ISL9N305ASK8T N-Channel Logic Level PWM Optimized UltraFET® Trench Power MOSFET General Description Features This device employs a new advanced trench MOSFET technology and features low gate charge while maintaining low on-resistance. • Fast switching Optimized for switching applications, this device improves the overall efficiency of DC/DC converters and allows operation to higher switching frequencies. • rDS(ON) = 0.0064Ω (Typ), VGS = 4.5V Applications • Qgd (Typ) = 11.5nC • DC/DC converters • CISS (Typ) = 4260pF • rDS(ON) = 0.004Ω (Typ), VGS = 10V • Qg (Typ) = 38nC, VGS = 5V Branding Dash 5 1 2 3 4 SOURCE (1) DRAIN (8) SOURCE (2) DRAIN (7) SOURCE (3) DRAIN (6) GATE (4) DRAIN (5) SO-8 MOSFET Maximum Ratings TA = 25°C unless otherwise noted Symbol VDSS Drain to Source Voltage Parameter Ratings 30 Units V VGS Gate to Source Voltage ±20 V Continuous (TA = 25oC, VGS = 10V) 18 A Continuous (TA = 100oC, VGS = 4.5V) 9 A Drain Current `ID Pulsed PD Power dissipation Derate above 25oC TJ, TSTG Operating and Storage Temperature Figure 4 A 2.5 20 W mW/oC o -55 to 150 C Thermal Characteristics RθJA FR-4 board with 0.76 in2( 490 mm2 ) copper pad at 10 seconds in2( 34.8 mm2 50 RθJA FR-4 board with 0.054 ) copper pad at 1000 seconds RθJA FR-4 board with 0.0115 in2( 7.42 mm2 ) copper pad at 1000 seconds o C/W 152 oC/W 189 o C/W Package Marking and Ordering Information Device Marking N305ASK8 ©2002 Fairchild Semiconductor Corporation Device ISL9N305ASK8T Reel Size 330mm Tape Width 12mm Quantity 2500units ISL9N305ASK8T Rev A1 ISL9N305ASK8T October 2002 Symbol Parameter Test Conditions Min Typ Max Units 30 - - - V - 1 - - 250 µA - - ±100 nA Off Characteristics BVDSS Drain to Source Breakdown Voltage IDSS Zero Gate Voltage Drain Current IGSS Gate to Source Leakage Current ID = 250µA, VGS = 0V VDS = 25V VGS = 0V TA = 150oC VGS = ±20V On Characteristics VGS(TH) rDS(ON) Gate to Source Threshold Voltage Drain to Source On Resistance VGS = VDS, ID = 250µA 1 - 3 V ID = 18A, VGS = 10V - 0.004 0.005 ID = 9A, VGS = 4.5V - 0.0064 0.008 Ω - 4260 - - 750 - pF - 340 - pF nC Dynamic Characteristics CISS Input Capacitance COSS Output Capacitance CRSS Reverse Transfer Capacitance VDS = 15V, VGS = 0V, f = 1MHz Qg(TOT) Total Gate Charge at 10V VGS = 0V to 10V Qg(5) Total Gate Charge at 5V Qg(TH) Threshold Gate Charge Qgs Gate to Source Gate Charge VGS = 0V to 5V V = 15V DD VGS = 0V to 1V ID = 9A Ig = 1.0mA Qgd Gate to Drain “Miller” Charge Switching Characteristics pF 72 108 - 38 57 nC - 4.1 6.1 nC - 10.4 - nC - 11.5 - nC (VGS = 4.5V) tON Turn-On Time - - 158 ns td(ON) Turn-On Delay Time - 24 - ns tr Rise Time - 81 - ns td(OFF) Turn-Off Delay Time - 44 - ns tf Fall Time - 52 - ns tOFF Turn-Off Time - - 145 ns Switching Characteristics VDD = 15V, ID = 9A VGS = 4.5V, RGS = 3.9Ω (VGS = 10V) tON Turn-On Time - - 100 ns td(ON) Turn-On Delay Time - 12 - ns tr Rise Time - 55 - ns td(OFF) Turn-Off Delay Time - 66 - ns tf Fall Time - 50 - ns tOFF Turn-Off Time - - 173 ns 145 - - µs VDD = 15V, ID = 9A VGS = 10V, RGS = 3.9Ω Unclamped Inductive Switching tAV Avalanche Time ID = 2.2A, L = 3mH Drain-Source Diode Characteristics ISD = 9A - - 1.25 V ISD = 4A - - 1.0 V Reverse Recovery Time ISD = 9A, dISD/dt = 100A/µs - - 40 ns Reverse Recovered Charge ISD = 9A, dISD/dt = 100A/µs - - 38 nC VSD Source to Drain Diode Voltage trr QRR ©2002 Fairchild Semiconductor Corporation ISL9N305ASK8T Rev A1 ISL9N305ASK8T Electrical Characteristics TA = 25°C unless otherwise noted ISL9N305ASK8T Typical Characteristic 20 1.2 VGS = 10V, RθJA = 50oC/W ID, DRAIN CURRENT (A) POWER DISSIPATION MULTIPLIER 1.0 0.8 0.6 0.4 15 10 VGS = 4.5V, RθJA = 189oC/W 5 0.2 0 0 0 25 50 75 125 100 TA , AMBIENT TEMPERATURE 25 150 50 75 100 125 150 Ta, CASE TEMPERATURE (oC) (oC) Figure 1. Normalized Power Dissipation vs Ambient Temperature Figure 2. Maximum Continuous Drain Current vs Case Temperature 3 DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 ZθJA, NORMALIZED THERMAL IMPEDANCE 1 RθJA = 50oC/W 0.1 PDM t1 0.01 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJA x RθJA + TA SINGLE PULSE 0.001 10-5 10-4 10-3 10-2 10-1 100 101 102 103 t, RECTANGULAR PULSE DURATION (s) Figure 3. Normalized Maximum Transient Thermal Impedance 2000 IDM , PEAK CURRENT (A) RθJA = 50oC/W TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 1000 TA = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: I = I25 VGS = 4.5V 150 - TA 125 100 10 10-5 10-4 10-3 10-2 10-1 t, PULSE WIDTH (s) 100 101 102 103 Figure 4. Peak Current Capability ©2002 Fairchild Semiconductor Corporation ISL9N305ASK8T Rev A1 ISL9N305ASK8T Typical Characteristic (Continued) 50 50 30 TJ = 25oC 20 TJ = 150oC TJ = -55oC 10 0 1 2 3 4 VGS = 3.5V 30 VGS = 3V 20 10 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX TA = 25oC 0 0 0.2 VGS , GATE TO SOURCE VOLTAGE (V) 0.6 0.4 0.6 1.0 VDS , DRAIN TO SOURCE VOLTAGE (V) Figure 5. Transfer Characteristics Figure 6. Saturation Characteristics 1.8 20 NORMALIZED DRAIN TO SOURCE ON RESISTANCE PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX rDS(ON), DRAIN TO SOURCE ON RESISTANCE (mΩ) VGS = 4.5V 40 ID, DRAIN CURRENT (A) 40 ID , DRAIN CURRENT (A) VGS = 10V PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDD = 15V ID = 18A 15 10 ID = 1A 5 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 1.5 1.2 0.9 VGS = 10V, ID = 18A 0.6 0 2 4 6 8 -80 10 -40 Figure 7. Drain To Source On Resistance vs Gate Voltage And Drain Current 40 80 120 160 Figure 8. Normalized Drain to Source On Resistance vs Junction Temperature 1.2 1.4 NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE VGS = VDS, ID = 250µA 1.2 NORMALIZED GATE THRESHOLD VOLTAGE 0 TJ, JUNCTION TEMPERATURE (oC) VGS, GATE TO SOURCE VOLTAGE (V) 1.0 0.8 0.6 ID = 250µA 1.1 1.0 0.9 0.4 -80 -40 0 40 80 TJ, JUNCTION TEMPERATURE 120 160 (oC) Figure 9. Noramlized Gate Threshold Voltage vs Junction Temperature ©2002 Fairchild Semiconductor Corporation -80 -40 0 40 80 120 160 TJ , JUNCTION TEMPERATURE (oC) Figure 10. Normalized Drain to Source Breakdown Voltage vs Junction Temperature ISL9N305ASK8T Rev A1 ISL9N305ASK8T Typical Characteristic (Continued) 6000 10 VGS , GATE TO SOURCE VOLTAGE (V) C, CAPACITANCE (pF) CISS = CGS + CGD COSS ≅ CGS + CGD 1000 CRSS = CGD VGS = 0V, f = 1MHz 100 VDD = 15V 8 6 4 WAVEFORMS IN DESCENDING ORDER: ID = 18A ID = 1A 2 0 0.1 1 30 10 0 25 VDS , DRAIN TO SOURCE VOLTAGE (V) 50 75 Qg, GATE CHARGE (nC) Figure 11. Capacitance vs Drain to Source Voltage Figure 12. Gate Charge Waveforms for Constant Gate Currents 600 300 VGS = 4.5V, VDD = 15V, ID = 9A VGS = 10V, VDD = 15V, ID = 9A tr 200 tf td(ON) 100 SWITCHING TIME (ns) SWITCHING TIME (ns) td(OFF) td(OFF) 400 tf 200 tr td(ON) 0 0 0 10 20 30 40 0 50 10 20 30 40 50 RGS, GATE TO SOURCE RESISTANCE (Ω) RGS, GATE TO SOURCE RESISTANCE (Ω) Figure 13. Switching Time vs Gate Resistance Figure 14. Switching Time vs Gate Resistance Test Circuits and Waveforms VDS BVDSS tP VDS L IAS VDD VARY tP TO OBTAIN REQUIRED PEAK IAS + RG VDD - VGS DUT tP 0V IAS 0 0.01Ω tAV Figure 15. Unclamped Energy Test Circuit ©2002 Fairchild Semiconductor Corporation Figure 16. Unclamped Energy Waveforms ISL9N305ASK8T Rev A1 VDS VDD Qg(TOT) RL VDS VGS = 10V VGS Qg(5) + VDD VGS = 5V VGS - VGS = 1V DUT 0 Ig(REF) Qg(TH) Qgs Qgd Ig(REF) 0 Figure 17. Gate Charge Test Circuit Figure 18. Gate Charge Waveforms VDS tON tOFF td(ON) td(OFF) tr RL VDS tf 90% 90% + VGS VDD - 10% 0 10% DUT 90% RGS VGS 50% 50% PULSE WIDTH VGS 0 Figure 19. Switching Time Test Circuit ©2002 Fairchild Semiconductor Corporation 10% Figure 20. Switching Time Waveforms ISL9N305ASK8T Rev A1 ISL9N305ASK8T Test Circuits and Waveforms (Continued) The maximum rated junction temperature, TJM, and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, PDM, in an application. Therefore the application’s ambient temperature, TA (oC), and thermal resistance RθJA (oC/W) must be reviewed to ensure that TJM is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part. P DM (T –T ) JM A = ----------------------------RθJA (EQ. 1) In using surface mount devices such as the SO8 package, the environment in which it is applied will have a significant influence on the part’s current and maximum power dissipation ratings. Precise determination of PDM is complex and influenced by many factors: 1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board. 2. The number of copper layers and the thickness of the board. 3. The use of external heat sinks. 4. The use of thermal vias. 5. Air flow and board orientation. 6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in. depict the compromise between the copper board area, the thermal resistance and ultimately the power dissipation, PDM. Thermal resistances corresponding to other copper areas can be obtained from Figure 21 or by calculation using Equation 2. RθJA is defined as the natural log of the area times a coefficient added to a constant. The area, in square inches is the top copper area including the gate and source pads. R θ JA = 83.2 – 23.6 × ZθJA, THERMAL IMPEDANCE (oC/W) 150 120 90 (EQ. 2) The transient thermal impedance (ZθJA) is also effected by varied top copper board area. Figure 22 shows the effect of copper pad area on single pulse transient thermal impedance. Each trace represents a copper pad area in square inches corresponding to the descending list in the graph. Spice and SABER thermal models are provided for each of the listed pad areas. Copper pad area has no perceivable effect on transient thermal impedance for pulse widths less than 100ms. For pulse widths less than 100ms the transient thermal impedance is determined by the die and package. Therefore, CTHERM1 through CTHERM5 and RTHERM1 through RTHERM5 remain constant for each of the thermal models. A listing of the model component values is available in Table 1. 240 RθJA = 83.2 - 23.6*ln(AREA) Fairchild provides thermal information to assist the designer’s preliminary application evaluation. Figure 21 defines the RθJA for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve. Displayed on the curve are RθJA values listed in the Electrical Specifications table. The points were chosen to ln ( Area ) RθJA (oC/W) 200 189oC/W - 0.0115in2 160 152oC/W - 0.054in2 120 80 0.01 0.1 1.0 AREA, TOP COPPER AREA (in2) Figure 21. Thermal Resistance vs Mounting Pad Area COPPER BOARD AREA - DESCENDING ORDER 0.04 in2 0.28 in2 0.52 in2 0.76 in2 1.00 in2 60 30 0 10-1 100 101 102 103 t, RECTANGULAR PULSE DURATION (s) Figure 22. Thermal Impedance vs Mounting Pad Area ©2002 Fairchild Semiconductor Corporation ISL9N305ASK8T Rev A1 ISL9N305ASK8T Thermal Resistance vs. Mounting Pad Area rev May 2001 LDRAIN DPLCAP 10 DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD RSLC2 5 51 LGATE EVTEMP RGATE + 18 22 9 20 21 RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 1e-3 RGATE 9 20 2.34 RLDRAIN 2 5 10 RLGATE 1 9 12.9 RLSOURCE 3 7 1.75 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 3.3e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 EBREAK 16 + 17 18 - DBODY MWEAK 6 MMED MSTRO RLGATE LSOURCE CIN 8 SOURCE 3 7 RSOURCE MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD S1A S1B S2A S2B EVTHRES + 19 8 + GATE 1 11 50 RDRAIN 6 8 ESG DBREAK ESLC - LDRAIN 2 5 1e-9 LGATE 1 9 1.29e-9 LSOURCE 3 7 1.75e-10 RLDRAIN RSLC1 51 EBREAK 11 7 17 18 32.8 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1 IT 8 17 1 DRAIN 2 5 + .SUBCKT ISL9N305ASK8 2 1 3 ; CA 12 8 2e-9 CB 15 14 2.3e-9 CIN 6 8 4.1e-9 RLSOURCE S1A 12 S2A 13 8 14 13 S1B CA RBREAK 15 17 18 RVTEMP S2B 13 CB 6 8 EGS 19 VBAT 5 8 EDS - IT 14 + + - + 8 22 RVTHRES 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*150),5))} .MODEL DBODYMOD D (IS = 2e-11 N = 1.04 RS = 4e-3 TRS1 = 1e-3 TRS2 = 1e-6 XTI=2 CJO = 1.4e-9 TT = 9e-10 M = 0.45 XTI=2) .MODEL DBREAKMOD D (RS = 0.22 TRS1 = 8e-4 TRS2 = -8.9e-6) .MODEL DPLCAPMOD D (CJO = 1.27e-9 IS = 1e-30 N = 10 M = 0.46) .MODEL MMEDMOD NMOS (VTO = 1.87 KP = 10 IS=1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 2.34) .MODEL MSTROMOD NMOS (VTO = 2.25 KP = 140 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 1.5 KP = 0.1 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 23.4 RS = 0.1) .MODEL RBREAKMOD RES (TC1 = 9.2e-4 TC2 = 0) .MODEL RDRAINMOD RES (TC1 = 1.2e-2 TC2 = 3e-5) .MODEL RSLCMOD RES (TC1 = 1e-3 TC2 = 1e-7) .MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 1e-6) .MODEL RVTHRESMOD RES (TC1 = -1.6e-3 TC2 = -8e-6) .MODEL RVTEMPMOD RES (TC1 = -2.9e-3 TC2 = 1e-7) .MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -3.0 VOFF= -2.0) .MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.0 VOFF= -3.0) .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -0.5 VOFF= 0.2) .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.2 VOFF= -0.5) .ENDS Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. ©2002 Fairchild Semiconductor Corporation ISL9N305ASK8T Rev A1 ISL9N305ASK8T PSPICE Electrical Model ISL9N305ASK8T SABER Electrical Model REV May 20001 template isl9n305ask8 n2,n1,n3 electrical n2,n1,n3 { var i iscl dp..model dbodymod = (isl = 2e-11, nl=1.04, rs = 4e-3, trs1 = 1e-3, trs2 = 1e-6, xti=2, cjo = 1.4e-9, tt = 9e-10, m = 0.45) dp..model dbreakmod = (rs = 0.22, trs1 = 8e-4, trs2 = -8.9e-6) dp..model dplcapmod = (cjo = 1.29e-9, isl=10e-30, nl=10, m=0.46) m..model mmedmod = (type=_n, vto = 1.87, kp=10, is=1e-30, tox=1) m..model mstrongmod = (type=_n, vto = 2.25, kp = 140, is = 1e-30, tox = 1) m..model mweakmod = (type=_n, vto = 1.5, kp = 0.1, is = 1e-30, tox = 1, rs=0.1) sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -3.0, voff = -2.0) sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -2.0, voff = -3.0) sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -0.5, voff = 0.2) LDRAIN sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.2, voff = -0.5) DPLCAP c.ca n12 n8 = 2e-9 c.cb n15 n14 = 2.3e-9 c.cin n6 n8 = 4.1e-9 5 10 DRAIN 2 RLDRAIN RSLC1 51 RSLC2 ISCL dp.dbody n7 n5 = model=dbodymod dp.dbreak n5 n11 = model=dbreakmod dp.dplcap n10 n5 = model=dplcapmod l.ldrain n2 n5 = 1e-9 l.lgate n1 n9 = 1.29e-9 l.lsource n3 n7 = 1.75e-10 RDRAIN 6 8 ESG i.it n8 n17 = 1 GATE 1 EVTEMP RGATE + 18 22 9 20 6 EBREAK + 17 18 - MMED RLGATE CIN 8 LSOURCE 7 RSOURCE S1A 12 13 8 S2A 14 13 S1B CA DBODY MWEAK MSTRO m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u res.rbreak n17 n18 = 1, tc1 = 9.2e-4, tc2 = 0 res.rdrain n50 n16 = 1e-3, tc1 = 1.2e-2, tc2 = 3e-5 res.rgate n9 n20 = 2.34 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 12.9 res.rlsource n3 n7 = 1.75 res.rslc1 n5 n51= 1e-6, tc1 = 1e-3, tc2 =1e-7 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 3.3e-3, tc1 = 1e-3, tc2 =1e-6 res.rvtemp n18 n19 = 1, tc1 = -2.9e-3, tc2 = 1e-7 res.rvthres n22 n8 = 1, tc1 = -1.6e-3, tc2 = -8e-6 11 EVTHRES 16 21 + 19 8 + LGATE DBREAK 50 - RLSOURCE RBREAK 15 17 18 RVTEMP S2B 13 CB + + 6 8 EGS - SOURCE 3 19 IT 14 VBAT 5 8 EDS - + 8 22 RVTHRES spe.ebreak n11 n7 n17 n18 = 32.8 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/150))** 5)) } } ©2002 Fairchild Semiconductor Corporation ISL9N305ASK8T Rev A1 th REV 18 May 2001 ISL9N305ASK8_76T Copper Area = 0.76 in2 CTHERM1 th 8 2.0e-3 CTHERM2 8 7 5.0e-3 CTHERM3 7 6 1.0e-2 CTHERM4 6 5 4.0e-2 CTHERM5 5 4 9.0e-2 CTHERM6 4 3 0.2 CTHERM7 3 2 1.0 CTHERM8 2 tl 3.0 JUNCTION RTHERM1 CTHERM1 8 RTHERM2 RTHERM1 th 8 0.1 RTHERM2 8 7 0.5 RTHERM3 7 6 1.0 RTHERM4 6 5 5.0 RTHERM5 5 4 8.0 RTHERM6 4 3 13 RTHERM7 3 2 19 RTHERM8 2 tl 29.7 CTHERM2 7 RTHERM3 CTHERM3 6 SABER Thermal Model RTHERM4 CTHERM4 2 Copper Area = 0.76 in template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 8 = 2.0e-3 ctherm.ctherm2 8 7 = 5.0e-3 ctherm.ctherm3 7 6 = 1.0e-2 ctherm.ctherm4 6 5 = 4.0e-2 ctherm.ctherm5 5 4 = 9.0e-2 ctherm.ctherm6 4 3 = 0.2 ctherm.ctherm7 3 2 = 1.0 ctherm.ctherm8 2 tl = 3.0 5 RTHERM5 CTHERM5 4 RTHERM6 CTHERM6 3 rtherm.rtherm1 th 8 = 0.1 rtherm.rtherm2 8 7 = 0.5 rtherm.rtherm3 7 6 = 1.0 rtherm.rtherm4 6 5 = 5.0 rtherm.rtherm5 5 4 = 8.0 rtherm.rtherm6 4 3 = 13 rtherm.rtherm7 3 2 = 19 rtherm.rtherm8 2 tl = 29.7 } RTHERM7 CTHERM7 2 CTHERM8 RTHERM8 tl CASE TABLE 1. THERMAL MODELS 0.04 in2 0.28 in2 0.52 in2 0.76 in2 1.0 in2 CTHERM6 1.2e-1 1.5e-1 2.0e-1 2.0e-1 2.0e-1 CTHERM7 0.5 1.0 1.0 1.0 1.0 CTHERM8 1.3 2.8 3.0 3.0 3.0 RTHERM6 26 20 15 13 12 RTHERM7 39 24 21 19 18 RTHERM8 55 38.7 31.3 29.7 25 COMPONANT ©2002 Fairchild Semiconductor Corporation ISL9N305ASK8T Rev A1 ISL9N305ASK8T SPICE Thermal Model TRADEMARKS The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. ACEx™ FACT™ ActiveArray™ FACT Quiet Series™ Bottomless™ FAST® CoolFET™ FASTr™ CROSSVOLT™ FRFET™ DOME™ GlobalOptoisolator™ EcoSPARK™ GTO™ E2CMOS™ HiSeC™ EnSigna™ I2C™ Across the board. Around the world.™ The Power Franchise™ Programmable Active Droop™ ImpliedDisconnect™ ISOPLANAR™ LittleFET™ MicroFET™ MicroPak™ MICROWIRE™ MSX™ MSXPro™ OCX™ OCXPro™ OPTOLOGIC® OPTOPLANAR™ PACMAN™ POP™ Power247™ PowerTrench® QFET™ QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ RapidConnect™ SILENT SWITCHER® SMART START™ SPM™ Stealth™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic™ TruTranslation™ UHC™ UltraFET® VCX™ DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Preliminary First Production This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. No Identification Needed Full Production This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. Obsolete Not In Production This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only. Rev. I1