FAIRCHILD FDS8978_07

FDS8978
N-Channel PowerTrench® MOSFET
tm
30V, 7.5A, 18mΩ
Features
General Description
„ rDS(on) = 18mΩ, VGS = 10V, ID = 7.5A
This N-Channel MOSFET has been designed specifically to
improve the overall efficiency of DC/DC converters using
either synchronous or conventional switching PWM
controllers. It has been optimized for low gate charge, low
rDS(on) and fast switching speed.
„ rDS(on) = 21mΩ, VGS = 4.5V, ID = 6.9A
„ High performance trench technology for extremely low
rDS(on)
Applications
„ Low gate charge
„ DC/DC converters
„ High power and current handling capability
„ 100% Rg Tested
„ RoHS Compliant
D2
D2
D1
D1
SO-8
S2
S1
Pin 1
G2
G1
D2
5
D2
6
D1
7
D1
8
Q2
Q1
4
G2
3
S2
2
G1
1
S1
MOSFET Maximum Ratings TA = 25°C unless otherwise noted
Symbol
VDSS
Drain to Source Voltage
Parameter
Ratings
30
Units
V
VGS
Gate to Source Voltage
±20
V
7.5
A
Drain Current
Continuous (TA = 25oC, VGS = 10V, RθJA = 50oC/W)
ID
EAS
PD
TJ, TSTG
Continuous (TA = 25oC, VGS = 4.5V, RθJA = 50oC/W)
6.9
A
Pulsed
49
A
Single Pulse Avalanche Energy (Note 1)
57
mJ
Power dissipation
1.6
W
Derate above 25oC
13
mW/oC
-55 to 150
oC
Operating and Storage Temperature
Thermal Characteristics
RθJC
Thermal Resistance, Junction to Case (Note 2)
40
o
C/W
RθJA
Thermal Resistance, Junction to Ambient (Note 2a)
78
o
C/W
RθJA
Thermal Resistance, Junction to Ambient (Note 2c)
135
oC/W
Package Marking and Ordering Information
Device Marking
FDS8978
Device
FDS8978
©2007 Fairchild Semiconductor Corporation
FDS8978 Rev. B
Package
SO-8
1
Reel Size
330mm
Tape Width
12mm
Quantity
2500 units
www.fairchildsemi.com
FDS8978 Dual N-Channel PowerTrench® MOSFET
May 2007
Symbol
Parameter
Test Conditions
Min
Typ
Max
Units
30
-
-
-
V
-
1
-
-
250
-
-
±100
nA
V
Off Characteristics
BVDSS
Drain to Source Breakdown Voltage
IDSS
Zero Gate Voltage Drain Current
IGSS
Gate to Source Leakage Current
ID = 250µA, VGS = 0V
VDS = 24V
VGS = 0V
TJ = 150oC
VGS = ±20V
µA
On Characteristics
VGS(TH)
rDS(on)
Gate to Source Threshold Voltage
Drain to Source On Resistance
VGS = VDS, ID = 250µA
1.2
-
2.5
ID = 7.5A, VGS = 10V
-
14
18
ID = 6.9A, VGS = 4.5V
-
17
21
ID = 7.5A, VGS = 10V,
TJ = 150oC
-
22
29
-
907
-
pF
-
191
-
pF
-
112
-
pF
mΩ
Dynamic Characteristics
CISS
Input Capacitance
COSS
Output Capacitance
CRSS
Reverse Transfer Capacitance
RG
Gate Resistance
VGS = 0.5V, f = 1MHz
-
1.2
4.0
Ω
Qg(TOT)
Total Gate Charge at 10V
-
17
26
nC
Qg(5)
Total Gate Charge at 5V
VGS = 0V to 10V V = 15V
DD
VGS = 0V to 5V ID = 7.5A
-
9
14
nC
Qgs
Gate to Source Gate Charge
-
2.3
-
nC
Qgs2
Gate Charge Threshold to Plateau
-
1.5
-
nC
Qgd
Gate to Drain “Miller” Charge
-
3.3
-
nC
VDS = 15V, VGS = 0V,
f = 1MHz
Switching Characteristics (VGS = 10V)
tON
Turn-On Time
-
44
66
ns
td(ON)
Turn-On Delay Time
-
7
10.5
ns
tr
Rise Time
-
37
55.5
ns
td(OFF)
Turn-Off Delay Time
-
48
72
ns
tf
Fall Time
-
24
36
ns
tOFF
Turn-Off Time
-
72
108
ns
ISD = 7.5A
-
-
1.25
V
ISD = 2.1A
-
-
1.0
V
VDD = 15V, ID = 7.5A
VGS = 10V, RGS = 16Ω
Drain-Source Diode Characteristics
VSD
Source to Drain Diode Voltage
trr
Reverse Recovery Time
ISD = 7.5A, dISD/dt = 100A/µs
-
19
25
ns
QRR
Reverse Recovered Charge
ISD = 7.5A, dISD/dt = 100A/µs
-
10
13
nC
Notes:
1: Starting TJ = 25°C, L = 1mH, IAS = 7.5A, VDD = 30V, VGS = 10V.
2: RθJA is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the
drain pins. RθJC is guaranteed by design while RθJA is determined by the user’s board design.
a) 78°C/W when mounted on a 0.5 in2 pad of 2 oz copper.
b) 125°C/W when mounted on a 0.02 in2 pad of 2 oz copper.
c) 135°C/W when mounted on a minimun pad.
©2007 Fairchild Semiconductor Corporation
FDS8978 Rev. B
2
www.fairchildsemi.com
FDS8978 Dual N-Channel PowerTrench® MOSFET
Electrical Characteristics TJ = 25°C unless otherwise noted
8
7
1.0
ID, DRAIN CURRENT (A)
POWER DISSIPATION MULTIPLIER
1.2
0.8
0.6
0.4
6
VGS = 10V
5
4
VGS = 4.5V
3
2
1
0.2
0
0
25
50
75
125
100
o
RθJA = 78 C/W
0
25
150
50
75
100
125
150
o
TA, AMBIENT TEMPERATURE ( C)
TA , AMBIENT TEMPERATURE (oC)
Figure 1. Normalized Power Dissipation vs
Ambient Temperature
Figure 2. Maximum Continuous Drain Current vs
Ambient Temperature
2
NORMALIZED THERMAL
IMPEDANCE, ZθJA
1
0.1
DUTY CYCLE-DESCENDING ORDER
D = 0.5
0.2
0.1
0.05
0.02
0.01
0.01
SINGLE PULSE
o
RθJA = 135 C/W
0.001
-4
10
-3
-2
10
10
-1
0
10
10
1
10
2
3
10
10
t, RECTANGULAR PULSE DURATION (s)
Figure 3. Normalized Maximum Transient Thermal Impedance
P(PK), PEAK TRANSIENT POWER (W)
1000
VGS = 10V
SINGLE PULSE
o
RθJA = 135 C/W
o
100
TA = 25 C
10
1
0.5
-4
10
-3
-2
10
10
-1
0
10
10
1
10
2
10
3
10
t, PULSE WIDTH (s)
Figure 4. Single Pulse Maximum Power Dissipation
©2007 Fairchild Semiconductor Corporation
FDS8978 Rev. B
3
www.fairchildsemi.com
FDS8978 Dual N-Channel PowerTrench® MOSFET
Typical Characteristics TJ = 25°C unless otherwise noted
50
If R = 0
tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD)
If R ≠ 0
tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1]
10
STARTING TJ = 25oC
STARTING TJ = 150oC
0.1
1
10
VDS = 5V
30
TJ = 25oC
20
10
TJ = 150oC
0
1
1
0.01
PULSE DURATION = 80µs
DUTY CYCLE = 0.5%MAX
40
ID, DRAIN CURRENT (A)
IAS, AVALANCHE CURRENT (A)
100
100
TJ = -55oC
2
3
tAV, TIME IN AVALANCHE (ms)
Figure 5. Unclamped Inductive Switching
Capability
50
50
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
40
VGS = 4.5V
VGS = 10V
VGS = 5V
30
rDS(ON), DRAIN TO SOURCE
ON RESISTANCE (mW)
PULSE DURATION = 80µs
DUTY CYCLE = 0.5%MAX
ID, DRAIN CURRENT (A)
5
Figure 6. Transfer Characteristics
NOTE: Refer to Fairchild Application Notes AN7514 and AN7515
VGS = 3.5V
20
VGS = 3V
10
0
0.0
0.2
0.4
0.6
0.8
40
ID = 10.2A
30
20
ID = 1A
10
0
1.0
2
VDS, DRAIN TO SOURCE VOLTAGE (V)
1.6
4
6
8
10
VGS, GATE TO SOURCE VOLTAGE (V)
Figure 7. Saturation Characteristics
Figure 8. Drain to Source On Resistance vs Gate
Voltage and Drain Current
1.2
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
1.4
NORMALIZED GATE
THRESHOLD VOLTAGE
NORMALIZED DRAIN TO SOURCE
ON RESISTANCE
4
VGS, GATE TO SOURCE VOLTAGE (V)
1.2
1.0
VGS = VDS, ID = 250µA
1.0
0.8
VGS = 10V, ID = 10.2A
0.6
0.8
-80
-40
0
40
80
120
-80
160
TJ, JUNCTION TEMPERATURE (oC)
0
40
80
120
160
TJ, JUNCTION TEMPERATURE (oC)
Figure 9. Normalized Drain to Source On
Resistance vs Junction Temperature
©2007 Fairchild Semiconductor Corporation
FDS8978 Rev. B
-40
Figure 10. Normalized Gate Threshold Voltage vs
Junction Temperature
4
www.fairchildsemi.com
FDS8978 Dual N-Channel PowerTrench® MOSFET
Typical Characteristics TJ = 25°C unless otherwise noted
1.10
2000
CISS = CGS + CGD
1000
1.05
C, CAPACITANCE (pF)
NORMALIZED DRAIN TO SOURCE
BREAKDOWN VOLTAGE
ID = 250µA
1.00
0.95
COSS ≅ CDS + CGD
CRSS = CGD
VGS = 0V, f = 1MHz
0.90
10
-80
-40
0
40
80
120
160
0.1
TJ , JUNCTION TEMPERATURE (oC)
Figure 11. Normalized Drain to Source
Breakdown Voltage vs Junction Temperature
60
VDD = 15V
100us
8
6
4
WAVEFORMS IN
DESCENDING ORDER:
ID = 7.5A
ID = 1A
2
3
6
9
12
15
1ms
1
10ms
THIS AREA IS
LIMITED BY rDS(on)
100ms
SINGLE PULSE
TJ = MAX RATED
0.1
1s
10s
RθJA = 125 C/W
0.01
0.01
18
DC
TA = 25oC
0.1
1
10
100
VDS, DRAIN to SOURCE VOLTAGE (V)
Qg, GATE CHARGE (nC)
Figure 13. Gate Charge Waveforms for Constant
Gate Currents
©2007 Fairchild Semiconductor Corporation
FDS8978 Rev. B
10
o
0
0
30
Figure 12. Capacitance vs Drain to Source
Voltage
ID, DRAIN CURRENT (A)
VGS , GATE TO SOURCE VOLTAGE (V)
10
1
10
VDS , DRAIN TO SOURCE VOLTAGE (V)
Figure 14. Forward Bias Safe Operating Area
5
www.fairchildsemi.com
FDS8978 Dual N-Channel PowerTrench® MOSFET
Typical Characteristics TJ = 25°C unless otherwise noted
VDS
BVDSS
tP
VDS
L
IAS
VARY tP TO OBTAIN
REQUIRED PEAK IAS
VDD
+
RG
VDD
-
VGS
DUT
tP
0V
IAS
0
0.01Ω
tAV
Figure 15. Unclamped Energy Test Circuit
Figure 16. Unclamped Energy Waveforms
VDS
VDD
Qg(TOT)
VDS
VGS
L
VGS = 10V
Qg(5)
VGS
+
-
Qgs2
VDD
DUT
VGS = 5V
VGS = 1V
Ig(REF)
0
Qg(TH)
Qgs
Qgd
Ig(REF)
0
Figure 17. Gate Charge Test Circuit
Figure 18. Gate Charge Waveforms
VDS
tON
tOFF
td(ON)
td(OFF)
RL
tr
VDS
tf
90%
90%
+
VGS
VDD
-
10%
0
10%
DUT
90%
RGS
VGS
VGS
0
Figure 19. Switching Time Test Circuit
©2007 Fairchild Semiconductor Corporation
FDS8978 Rev. B
50%
10%
50%
PULSE WIDTH
Figure 20. Switching Time Waveforms
6
www.fairchildsemi.com
FDS8978 Dual N-Channel PowerTrench® MOSFET
Test Circuits and Waveforms
The maximum rated junction temperature, TJM, and the
thermal resistance of the heat dissipating path determines
the maximum allowable device power dissipation, PDM, in an
application.
Therefore the application’s ambient
temperature, TA (oC), and thermal resistance RθJA (oC/W)
must be reviewed to ensure that TJM is never exceeded.
Equation 1 mathematically represents the relationship and
serves as the basis for establishing the rating of the part.
(T
–T )
JM
A
P DM = ------------------------------RθJA
thermal impedance curve.
Thermal resistances corresponding to other copper areas
can be obtained from Figure 21 or by calculation using
Equation 2. The area, in square inches is the top copper
area including the gate and source pads.
26
0.23 + Area
R θJA = 64 + -------------------------------
(EQ. 1)
(EQ. 2)
The transient thermal impedance (ZθJA) is also effected by
varied top copper board area. Figure 22 shows the effect of
copper pad area on single pulse transient thermal impedance. Each trace represents a copper pad area in square
inches corresponding to the descending list in the graph.
Spice and SABER thermal models are provided for each of
the listed pad areas.
In using surface mount devices such as the SO8 package,
the environment in which it is applied will have a significant
influence on the part’s current and maximum power
dissipation ratings. Precise determination of PDM is complex
and influenced by many factors:
Copper pad area has no perceivable effect on transient
thermal impedance for pulse widths less than 100ms. For
pulse widths less than 100ms the transient thermal
impedance is determined by the die and package.
Therefore, CTHERM1 through CTHERM5 and RTHERM1
through RTHERM5 remain constant for each of the thermal
models. A listing of the model component values is available
in Table 1.
1. Mounting pad area onto which the device is attached and
whether there is copper on one side or both sides of the
board.
2. The number of copper layers and the thickness of the
board.
3. The use of external heat sinks.
4. The use of thermal vias.
200
5. Air flow and board orientation.
RθJA = 64 + 26/(0.23+Area)
RθJA (oC/W)
6. For non steady state applications, the pulse width, the
duty cycle and the transient thermal response of the part,
the board and the environment they are in.
Fairchild provides thermal information to assist the designer’s preliminary application evaluation. Figure 21 defines the
RθJA for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4
board with 1oz copper after 1000 seconds of steady state
power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be
evaluated using the Fairchild device Spice thermal model or
manually utilizing the normalized maximum transient
ZθJA, THERMAL
IMPEDANCE (oC/W)
150
120
90
150
100
50
0.001
0.01
0.1
1
AREA, TOP COPPER AREA (in2)
10
Figure 21. Thermal Resistance vs Mounting
Pad Area
COPPER BOARD AREA - DESCENDING ORDER
0.04 in2
0.28 in2
0.52 in2
0.76 in2
1.00 in2
60
30
0
10-1
100
101
t, RECTANGULAR PULSE DURATION (s)
102
103
Figure 22. Thermal Impedance vs Mounting Pad Area
©2007 Fairchild Semiconductor Corporation
FDS8978 Rev. B
7
www.fairchildsemi.com
FDS8978 Dual N-Channel PowerTrench® MOSFET
Thermal Resistance vs. Mounting Pad Area
.SUBCKT FDS8978 2 1 3
*February 2005
Ca 12 8 7.8e-10
Cb 15 14 7.8e-10
Cin 6 8 .78e-9
Dbody 7 5 DbodyMOD
Dbreak 5 11 DbreakMOD
Dplcap 10 5 DplcapMOD
DRAIN
2
5
10
ESLC
+
LGATE
GATE
1
Lgate 1 9 5.29e-9
Ldrain 2 5 1.0e-9
Lsource 3 7 0.18e-9
Rbreak 17 18 RbreakMOD 1
Rdrain 50 16 RdrainMOD 1.6e-3
Rgate 9 20 2.3
RSLC1 5 51 RSLCMOD 1e-6
RSLC2 5 50 1e3
Rsource 8 7 RsourceMOD 8.9e-3
Rvthres 22 8 RvthresMOD 1
Rvtemp 18 19 RvtempMOD 1
S1a 6 12 13 8 S1AMOD
S1b 13 12 13 8 S1BMOD
S2a 6 15 14 13 S2AMOD
S2b 13 15 14 13 S2BMOD
11
+
17
EBREAK 18
-
50
RDRAIN
6
8
EVTHRES
+ 19 8
EVTEMP
RGATE + 18 22
9
20
21
16
DBODY
MWEAK
6
MMED
MSTRO
RLGATE
LSOURCE
CIN
8
7
RSOURCE
RLgate 1 9 52.9
RLdrain 2 5 10
RLsource 3 7 1.8
Mmed 16 6 8 8 MmedMOD
Mstro 16 6 8 8 MstroMOD
Mweak 16 21 8 8 MweakMOD
DBREAK
+
5
51
ESG
RLDRAIN
RSLC1
51
RSLC2
Ebreak 11 7 17 18 32.9
Eds 14 8 5 8 1
Egs 13 8 6 8 1
Esg 6 10 6 8 1
Evthres 6 21 19 8 1
Evtemp 20 6 18 22 1
It 8 17 1
LDRAIN
DPLCAP
12
S1A
S2A
14
13
13
8
S1B
CA
RLSOURCE
RBREAK
15
17
18
RVTEMP
S2B
13
CB
6
8
VBAT
5
8
EDS
-
19
IT
14
+
+
EGS
SOURCE
3
-
+
8
22
RVTHRES
Vbat 22 19 DC 1
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*170),5))}
.MODEL DbodyMOD D (IS=2.0E-12 IKF=10 N=1.01 RS=7.0e-3 TRS1=8e-4 TRS2=2e-7
+ CJO=3.5e-10 M=0.55 TT=7e-11 XTI=2)
.MODEL DbreakMOD D (RS=0.2 TRS1=1e-3 TRS2=-8.9e-6)
.MODEL DplcapMOD D (CJO=3.8e-10 IS=1e-30 N=10 M=0.45)
.MODEL MstroMOD NMOS (VTO=2.36 KP=150 IS=1e-30 N=10 TOX=1 L=1u W=1u)
.MODEL MmedMOD NMOS (VTO=1.95 KP=5.0 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=2.3)
.MODEL MweakMOD NMOS (VTO=1.57 KP=0.02 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=23 RS=0.1)
.MODEL RbreakMOD RES (TC1=8.3e-4 TC2=-8e-7)
.MODEL RdrainMOD RES (TC1=15e-3 TC2=0.1e-5)
.MODEL RSLCMOD RES (TC1=1e-4 TC2=1e-6)
.MODEL RsourceMOD RES (TC1=1e-3 TC2=3e-6)
.MODEL RvtempMOD RES (TC1=-1.8e-3 TC2=2e-7)
.MODEL RvthresMOD RES (TC1=-2.0e-3 TC2=-6e-6)
MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-4 VOFF=-3.5)
.MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-3.5 VOFF=-4)
.MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-1.5 VOFF=-1.0)
.MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-1.0 VOFF=-1.5).ENDSNote: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank
Wheatley.
©2007 Fairchild Semiconductor Corporation
FDS8978 Rev. B
8
www.fairchildsemi.com
FDS8978 Dual N-Channel PowerTrench® MOSFET
PSPICE Electrical Model
REV February 2005
template FDS8978 n2,n1,n3
electrical n2,n1,n3
{
var i iscl
dp..model dbodymod = (isl=2.0e-12,ikf=10,nl=1.01,rs=7.0e-3,trs1=8e-4,trs2=2e-7,cjo=3.5e-10,m=0.55,tt=7e-11,xti=2)
dp..model dbreakmod = (rs=0.2,trs1=1e-3,trs2=-8.9e-6)
dp..model dplcapmod = (cjo=3.8e-10,isl=10e-30,nl=10,m=0.45)
m..model mstrongmod = (type=_n,vto=2.36,kp=150,is=1e-30, tox=1)
m..model mmedmod = (type=_n,vto=1.95,kp=5.0,is=1e-30, tox=1)
m..model mweakmod = (type=_n,vto=1.57,kp=0.02,is=1e-30, tox=1,rs=0.1)
LDRAIN
DPLCAP 5
sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-4,voff=-3.5)
sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-3.5,voff=-4)
10
sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-1.5,voff=-1.0)
RLDRAIN
RSLC1
sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=-1.0,voff=-1.5)
51
c.ca n12 n8 = 7.8e-10
RSLC2
c.cb n15 n14 = 7.8e-10
ISCL
c.cin n6 n8 = .78e-9
spe.ebreak n11 n7 n17 n18 = 32.9GATE
1
spe.eds n14 n8 n5 n8 = 1
spe.egs n13 n8 n6 n8 = 1
spe.esg n6 n10 n6 n8 = 1
spe.evthres n6 n21 n19 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
RDRAIN
6
8
ESG
EVTHRES
+ 19 8
+
LGATE
DBREAK
50
-
dp.dbody n7 n5 = model=dbodymod
dp.dbreak n5 n11 = model=dbreakmod
dp.dplcap n10 n5 = model=dplcapmod
EVTEMP
RGATE + 18 22
9
20
21
11
MWEAK
EBREAK
+
17
18
-
MMED
MSTRO
CIN
DBODY
16
6
RLGATE
8
LSOURCE
7
RSOURCE
i.it n8 n17 = 1
12
l.lgate n1 n9 = 5.29e-9
l.ldrain n2 n5 = 1.0e-9
l.lsource n3 n7 = 0.18e-9
S1A
S2A
14
13
13
8
S1B
CA
res.rlgate n1 n9 = 52.9
res.rldrain n2 n5 = 10
res.rlsource n3 n7 = 1.8
RBREAK
15
17
18
RVTEMP
CB
6
8
-
19
IT
14
+
+
EGS
SOURCE
3
RLSOURCE
S2B
13
DRAIN
2
VBAT
5
8
EDS
-
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u
+
8
22
RVTHRES
res.rbreak n17 n18 = 1, tc1=8.3e-4,tc2=-8e-7
res.rdrain n50 n16 = 1.6e-3, tc1=15e-3,tc2=0.1e-5
res.rgate n9 n20 = 2.3
res.rslc1 n5 n51 = 1e-6, tc1=1e-4,tc2=1e-6
res.rslc2 n5 n50 = 1e3
res.rsource n8 n7 = 8.9e-3, tc1=1e-3,tc2=3e-6
res.rvthres n22 n8 = 1, tc1=-2.0e-3,tc2=-6e-6
res.rvtemp n18 n19 = 1, tc1=-1.8e-3,tc2=2e-7
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc=1
equations {
i (n51->n50) +=iscl
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/170))** 5))
}
}
©2007 Fairchild Semiconductor Corporation
FDS8978 Rev. B
9
www.fairchildsemi.com
FDS8978 Dual N-Channel PowerTrench® MOSFET
SABER Electrical Model
REV February 2005
template FDS8878 n2,n1,n3
Copper Area =1.0 in2
CTHERM1 TH 8 2.0e-3
CTHERM2 8 7 5.0e-3
CTHERM3 7 6 1.0e-2
CTHERM4 6 5 4.0e-2
CTHERM5 5 4 9.0e-2
CTHERM6 4 3 2e-1
CTHERM7 3 2 1
CTHERM8 2 TL 3
JUNCTION
th
RTHERM1
CTHERM1
8
RTHERM1 TH 8 1e-1
RTHERM2 8 7 5e-1
RTHERM3 7 6 1
RTHERM4 6 5 5
RTHERM5 5 4 8
RTHERM6 4 3 12
RTHERM7 3 2 18
RTHERM8 2 TL 25
RTHERM2
CTHERM2
7
CTHERM3
RTHERM3
SABER Thermal Model
6
2
Copper Area = 1.0 in
template thermal_model th tl
thermal_c th, tl
{
ctherm.ctherm1 th 8 =2.0e-3
ctherm.ctherm2 8 7 =5.0e-3
ctherm.ctherm3 7 6 =1.0e-2
ctherm.ctherm4 6 5 =4.0e-2
ctherm.ctherm5 5 4 =9.0e-2
ctherm.ctherm6 4 3 =2e-1
ctherm.ctherm7 3 2 1
ctherm.ctherm8 2 tl 3
RTHERM4
CTHERM4
5
RTHERM5
CTHERM5
4
RTHERM6
rtherm.rtherm1 th 8 =1e-1
rtherm.rtherm2 8 7 =5e-1
rtherm.rtherm3 7 6 =1
rtherm.rtherm4 6 5 =5
rtherm.rtherm5 5 4 =8
rtherm.rtherm6 4 3 =12
rtherm.rtherm7 3 2 =18
rtherm.rtherm8 2 tl =25
}
CTHERM6
3
CTHERM7
RTHERM7
2
CTHERM8
RTHERM8
tl
CASE
TABLE 1. THERMAL MODELS
0.04 in2
0.28 in2
0.52 in2
0.76 in2
1.0 in2
CTHERM6
1.2e-1
1.5e-1
2.0e-1
2.0e-1
2.0e-1
CTHERM7
0.5
1.0
1.0
1.0
1.0
CTHERM8
1.3
2.8
3.0
3.0
3.0
RTHERM6
26
20
15
13
12
RTHERM7
39
24
21
19
18
RTHERM8
55
38.7
31.3
29.7
25
COMPONANT
©2007 Fairchild Semiconductor Corporation
FDS8978 Rev. B
10
www.fairchildsemi.com
FDS8978 Dual N-Channel PowerTrench® MOSFET
SPICE Thermal Model
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not
intended to be an exhaustive list of all such trademarks.
ACEx®
Across the board. Around the world™
ActiveArray™
Bottomless™
Build it Now™
CoolFET™
CorePLUS™
CROSSVOLT™
CTL™
Current Transfer Logic™
DOME™
E2CMOS™
EcoSPARK®
EnSigna™
FACT Quiet Series™
FACT®
FAST®
FASTr™
FPS™
FRFET®
GlobalOptoisolator™
GTO™
HiSeC™
i-Lo™
ImpliedDisconnect™
IntelliMAX™
ISOPLANAR™
MICROCOUPLER™
MicroPak™
MICROWIRE™
Motion-SPM™
MSX™
MSXPro™
OCX™
OCXPro™
OPTOLOGIC®
OPTOPLANAR®
PACMAN™
PDP-SPM™
POP™
Power220®
Power247®
PowerEdge™
PowerSaver™
Power-SPM™
PowerTrench®
Programmable Active Droop™
QFET®
QS™
QT Optoelectronics™
Quiet Series™
RapidConfigure™
RapidConnect™
ScalarPump™
SMART START™
SPM®
STEALTH™
SuperFET™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SyncFET™
TCM™
The Power Franchise®
™
TinyBoost™
TinyBuck™
TinyLogic®
TINYOPTO™
TinyPower™
TinyWire™
TruTranslation™
µSerDes™
UHC®
UniFET™
VCX™
Wire™
tm
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO
IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE
OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE
RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS,
SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT
THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
1. Life support devices or systems are devices or systems
which, (a) are intended for surgical implant into the body or (b)
support or sustain life, and (c) whose failure to perform when
properly used in accordance with instructions for use provided in
the labeling, can be reasonably expected to result in a significant
injury of the user.
2. A critical component in any component of a life support,
device, or system whose failure to perform can be reasonably
expected to cause the failure of the life support device or
system, or to affect its safety or effectiveness.
PRODUCT STATUS DEFINITIONS
Definition of Terms
Datasheet Identification
Product Status
Definition
Advance Information
Formative or In Design
This datasheet contains the design specifications for product
development. Specifications may change in any manner
without notice.
Preliminary
First Production
This datasheet contains preliminary data; supplementary data will
be published at a later date. Fairchild Semiconductor reserves the
right to make changes at any time without notice to improve
design.
No Identification Needed
Full Production
This datasheet contains final specifications. Fairchild
Semiconductor reserves the right to make changes at any time
without notice to improve design.
Obsolete
Not In Production
This datasheet contains specifications on a product that has been
discontinued by Fairchild Semiconductor.The datasheet is printed
for reference information only.
Rev. I27
©2007 Fairchild Semiconductor Corporation
FDS8978 Rev. B
11
www.fairchildsemi.com
FDS8978 Dual N-Channel PowerTrench® MOSFET
tm