 232272461003 Phycomp MRF7S18170HR3 MRF7S18170HSR3 4 RF Device Data Freescale Semiconductor R2 R3 C13 C4 C3 C2 C17 C10 C11 C12 R1 C9 C18 CUT OUT AREA C1 C19 C20 C8 C15 C14 C5 C16 C6 C7 MRF7S18170H Rev. 4 Figure 2. MRF7S18170HR3 Test Circuit Component Layout — NI - 880 MRF7S18170HR3 MRF7S18170HSR3 RF Device Data Freescale Semiconductor 5 Z16 R3 VBIAS VSUPPLY + R2 RF INPUT C4 C3 C2 Z5 C10 Z2 Z3 Z4 C19 Z8 Z6 C1 C18 C11 C12 C13 Z7 R1 Z1 C17 Z9 Z10 Z11 Z12 C9 Z13 RF OUTPUT Z15 Z14 DUT C20 C14 C15 C8 Z17 C5 Z1* Z2* Z3* Z4 Z5 Z6 Z7 Z8 Z9 0.500″ x 0.083″ Microstrip 0.290″ x 0.083″ Microstrip 0.810″ x 0.083″ Microstrip 0.180″ x 0.147″ Microstrip 0.850″ x 0.091″ Microstrip 0.383″ x 1.109″ Microstrip 1.110″ x 1.360″ Microstrip 0.480″ x 1.360″ Microstrip 0.060″ x 1.098″ Microstrip Z10* Z11* Z12 Z13 Z14* Z15* Z16, Z17 PCB C16 C6 C7 0.900″ x 0.161″ Microstrip 0.140″ x 0.161″ Microstrip 0.094″ x 0.220″ Microstrip 0.070″ x 0.220″ Microstrip 0.140″ x 0.083″ Microstrip 0.160″ x 0.083″ Microstrip 1.120″ x 0.080″ Microstrip Taconic TLX8 - 0300, 0.030″, εr = 2.55 * Variable for tuning Figure 3. MRF7S18170HSR3 Test Circuit Schematic — NI - 880S Table 6. MRF7S18170HSR3 Test Circuit Component Designations and Values — NI - 880S Part Description Part Number Manufacturer C1 0.8 pF Chip Capacitor 100B0R8BW ATC C2, C8, C9 6.8 pF Chip Capacitors 100B6R8BW ATC C3 100 pF Chip Capacitor 100B101JW ATC C4 100 nF Chip Capacitor 100B104JW ATC C5, C10 5.6 pF Chip Capacitors 100B5R6BW ATC C6, C7, C11, C12 10 μF Chip Capacitors C5750X5R1H106MT TDK C13 470 μF, 63 V Electrolytic Capacitor, Radial 13661471 Philips C14 0.5 pF Chip Capacitor 600B0R5BW ATC C15 0.2 pF Chip Capacitor 100B0R2BW ATC C16, C17 4.7 pF Chip Capacitors 100B4R7BW ATC C18 2 pF Chip Capacitor 600B2R0BW ATC C19 0.3 pF Chip Capacitor 100B0R3BW ATC C20 0.1 pF Chip Capacitor 100B0R2BW ATC R1 10 W, 1/4 W Chip Resistor 232272461003 Phycomp R2, R3 10 kW, 1/4 W Chip Resistors 232272461009 Phycomp MRF7S18170HR3 MRF7S18170HSR3 6 RF Device Data Freescale Semiconductor R2 R3 C13 C4 C3 C2 C17 C10 C11 C12 R1 C9 C18 C19 C20 CUT OUT AREA C1 C8 C15 C14 C5 C16 C6 C7 MRF7S18170H Rev. 4 Figure 4. MRF7S18170HSR3 Test Circuit Component Layout — NI - 880S MRF7S18170HR3 MRF7S18170HSR3 RF Device Data Freescale Semiconductor 7 Gps Gps, POWER GAIN (dB) 17 34 ηD 16 32 15 30 VDD = 28 Vdc, Pout = 50 W (Avg.), IDQ = 1400 mA Single−Carrier W−CDMA, 3.84 MHz Channel Bandwidth, PAR = 7.5 dB @ 0.01% Probability (CCDF) 14 13 12 PARC 28 −5 −1 −8 −1.7 11 −2.4 −11 −14 IRL 10 1760 1780 1800 1820 1840 1860 1880 1900 −3.1 1940 1920 −17 IRL, INPUT RETURN LOSS (dB) 36 PARC (dB) 18 ηD, DRAIN EFFICIENCY (%) TYPICAL CHARACTERISTICS f, FREQUENCY (MHz) 44 VDD = 28 Vdc, Pout = 80 W (Avg.) IDQ = 1400 mA, Single−Carrier W−CDMA 16 15 42 ηD 40 3.84 MHz Channel Bandwidth PAR = 7.5 dB @ 0.01% Probability (CCDF) 14 13 12 PARC 38 −5 −2.7 −8 −3.4 11 −4.1 −11 −14 IRL 10 1760 1780 1800 1820 1840 1860 1880 1900 −4.8 1920 1940 −17 IRL, INPUT RETURN LOSS (dB) Gps, POWER GAIN (dB) 17 46 Gps PARC (dB) 18 ηD, DRAIN EFFICIENCY (%) Figure 5. Output Peak - to - Average Ratio Compression (PARC) Broadband Performance @ Pout = 50 Watts Avg. f, FREQUENCY (MHz) Figure 6. Output Peak - to - Average Ratio Compression (PARC) Broadband Performance @ Pout = 80 Watts Avg. 19 −10 1750 mA 18 Gps, POWER GAIN (dB) IMD, THIRD ORDER INTERMODULATION DISTORTION (dBc) IDQ = 2100 mA 1400 mA 17 1050 mA 16 700 mA 15 VDD = 28 Vdc, f1 = 1835 MHz, f2 = 1845 MHz Two−Tone Measurements, 10 MHz Tone Spacing 14 −20 IDQ = 700 mA −30 1050 mA 2100 mA −40 1750 mA −50 1400 mA VDD = 28 Vdc, f1 = 1835 MHz, f2 = 1845 MHz Two−Tone Measurements, 10 MHz Tone Spacing −60 1 10 100 Pout, OUTPUT POWER (WATTS) PEP Figure 7. Two - Tone Power Gain versus Output Power 400 1 10 100 400 Pout, OUTPUT POWER (WATTS) PEP Figure 8. Third Order Intermodulation Distortion versus Output Power MRF7S18170HR3 MRF7S18170HSR3 8 RF Device Data Freescale Semiconductor −10 IMD, INTERMODULATION DISTORTION (dBc) VDD = 28 Vdc, IDQ = 1400 mA f1 = 1835 MHz, f2 = 1845 MHz Two−Tone Measurements, 10 MHz Tone Spacing −20 −30 −40 3rd Order −50 5th Order 7th Order −60 1 100 10 0 VDD = 28 Vdc, Pout = 170 W (PEP) IDQ = 1400 mA, Two−Tone Measurements (f1 + f2)/2 = Center Frequency of 1840 MHz −5 −10 −15 −20 −25 IM3−U −30 IM3−L −35 IM5−U −40 IM5−L −45 −50 −55 IM7−L IM7−U 10 1 400 100 Pout, OUTPUT POWER (WATTS) PEP TWO−TONE SPACING (MHz) Figure 9. Intermodulation Distortion Products versus Output Power Figure 10. Intermodulation Distortion Products versus Tone Spacing OUTPUT COMPRESSION AT THE 0.01% PROBABILITY ON CCDF (dB) 1 50 Ideal 0 45 −1 40 −1 dB = 47.811 W −2 35 −2 dB = 64.519 W −3 30 −3 dB = 84.995 W Actual −4 25 VDD = 28 Vdc, IDQ = 1400 mA f = 1840 MHz, Input PAR = 7.5 dB −5 30 45 60 75 90 105 ηD, DRAIN EFFICIENCY (%) IMD, INTERMODULATION DISTORTION (dBc) TYPICAL CHARACTERISTICS 20 120 Pout, OUTPUT POWER (WATTS) VDD = 28 Vdc, IDQ = 1400 mA, f = 1840 MHz Single−Carrier W−CDMA, PAR = 7.5 dB, ACPR @ 5 MHz Offset in 3.84 MHz Integrated Bandwidth −30 −40 Uncorrected, Upper and Lower −50 DPD Corrected, No Memory Correction −60 −70 40 DPD Corrected, with Memory Correction Gps 18 TC = −30_C 25_C 40 17 85_C 16 30 15 20 14 VDD = 28 Vdc IDQ = 1400 mA f = 1840 MHz ηD 13 41 42 43 44 45 46 47 48 49 50 Pout, OUTPUT POWER (dBm) Figure 12. Digital Predistortion Correction versus ACPR and Output Power 60 −30_C 25_C 85_C 50 1 10 100 10 ηD, DRAIN EFFICIENCY (%) 19 −20 Gps, POWER GAIN (dB) ACPR, UPPER AND LOWER RESULTS (dBc) Figure 11. Output Peak - to - Average Ratio Compression (PARC) versus Output Power 0 400 Pout, OUTPUT POWER (WATTS) CW Figure 13. Power Gain and Drain Efficiency versus CW Output Power MRF7S18170HR3 MRF7S18170HSR3 RF Device Data Freescale Semiconductor 9 TYPICAL CHARACTERISTICS 18 109 MTTF FACTOR (HOURS X AMPS2) Gps, POWER GAIN (dB) IDQ = 1400 mA f = 1840 MHz 17 16 15 VDD = 24 V 28 V 100 107 32 V 106 90 14 0 108 200 300 110 130 150 170 190 210 230 250 TJ, JUNCTION TEMPERATURE (°C) Pout, OUTPUT POWER (WATTS) CW Figure 14. Power Gain versus Output Power This above graph displays calculated MTTF in hours x ampere2 drain current. Life tests at elevated temperatures have correlated to better than ±10% of the theoretical prediction for metal failure. Divide MTTF factor by ID2 for MTTF in a particular application. Figure 15. MTTF Factor versus Junction Temperature W - CDMA TEST SIGNAL 100 −10 3.84 MHz Channel BW −20 10 1 −40 Output Signal Input Signal −50 0.1 (dB) PROBABILITY (%) −30 0.01 −70 W−CDMA. ACPR Measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset. PAR = 7.5 dB @ 0.01% Probability on CCDF 0.001 −80 2 4 6 −ACPR in 3.84 MHz Integrated BW −90 0.0001 0 −60 8 10 PEAK−TO−AVERAGE (dB) Figure 16. CCDF W - CDMA 3GPP, Test Model 1, 64 DPCH, 50% Clipping, Single - Carrier Test Signal −ACPR in 3.84 MHz Integrated BW −100 −110 −9 −7.2 −5.4 −3.6 −1.8 0 1.8 3.6 5.4 7.2 9 f, FREQUENCY (MHz) Figure 17. Single - Carrier W - CDMA Spectrum MRF7S18170HR3 MRF7S18170HSR3 10 RF Device Data Freescale Semiconductor Zo = 10 Ω f = 1920 MHz Zload f = 1760 MHz f = 1760 MHz Zsource f = 1920 MHz VDD = 28 Vdc, IDQ = 1400 mA, Pout = 50 W Avg. f MHz Zsource W Zload W 1760 1.93 - j6.00 1.13 - j2.65 1780 1.95 - j6.10 1.05 - j2.45 1800 1.99 - j6.18 0.97 - j2.29 1820 1.95 - j6.22 0.90 - j2.12 1840 1.85 - j6.30 0.85 - j2.00 1860 1.71 - j6.26 0.81 - j1.84 1880 1.55 - j6.25 0.75 - j1.70 1900 1.39 - j6.20 0.70 - j1.54 1920 1.23 - j6.15 0.67 - j1.38 Zsource = Test circuit impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Output Matching Network Device Under Test Input Matching Network Z source Z load Figure 18. Series Equivalent Source and Load Impedance MRF7S18170HR3 MRF7S18170HSR3 RF Device Data Freescale Semiconductor 11 ALTERNATIVE PEAK TUNE LOAD PULL CHARACTERISTICS 60 61 58 P3dB = 53.8 dBm (240 W) 57 56 P1dB = 52.8 dBm (190 W) 55 54 Actual 53 VDD = 28 Vdc, IDQ = 1400 mA Pulsed CW, 12 μsec(on), 10% Duty Cycle, f = 1840 MHz 52 51 59 P3dB = 54.65 dBm (290 W) 58 57 P1dB = 54.05 dBm (254.1 W) 56 55 Actual 54 VDD = 32 Vdc, IDQ = 1400 mA Pulsed CW, 12 μsec(on), 10% Duty Cycle, f = 1840 MHz 53 52 50 Ideal P6dB = 55 dBm (316.23 W) 60 Pout, OUTPUT POWER (dBm) P6dB = 54.1 dBm (257 W) 59 Pout, OUTPUT POWER (dBm) Ideal 51 32 33 34 35 36 37 38 39 40 41 42 43 44 32 33 34 Pin, INPUT POWER (dBm) 36 37 38 39 40 41 42 43 44 Pin, INPUT POWER (dBm) NOTE: Measured in a Peak Tuned Load Pull Fixture NOTE: Measured in a Peak Tuned Load Pull Fixture Test Impedances per Compression Level 3dB 35 Zsource Ω Zload Ω 1.23 - j7.91 0.88 - j2.81 Figure 19. Pulsed CW Output Power versus Input Power Test Impedances per Compression Level P3dB Zsource Ω Zload Ω 1.23 - j7.91 1.03 - j2.65 Figure 20. Pulsed CW Output Power versus Input Power MRF7S18170HR3 MRF7S18170HSR3 12 RF Device Data Freescale Semiconductor PACKAGE DIMENSIONS B 4 G 2X 1 Q bbb M T A M B NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M−1994. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION H IS MEASURED 0.030 (0.762) AWAY FROM PACKAGE BODY. 4. RECOMMENDED BOLT CENTER DIMENSION OF 1.16 (29.57) BASED ON M3 SCREW. M B (FLANGE) 3 K 2 bbb D T A M M B M M bbb M T A M B M ccc M T A M B M N R (INSULATOR) ccc M T A M aaa M T A M B S (LID) (LID) M (INSULATOR) B M H C T A A INCHES MIN MAX 1.335 1.345 0.535 0.545 0.147 0.200 0.495 0.505 0.035 0.045 0.003 0.006 1.100 BSC 0.057 0.067 0.175 0.205 0.872 0.888 0.871 0.889 .118 .138 0.515 0.525 0.515 0.525 0.007 REF 0.010 REF 0.015 REF MILLIMETERS MIN MAX 33.91 34.16 13.6 13.8 3.73 5.08 12.57 12.83 0.89 1.14 0.08 0.15 27.94 BSC 1.45 1.70 4.44 5.21 22.15 22.55 19.30 22.60 3.00 3.51 13.10 13.30 13.10 13.30 0.178 REF 0.254 REF 0.381 REF STYLE 1: PIN 1. DRAIN 2. GATE 3. SOURCE F E DIM A B C D E F G H K M N Q R S aaa bbb ccc SEATING PLANE CASE 465B - 03 ISSUE D NI - 880 MRF7S18170HR3 (FLANGE) B 1 B (FLANGE) K NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M−1994. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION H IS MEASURED 0.030 (0.762) AWAY FROM PACKAGE BODY. 2 bbb M D T A M B M M bbb M T A M B M T A M B ccc M N ccc R (INSULATOR) M T A M S (LID) aaa M B M T A M B (LID) M (INSULATOR) M H C F E T A A SEATING PLANE (FLANGE) CASE 465C - 02 ISSUE D NI - 880S MRF7S18170HSR3 DIM A B C D E F H K M N R S aaa bbb ccc INCHES MIN MAX 0.905 0.915 0.535 0.545 0.147 0.200 0.495 0.505 0.035 0.045 0.003 0.006 0.057 0.067 0.170 0.210 0.872 0.888 0.871 0.889 0.515 0.525 0.515 0.525 0.007 REF 0.010 REF 0.015 REF MILLIMETERS MIN MAX 22.99 23.24 13.60 13.80 3.73 5.08 12.57 12.83 0.89 1.14 0.08 0.15 1.45 1.70 4.32 5.33 22.15 22.55 19.30 22.60 13.10 13.30 13.10 13.30 0.178 REF 0.254 REF 0.381 REF STYLE 1: PIN 1. DRAIN 2. GATE 3. SOURCE MRF7S18170HR3 MRF7S18170HSR3 RF Device Data Freescale Semiconductor 13 PRODUCT DOCUMENTATION Refer to the following documents to aid your design process. Application Notes • AN1955: Thermal Measurement Methodology of RF Power Amplifiers Engineering Bulletins • EB212: Using Data Sheet Impedances for RF LDMOS Devices REVISION HISTORY The following table summarizes revisions to this document. Revision Date 0 Oct. 2006 Description • Initial Release of Data Sheet MRF7S18170HR3 MRF7S18170HSR3 14 RF Device Data Freescale Semiconductor How to Reach Us: Home Page: www.freescale.com E - mail: [email protected] USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1 - 800 - 521 - 6274 or +1 - 480 - 768 - 2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1 - 8 - 1, Shimo - Meguro, Meguro - ku, Tokyo 153 - 0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 [email protected] For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1 - 800 - 441 - 2447 or 303 - 675 - 2140 Fax: 303 - 675 - 2150 [email protected] Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2006. All rights reserved. MRF7S18170HR3 MRF7S18170HSR3 Document Number: RF Device DataMRF7S18170H Rev. 0, 10/2006 Freescale Semiconductor 15