FDB8870_F085 N-Channel PowerTrench® MOSFET 30V, 160A, 3.9mΩ General Description Features This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low rDS(ON) and fast switching speed. • rDS(ON) = 3.9mΩ, VGS = 10V, ID = 35A Applications • rDS(ON) = 4.4mΩ, VGS = 4.5V, ID = 35A • High performance trench technology for extremely low rDS(ON) • Low gate charge • DC/DC converters • High power and current handling capability • Qualified to AEC Q101 • RoHS Compliant ® FDB8870_F085 N-Channel PowerTrench MOSFET July 2010 D GATE G SOURCE TO-263AB FDB SERIES S DRAIN (FLANGE) S MOSFET Maximum Ratings TC = 25°C unless otherwise noted Symbol VDSS Drain to Source Voltage Parameter Ratings 30 Units V VGS Gate to Source Voltage ±20 V Continuous (TC = 25oC, VGS = 10V) (Note 1) 160 A Continuous (TC = 25oC, VGS = 4.5V) (Note 1) 150 A Continuous (Tamb = 25oC, VGS = 10V, with RθJA = 43oC/W) 23 A Drain Current ID Pulsed EAS Single Pulse Avalanche Energy (Note 2) PD TJ, TSTG Figure 4 A 300 mJ Power dissipation 160 W Derate above 25oC 1.07 W/oC -55 to 175 oC Operating and Storage Temperature Thermal Characteristics 0.94 o C/W Thermal Resistance Junction to Ambient TO-263 ( Note 3) 62 o C/W Thermal Resistance Junction to Ambient TO-263, 1in2 copper pad area 43 oC/W RθJC Thermal Resistance Junction to Case TO-263 RθJA RθJA Package Marking and Ordering Information Device Marking FDB8870 ©2010Fairchild Semiconductor Corporation Device FDB8870_F085 Package Reel Size Tape Width Quantity TO-263AB 330mm 24mm 800 units FDB8870_F085 Rev. A Symbol Parameter Test Conditions Min Typ Max Units V Off Characteristics BVDSS Drain to Source Breakdown Voltage IDSS Zero Gate Voltage Drain Current IGSS Gate to Source Leakage Current ID = 250μA, VGS = 0V VDS = 24V VGS = 0V TC = 150oC VGS = ±20V 30 - - - - 1 - - 250 - - ±100 nA - 2.5 V μA On Characteristics VGS(TH) rDS(ON) Gate to Source Threshold Voltage Drain to Source On Resistance VGS = VDS, ID = 250μA 1.2 ID = 35A, VGS = 10V - 0.0032 0.0039 ID = 35A, VGS = 4.5V - 0.0038 0.0044 ID = 35A, VGS = 10V, TJ = 175oC - 0.0051 0.0065 Ω Dynamic Characteristics - 5200 - - 970 - pF pF - 570 - pF CISS Input Capacitance COSS Output Capacitance CRSS Reverse Transfer Capacitance RG Gate Resistance VGS = 0.5V, f = 1MHz - 2.1 - Ω Qg(TOT) Total Gate Charge at 10V VGS = 0V to 10V - 106 132 nC VDS = 15V, VGS = 0V, f = 1MHz Total Gate Charge at 5V VGS = 0V to 5V Threshold Gate Charge VGS = 0V to 1V Qgs Gate to Source Gate Charge Qgs2 Gate Charge Threshold to Plateau Qgd Gate to Drain “Miller” Charge Switching Characteristics VDD = 15V ID = 35A Ig = 1.0mA - 56 69 nC - 5.0 6.5 nC - 15 - nC - 10 - nC - 23 - nC (VGS = 10V) tON Turn-On Time - - 162 ns td(ON) Turn-On Delay Time - 10 - ns tr Rise Time td(OFF) Turn-Off Delay Time tf tOFF - 98 - ns - 75 - ns Fall Time - 47 - ns Turn-Off Time - - 183 ns V VDD = 15V, ID = 35A VGS = 10V, RGS = 3.3Ω Drain-Source Diode Characteristics ISD = 35A - - 1.25 ISD = 15A - - 1.0 V Reverse Recovery Time ISD = 35A, dISD/dt = 100A/μs - - 37 ns Reverse Recovered Charge ISD = 35A, dISD/dt = 100A/μs - - 21 nC VSD Source to Drain Diode Voltage trr QRR Notes: 1: Package current limitation is 80A. 2: Starting TJ = 25°C, L = 0.15mH, IAS = 64A, VDD = 27V, VGS = 10V. 3: Pulse width = 100s. 4 ©2010Fairchild Semiconductor Corporation FDB8870_F085 Rev. A ® Qg(5) Qg(TH) FDB8870_F085 N-Channel PowerTrench MOSFET Electrical Characteristics TC = 25°C unless otherwise noted 175 1.0 150 ID, DRAIN CURRENT (A) POWER DISSIPATION MULTIPLIER 1.2 0.8 0.6 0.4 CURRENT LIMITED BY PACKAGE 125 100 75 50 0.2 25 0 0 25 50 75 100 150 125 0 175 25 50 75 TC , CASE TEMPERATURE (oC) 100 125 150 175 o TC, CASE TEMPERATURE ( C) Figure 1. Normalized Power Dissipation vs Case Temperature Figure 2. Maximum Continuous Drain Current vs Case Temperature 2 DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 ® ZθJC, NORMALIZED THERMAL IMPEDANCE 1 PDM 0.1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJC x RθJC + TC SINGLE PULSE 0.01 10-5 10-4 10-3 10-2 10-1 100 101 t, RECTANGULAR PULSE DURATION (s) Figure 3. Normalized Maximum Transient Thermal Impedance 1000 TC = 25oC IDM, PEAK CURRENT (A) TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: VGS = 4.5V 175 - TC I = I25 150 100 50 10-5 10-4 10-3 10-2 10-1 100 101 t, PULSE WIDTH (s) Figure 4. Peak Current Capability ©2010Fairchild Semiconductor Corporation FDB8870_F085 N-Channel PowerTrench MOSFET Typical Characteristics TC = 25°C unless otherwise noted FDB8870_F085 Rev. A 500 1000 If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] IAS, AVALANCHE CURRENT (A) ID, DRAIN CURRENT (A) 10μs 100 100μs 10 OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 1ms 10ms 1 SINGLE PULSE TJ = MAX RATED TC = 25oC DC 100 STARTING TJ = 25oC 10 STARTING TJ = 150oC 0.1 1 10 VDS, DRAIN TO SOURCE VOLTAGE (V) 1 0.01 60 0.1 1 10 tAV, TIME IN AVALANCHE (ms) NOTE: Refer to Fairchild Application Notes AN7514 and AN7515 Figure 5. Forward Bias Safe Operating Area Figure 6. Unclamped Inductive Switching Capability 160 160 VGS = 5V ® VGS = 4V ID, DRAIN CURRENT (A) ID , DRAIN CURRENT (A) PULSE DURATION = 80μs DUTY CYCLE = 0.5% MAX VDD = 15V 120 TJ = 175oC 80 TJ = 25oC 40 120 VGS = 10V VGS = 3V 80 40 TC = 25oC PULSE DURATION = 80μs DUTY CYCLE = 0.5% MAX TJ = -55oC 0 0 1.5 2.0 2.5 3.0 VGS , GATE TO SOURCE VOLTAGE (V) 0 3.5 0.25 0.5 0.75 1.0 VDS , DRAIN TO SOURCE VOLTAGE (V) Figure 7. Transfer Characteristics Figure 8. Saturation Characteristics 1.6 10 NORMALIZED DRAIN TO SOURCE ON RESISTANCE PULSE DURATION = 80μs DUTY CYCLE = 0.5% MAX ID = 35A rDS(ON), DRAIN TO SOURCE ON RESISTANCE (mΩ) 100 8 6 4 ID = 1A PULSE DURATION = 80μs DUTY CYCLE = 0.5% MAX 1.4 1.2 1.0 0.8 VGS = 10V, ID = 35A 2 2 4 6 8 10 VGS, GATE TO SOURCE VOLTAGE (V) Figure 9. Drain to Source On Resistance vs Gate Voltage and Drain Current ©2010Fairchild Semiconductor Corporation 0.6 -80 -40 FDB8870_F085 N-Channel PowerTrench MOSFET Typical Characteristics TC = 25°C unless otherwise noted 0 40 80 120 TJ, JUNCTION TEMPERATURE (oC) 160 200 Figure 10. Normalized Drain to Source On Resistance vs Junction Temperature FDB8870_F085 Rev. A 1.2 1.4 ID = 250μA NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE VGS = VDS, ID = 250μA NORMALIZED GATE THRESHOLD VOLTAGE 1.2 1.0 0.8 0.6 0.4 -80 -40 0 40 80 120 160 1.1 1.0 0.9 -80 200 -40 Figure 11. Normalized Gate Threshold Voltage vs Junction Temperature 80 120 160 200 10 VDD = 15V COSS ≅ CDS + CGD 1000 VGS = 0V, f = 1MHz 400 ® CRSS = CGD VGS , GATE TO SOURCE VOLTAGE (V) CISS = CGS + CGD C, CAPACITANCE (pF) 40 Figure 12. Normalized Drain to Source Breakdown Voltage vs Junction Temperature 10000 0.1 0 TJ , JUNCTION TEMPERATURE (oC) TJ, JUNCTION TEMPERATURE (oC) 8 6 4 WAVEFORMS IN DESCENDING ORDER: ID = 35A ID = 5A 2 0 1 10 VDS , DRAIN TO SOURCE VOLTAGE (V) Figure 13. Capacitance vs Drain to Source Voltage ©2010Fairchild Semiconductor Corporation 30 FDB8870_F085 N-Channel PowerTrench MOSFET Typical Characteristics TC = 25°C unless otherwise noted 0 20 40 60 Qg, GATE CHARGE (nC) 80 100 Figure 14. Gate Charge Waveforms for Constant Gate Current FDB8870_F085 Rev. A VDS BVDSS tP L VDS VARY tP TO OBTAIN IAS + RG REQUIRED PEAK IAS VDD VDD - VGS DUT tP IAS 0V 0 0.01Ω tAV Figure 15. Unclamped Energy Test Circuit Figure 16. Unclamped Energy Waveforms ® VDS VDD Qg(TOT) VDS L VGS VGS = 10V VGS Qg(5) + Qgs2 VDD VGS = 5V DUT VGS = 1V Ig(REF) 0 Qg(TH) Qgs Qgd Ig(REF) 0 Figure 18. Gate Charge Waveforms Figure 17. Gate Charge Test Circuit VDS tON tOFF td(ON) td(OFF) RL tf tr VDS 90% 90% + VGS VDD - 10% 0 10% DUT 90% RGS VGS VGS 0 Figure 19. Switching Time Test Circuit ©2010Fairchild Semiconductor Corporation FDB8870_F085 N-Channel PowerTrench MOSFET Test Circuits and Waveforms 50% 10% 50% PULSE WIDTH Figure 20. Switching Time Waveforms FDB8870_F085 Rev. A ( T JM – TA ) P DM = ----------------------------Rθ JA (EQ. 1) In using surface mount devices such as the TO-263 package, the environment in which it is applied will have a significant influence on the part’s current and maximum power dissipation ratings. Precise determination of PDM is complex and influenced by many factors: 1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board. 80 RθJA = 26.51+ 19.84/(0.262+Area) EQ.2 RθJA = 26.51+ 128/(1.69+Area) EQ.3 60 RθJA (oC/W) The maximum rated junction temperature, TJM, and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, PDM, in an application. Therefore the application’s ambient temperature, TA (oC), and thermal resistance RθJA (oC/W) must be reviewed to ensure that TJM is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part. 40 20 0.1 1 10 (0.645) (6.45) AREA, TOP COPPER AREA in2 (cm2) (64.5) Figure 21. Thermal Resistance vs Mounting Pad Area 2. The number of copper layers and the thickness of the board. ® 3. The use of external heat sinks. 4. The use of thermal vias. 5. Air flow and board orientation. 6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in. Fairchild provides thermal information to assist the designer’s preliminary application evaluation. Figure 21 defines the RθJA for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve. Thermal resistances corresponding to other copper areas can be obtained from Figure 21 or by calculation using Equation 2 or 3. Equation 2 is used for copper area defined in inches square and equation 3 is for area in centimeters square. The area, in square inches or square centimeters is the top copper area including the gate and source pads. 19.84 ( 0.262 + Area ) R θJA = 26.51 + ------------------------------------- (EQ. 2) Area in Inches Squared 128 ( 1.69 + Area ) R θJA = 26.51 + ---------------------------------- (EQ. 3) Area in Centimeters Squared ©2010Fairchild Semiconductor Corporation FDB8870_F085 N-Channel PowerTrench MOSFET Thermal Resistance vs. Mounting Pad Area FDB8870_F085 Rev. A .SUBCKT FDB8870 2 1 3 ; rev December 2003 Ca 12 8 4.5e-9 Cb 15 14 4.5e-9 Cin 6 8 4.7e-9 LDRAIN DPLCAP DRAIN 2 5 10 Dbody 7 5 DbodyMOD Dbreak 5 11 DbreakMOD Dplcap 10 5 DplcapMOD 5 51 ESLC EVTHRES + 19 8 + LGATE GATE 1 11 + 17 EBREAK 18 - 50 RDRAIN 6 8 ESG DBREAK + RSLC2 Ebreak 11 7 17 18 33.45 Eds 14 8 5 8 1 Egs 13 8 6 8 1 Esg 6 10 6 8 1 Evthres 6 21 19 8 1 Evtemp 20 6 18 22 1 It 8 17 1 RLDRAIN RSLC1 51 EVTEMP RGATE + 18 22 9 20 21 16 DBODY MWEAK 6 MMED MSTRO RLGATE Lgate 1 9 3.6e-9 Ldrain 2 5 1.0e-9 Lsource 3 7 3.3e-9 LSOURCE CIN 8 7 SOURCE 3 RSOURCE RLSOURCE RLgate 1 9 36 RLdrain 2 5 10 RLsource 3 7 33 12 S2A 13 8 17 18 RVTEMP S2B 13 CB 19 6 8 VBAT 5 8 EDS - IT 14 + + EGS Rbreak 17 18 RbreakMOD 1 Rdrain 50 16 RdrainMOD 1.95e-3 Rgate 9 20 2.1 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 Rsource 8 7 RsourceMOD 9e-4 Rvthres 22 8 RvthresMOD 1 Rvtemp 18 19 RvtempMOD 1 S1a 6 12 13 8 S1AMOD S1b 13 12 13 8 S1BMOD S2a 6 15 14 13 S2AMOD S2b 13 15 14 13 S2BMOD 15 14 13 S1B CA RBREAK - ® Mmed 16 6 8 8 MmedMOD Mstro 16 6 8 8 MstroMOD Mweak 16 21 8 8 MweakMOD S1A + 8 22 RVTHRES Vbat 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*500),10))} .MODEL DbodyMOD D (IS=7.5E-12 IKF=17 N=1.01 RS=2.1e-3 TRS1=2e-3 TRS2=2e-7 + CJO=1.9e-9 M=0.57 TT=9e-11 XTI=2.6) .MODEL DbreakMOD D (RS=8e-2 TRS1=1e-3 TRS2=-8.9e-6) .MODEL DplcapMOD D (CJO=1.75e-9 IS=1e-30 N=10 M=0.4) .MODEL MmedMOD NMOS (VTO=2.1 KP=30 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=2.1 T_ABS=25) .MODEL MstroMOD NMOS (VTO=2.51 KP=650 IS=1e-30 N=10 TOX=1 L=1u W=1u T_ABS=25) .MODEL MweakMOD NMOS (VTO=1.67 KP=0.1 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=21 RS=0.1 T_ABS=25) .MODEL RbreakMOD RES (TC1=8.3e-4 TC2=-9e-7) .MODEL RdrainMOD RES (TC1=2.4e-3 TC2=5.5e-6) .MODEL RSLCMOD RES (TC1=1e-4 TC2=1e-6) .MODEL RsourceMOD RES (TC1=8e-3 TC2=1e-6) .MODEL RvthresMOD RES (TC1=-2.3e-3 TC2=-9e-6) .MODEL RvtempMOD RES (TC1=-3e-3 TC2=2e-7) .MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-4 VOFF=-2) .MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-2 VOFF=-4) .MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-1 VOFF=-0.5) .MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-0.5 VOFF=-1) .ENDS Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. ©2010Fairchild Semiconductor Corporation FDB8870_F085 N-Channel PowerTrench MOSFET PSPICE Electrical Model FDB8870_F085 Rev. A rev December 2003 template FDB8870 n2,n1,n3 =m_temp electrical n2,n1,n3 number m_temp=25 { var i iscl dp..model dbodymod = (isl=7.5e-12,ikf=17,nl=1.01,rs=2.1e-3,trs1=2e-3,trs2=2e-7,cjo=1.9e-9,m=0.57,tt=9e-11,xti=2.6) dp..model dbreakmod = (rs=8e-2,trs1=1e-3,trs2=-8.9e-6) dp..model dplcapmod = (cjo=1.75e-9,isl=10e-30,nl=10,m=0.4) m..model mmedmod = (type=_n,vto=2.1,kp=30,is=1e-30, tox=1) m..model mstrongmod = (type=_n,vto=2.51,kp=650,is=1e-30, tox=1) m..model mweakmod = (type=_n,vto=1.67,kp=0.1,is=1e-30, tox=1,rs=0.1) LDRAIN sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-4,voff=-2) DPLCAP 5 sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-2,voff=-4) 10 sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-1,voff=-0.5) RLDRAIN RSLC1 sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=-0.5,voff=-1) 51 c.ca n12 n8 = 4.5e-9 RSLC2 c.cb n15 n14 = 4.5e-9 ISCL c.cin n6 n8 = 4.7e-9 EVTHRES + 19 8 + LGATE EVTEMP RGATE + 18 22 9 20 21 11 DBODY 16 MWEAK 6 EBREAK + 17 18 - MMED MSTRO RLGATE CIN 8 LSOURCE 7 SOURCE 3 RSOURCE RLSOURCE i.it n8 n17 = 1 S1A 12 l.lgate n1 n9 = 3.6e-9 l.ldrain n2 n5 = 1.0e-9 l.lsource n3 n7 = 3.3e-9 14 13 13 8 S1B CA res.rlgate n1 n9 = 36 res.rldrain n2 n5 = 10 res.rlsource n3 n7 = 33 S2A RBREAK 15 17 18 RVTEMP S2B 13 CB 6 8 EGS 19 - IT 14 + + VBAT 5 8 EDS - m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u, temp=m_temp m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u, temp=m_temp m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u, temp=m_temp + 8 22 RVTHRES res.rbreak n17 n18 = 1, tc1=8.3e-4,tc2=-9e-7 res.rdrain n50 n16 = 1.95e-3, tc1=2.4e-3,tc2=5.5e-6 res.rgate n9 n20 = 2.1 res.rslc1 n5 n51 = 1e-6, tc1=1e-4,tc2=1e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 9e-4, tc1=8e-3,tc2=1e-6 res.rvthres n22 n8 = 1, tc1=-2.3e-3,tc2=-9e-6 res.rvtemp n18 n19 = 1, tc1=-3e-3,tc2=2e-7 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/500))** 10)) } } ©2010Fairchild Semiconductor Corporation FDB8870_F085 Rev. A ® spe.ebreak n11 n7 n17 n18 = 33.45 GATE spe.eds n14 n8 n5 n8 = 1 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evthres n6 n21 n19 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 RDRAIN 6 8 ESG DBREAK 50 - dp.dbody n7 n5 = model=dbodymod dp.dbreak n5 n11 = model=dbreakmod dp.dplcap n10 n5 = model=dplcapmod DRAIN 2 FDB8870_F085 N-Channel PowerTrench MOSFET SABER Electrical Model th JUNCTION REV 23 December 2003 FDB8870T CTHERM1 TH 6 1e-3 CTHERM2 6 5 2e-3 CTHERM3 5 4 3e-3 CTHERM4 4 3 9e-3 CTHERM5 3 2 1e-2 CTHERM6 2 TL 2e-2 RTHERM1 CTHERM1 6 RTHERM1 TH 6 3e-2 RTHERM2 6 5 8e-2 RTHERM3 5 4 1.1e-1 RTHERM4 4 3 1.6e-1 RTHERM5 3 2 1.72e-1 RTHERM6 2 TL 2e-1 RTHERM2 CTHERM2 5 SABER Thermal Model rtherm.rtherm1 th 6 =3e-2 rtherm.rtherm2 6 5 =8e-2 rtherm.rtherm3 5 4 =1.1e-1 rtherm.rtherm4 4 3 =1.6e-1 rtherm.rtherm5 3 2 =1.72e-1 rtherm.rtherm6 2 tl =2e-1 } RTHERM3 CTHERM3 4 RTHERM4 CTHERM4 3 RTHERM5 CTHERM5 2 RTHERM6 CTHERM6 tl ©2010Fairchild Semiconductor Corporation CASE FDB8870_F085 Rev. A ® SABER thermal model FDB8870T template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 =1e-3 ctherm.ctherm2 6 5 =2e-3 ctherm.ctherm3 5 4 =3e-3 ctherm.ctherm4 4 3 =9e-3 ctherm.ctherm5 3 2 =1e-2 ctherm.ctherm6 2 tl =2e-2 FDB8870_F085 N-Channel PowerTrench MOSFET PSPICE Thermal Model AccuPower¥ Auto-SPM¥ Build it Now¥ CorePLUS¥ CorePOWER¥ CROSSVOLT¥ CTL¥ Current Transfer Logic¥ DEUXPEED® Dual Cool™ EcoSPARK® EfficientMax¥ ESBC¥ F-PFS¥ FRFET® SM Global Power Resource Green FPS¥ Green FPS¥ e-Series¥ Gmax¥ GTO¥ IntelliMAX¥ ISOPLANAR¥ MegaBuck¥ MICROCOUPLER¥ MicroFET¥ MicroPak¥ MicroPak2¥ MillerDrive¥ MotionMax¥ Motion-SPM¥ OptoHiT™ OPTOLOGIC® OPTOPLANAR® ® ® PDP SPM™ Saving our world, 1mW/W/kW at a time™ SignalWise¥ SmartMax¥ SMART START¥ SPM® STEALTH¥ SuperFET¥ SuperSOT¥-3 SuperSOT¥-6 SuperSOT¥-8 SupreMOS¥ SyncFET¥ Sync-Lock™ ® * The Power Franchise® TinyBoost¥ TinyBuck¥ TinyCalc¥ TinyLogic® TINYOPTO¥ TinyPower¥ TinyPWM¥ TinyWire¥ TriFault Detect¥ TRUECURRENT¥* PSerDes¥ UHC® Ultra FRFET¥ UniFET¥ VCX¥ VisualMax¥ XS™ ® Fairchild® Fairchild Semiconductor® FACT Quiet Series¥ FACT® FAST® FastvCore¥ FETBench¥ FlashWriter®* FPS¥ Power-SPM¥ PowerTrench® PowerXS™ Programmable Active Droop¥ QFET® QS¥ Quiet Series¥ RapidConfigure¥ ¥ * Trademarks of System General Corporation, used under license by Fairchild Semiconductor. DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. ANTI-COUNTERFEITING POLICY Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Advance Information Formative / In Design Preliminary First Production No Identification Needed Full Production Obsolete Not In Production Definition Datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only. Rev. I48 © Fairchild Semiconductor Corporation FDB8870_F085 N-Channel PowerTrench MOSFET TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. www.fairchildsemi.com