LM124W-LM224W-LM324W Low Power Quad Operational Amplifiers ■ Wide gain bandwidth: 1.3MHz ■ Input common-mode voltage range includes ground ■ Large voltage gain: 100dB ■ Very low supply current/ampli: 375µA ■ Low input bias current: 20nA ■ Low input offset voltage: 3mV max. ■ Low input offset current: 2nA ■ Wide power supply range: Single supply: +3V to +30V Dual supplies: ±1.5V to ±15V N DIP14 (Plastic Package) D SO-14 (Plastic Micropackage) Description These circuits consist of four independent, high gain, internally frequency compensated operational amplifiers. They operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. P TSSOP-14 (Thin Shrink Small Outline Package) All the pins are protected against electrostatic discharges up to 2000V (as a consequence, the input voltages must not exceed the magnitude of VCC+ or VCC-.) Order Codes Part Number LM124WN LM124WD/WDT LM224WN LM224WD/WDT Temperature Range -55°C, +125°C -40°C, +105°C LM224WPT LM324WN LM324WD/WDT LM324WPT June 2005 0°C, +70°C Package Packaging DIP SO DIP SO TSSOP (Thin Shrink Outline Package) DIP SO TSSOP (Thin Shrink Outline Package) Tube Tube or Tape & Reel Tube Tube or Tape & Reel Tape & Reel Tube Tube or Tape & Reel Tape & Reel Rev 2 1/16 www.st.com 16 Absolute Maximum Ratings 1 LM124W-LM224W-LM324W Absolute Maximum Ratings Table 1. 15Key parameters and their absolute maximum ratings Symbol VCC Parameter LM124W Supply voltage LM224W LM324W Unit ±16 or 32 V Vi Input Voltage -0.3 to Vcc + 0.3 V Vid Differential Input Voltage (1) -0.3 to Vcc + 0.3 V Ptot Power Dissipation N Suffix D Suffix 500 500 400 Output Short-circuit Duration (2) Iin Operating Free-air Temperature Range Tstg Storage Temperature Range Rthja ESD mW Infinite Input Current (3) Toper 500 400 50 -55 to +125 -40 to +105 mA 0 to +70 °C -65 to +150 °C Thermal Resistance Junction to Ambient SO14 TSSOP14 DIP14 103 100 66 °C/W HBM: Human Body Model(4) 700 V MM: Machine Model(5) 100 V 1.5 kV CDM: Charged Device Model + 1. Either or both input voltages must not exceed the magnitude of VCC or VCC-. 2. Short-circuits from the output to VCC can cause excessive heating if VCC > 15V. The maximum output current is approximately 40mA independent of the magnitude of VCC. Destructive dissipation can result from simultaneous short-circuit on all amplifiers. 3. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistor becoming forward biased and thereby acting as input diodes clamps. In addition to this diode action, there is also NPN parasitic action on the IC chip. this transistor action can cause the output voltages of the op-amps to go to the VCC voltage level (or to ground for a large overdrive) for the time duration than an input is driven negative. This is not destructive and normal output will set up again for input voltage higher than -0.3V. 4. Human body model, 100pF discharged through a 1.5kΩ resistor into pin of device. 5. Machine model ESD, a 200pF cap is charged to the specified voltage, then discharged directly into the IC with no external series resistor (internal resistor < 5Ω), into pin to pin of device. 2/16 LM124W-LM224W-LM324W 2 Pin & Schematic Diagram Pin & Schematic Diagram Figure 1. Pin connections (top view) 14 Output 4 Output 1 1 Inverting Input 1 2 - - 13 Inverting Input 4 Non-inverting Input 1 3 + + 12 Non-inverting Input 4 11 VCC - VCC + 4 Non-inverting Input 2 Inverting Input 2 5 + + 10 Non-inverting Input 3 6 - - 9 Inverting Input 3 8 Output 3 Output 2 7 Figure 2. Schematic diagram (1/4 LM124W) 3/16 Electrical Characteristics 3 LM124W-LM224W-LM324W Electrical Characteristics Table 2. VCC+ = +5V, VCC-= Ground, Vo = 1.4V, Tamb = +25°C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Unit Vio Input Offset Voltage - note (1) Tamb = +25°C Tmin ≤ Tamb ≤ Tmax 2 3 5 mV Iio Input Offset Current Tamb = +25°C Tmin ≤ Tamb ≤ Tmax 2 20 40 nA Iib Input Bias Current - note (2) Tamb = +25°C Tmin ≤ Tamb ≤ Tmax 20 100 200 nA Large Signal Voltage Gain Avd VCC+ = +15V, RL = 2kΩ, Vo = 1.4V to 11.4V Tamb = +25°C Tmin ≤ Tamb ≤ Tmax 50 25 100 65 65 110 V/mV Supply Voltage Rejection Ratio (Rs ≤ 10kΩ) SVR ICC VCC+ = 5V to 30V Tamb = +25°C Tmin ≤ Tamb ≤ Tmax Supply Current, all Amp, no load Tamb = +25°C V CC = +5V VCC = +30V Tmin ≤ Tamb ≤ Tmax VCC = +5V VCC = +30V 0.7 1.5 0.8 1.5 dB 1.2 3 1.2 3 mA Input Common Mode Voltage Range VCC = +30V - note (3) Tamb = +25°C Tmin ≤ Tamb ≤ Tmax 0 0 CMR Common Mode Rejection Ratio (Rs ≤ 10kΩ) Tamb = +25°C Tmin ≤ Tamb ≤ T max 70 60 80 Isource Output Current Source (Vid = +1V) VCC = +15V, Vo = +2V 20 40 Output Sink Current (V id = -1V) VCC = +15V, Vo = +2V VCC = +15V, Vo = +0.2V 10 12 20 50 Vicm Isink 4/16 VCC 1.5 VCC 2 V dB 70 mA mA µA LM124W-LM224W-LM324W Table 2. Electrical Characteristics VCC+ = +5V, VCC-= Ground, Vo = 1.4V, Tamb = +25°C (unless otherwise specified) Symbol VOH Parameter High Level Output Voltage VCC = +30V Tamb = +25°C Tmin ≤ Tamb ≤ Tmax Tamb = +25°C Tmin ≤ Tamb ≤ Tmax VCC = +5V, R L = 2kΩ Tamb = +25°C Tmin ≤ Tamb ≤ Tmax RL = 2kΩ R L = 10kΩ Min. Typ. 26 26 27 27 27 Max. 28 V 3.5 3 VOL Low Level Output Voltage (RL = 10kΩ) Tamb = +25°C Tmin ≤ Tamb ≤ Tmax SR Slew Rate VCC = 15V, V i = 0.5 to 3V, R L = 2kΩ, CL = 100pF, unity Gain 0.4 GBP Gain Bandwidth Product VCC = 30V, f =100kHz,V in = 10mV, RL = 2kΩ, CL = 100pF 1.3 THD Total Harmonic Distortion: f = 1kHz, Av = 20dB, RL = 2kΩ, Vo = 2Vpp, CL = 100pF, VCC = 30V 5 20 20 MHz % 0.015 40 DV io Input Offset Voltage Drift 7 30 DIIio Input Offset Current Drift 10 200 Channel Separation - note (4) 1kHz ≤ f ≤ 20kHZ 120 Vo1 /Vo2 mV V/µs Equivalent Input Noise Voltage f = 1kHz, Rs = 100Ω, V CC = 30V en Unit nV -----------Hz µV/ °C pA/ °C dB 1. The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines. 2. Vo = 1.4V, Rs = 0Ω, 5V < VCC + < 30V, 0 < Vic < VCC+ - 1.5V 3. The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is VCC+ - 1.5V, but either or both inputs can go to +32V without damage. 4. Due to the proximity of external components insure that coupling is not originating via stray capacitance between these external parts. This typically can be detected as this type of capacitance increases at higher frequences. Table 3. Vcc+ = +15V, Vcc- = 0V, Tamb = 25°C (unless otherwise specified) Symbol Conditions Vio Value Unit 0 mV Avd RL = 2kΩ 100 V/mV Icc No load, per amplifier 350 µA -15 to +13.5 V +13.5 V Vicm VOH RL = 2kΩ (VCC VOL RL = 10kΩ +=15V) 5 mV Ios Vo = +2V, VCC = +15V +40 mA GBP RL = 2kΩ, CL = 100pF 1.3 MHz SR RL = 2kΩ, CL = 100pF 0.4 V/µs 5/16 Electrical Characteristics Figure 3. Input bias current vs. ambient temperature LM124W-LM224W-LM324W Figure 4. Current limiting Figure 6. Supply current INPUT BIAS CURRENT versus AMBIENT TEMPERATURE IB (nA) 24 21 18 15 12 9 6 3 0 -55-35-15 5 25 45 65 85 105 125 AMBIENT TEMPERATURE (°C) Figure 5. Input voltage range SUPPLY CURRENT 4 SUPPLY CURRENT (mA) VCC ID mA 3 - 2 + Tamb = 0°C to +125°C 1 Tamb = -55°C 0 10 20 30 POSITIVE SUPPLY VOLTAGE (V) Figure 7. 6/16 Gain bandwidth product Figure 8. Common mode rejection ratio LM124W-LM224W-LM324W Figure 9. Electrical Characteristics Electrical curves 7/16 Electrical Characteristics LM124W-LM224W-LM324W Figure 10. Input current Figure 11. Large signal voltage gain Figure 12. Power supply & common mode rejection ratio Figure 13. Voltage gain 8/16 LM124W-LM224W-LM324W 4 Typical Single - Supply Applications Typical Single - Supply Applications Figure 14. AC coupled inverting amplifier R1 100kW Rf 100k W Rf A V= R1 (as shown AV = -10) R1 10kW CI e1 R2 VCC 100kW 2VPP 0 eo RB 6.2kW R3 100kW eO 1/4 LM124W Gain adjust R2 2kW R4 100kW R3 100kW 1/4 LM124W Co 1/4 LM124W eI ~ Figure 15. High input Z adjustable gaind DC instrumentation amplifier R5 100kW RL 10kW R6 100kW 1/4 LM124W R7 100kW e2 if R1 = R5 and R3 = R4 = R6 = R7 C1 10mF 2R e0 = 1 + ----------1- (e2 -e1) R 2 As shown e0 = 101 (e2 - e1). Figure 16. AC coupled non inverting amplifier Figure 17. DC summing amplifier e1 R1 100kW R2 1MW 100kW A V= 1 + R2 R1 (as shown AV = 11) C1 0.1mF 100kW Co 1/4 LM124W CI RB 6.2kW R3 1MW eI ~ 2VPP 0 eo RL 10kW 100k W e3 100kW 100kW R4 100kW e4 VCC C2 10mF e2 R5 100kW 100k W e0 = e1 +e2 -e3 -e4 Where (e1 +e2) ≥ (e3 +e4) to keep e0 ≥ 0V Figure 18. Non-inverting DC gain Figure 19. Low drift peak detector A V = 1 + R2 R1 (As shown A V = 101) 10k W 1/4 LM124W eO IB IB 1/4 LM124W +5V eI C * 1mF ZI (V) R 1MW O R1 10kW 1/4 LM124W 0.001mF IB 3R 3MW IB 0 e I (mV) eo Zo 2IB 2N 929 2IB e R2 1MW eO 1/4 LM124W 1/4 LM124W Input current compensation * Polycarbonate or polyethylene 9/16 Typical Single - Supply Applications LM124W-LM224W-LM324W Figure 20. Activer bandpass filter Figure 21. High input Z, DC differential amplifier R1 100kW R R 1 = ------4For ------R R 2 3 C1 330pF 1/4 LM124W R4 10MW e1 (CMRR depends on this resistor ratio match) R5 470kW R1 100kW C2 330pF R3 10kW 1/4 LM124W R6 470kW eO 1/4 LM124W R7 100kW +V1 +V2 V CC Fo = 1kHz Q = 50 Av = 100 (40dB) C3 10mF R8 100kW I eI IB I IB 1/4 LM124W eo 2N 929 0.001mF IB IB 3MW IB 1.5MW 10/16 e0 ⎛ 1 + R-------4⎞ ⎝ R 3⎠ (e2 - e1) As shown e0 = (e2 - e1) Figure 22. Using symmetrical amplifiers to reduce input current (general concept) 1/4 LM124W Aux. amplifier for input current compensation R4 100kW R2 100kW 1/4 LM124W R3 100kW 1/4 LM124W Vo LM124W-LM224W-LM324W 5 Macromodels Note: Note: Please consider following remarks before using this macromodel: Macromodels All models are a trade-off between accuracy and complexity (i.e. simulation time). Macromodels are not a substitute to breadboarding; rather, they confirm the validity of a design approach and help to select surrounding component values. A macromodel emulates the NOMINAL performance of a TYPICAL device within SPECIFIED OPERATING CONDITIONS (i.e. temperature, supply voltage, etc.). Thus the macromodel is often not as exhaustive as the datasheet, its goal is to illustrate the main parameters of the product. Data issued from macromodels used outside of its specified conditions (Vcc, Temperature, etc.) or even worse: outside of the device operating conditions (Vcc, Vicm, etc.) are not reliable in any way. ** Standard Linear Ics Macromodels, 1993. ** CONNECTIONS : * 1 INVERTING INPUT * 2 NON-INVERTING INPUT * 3 OUTPUT * 4 POSITIVE POWER SUPPLY * 5 NEGATIVE POWER SUPPLY .SUBCKT LM124 1 3 2 4 5 (analog) ******************************************************* .MODEL MDTH D IS=1E-8 KF=3.104131E-15 CJO=10F * INPUT STAGE CIP 2 5 1.000000E-12 CIN 1 5 1.000000E-12 EIP 10 5 2 5 1 EIN 16 5 1 5 1 RIP 10 11 2.600000E+01 RIN 15 16 2.600000E+01 RIS 11 15 2.003862E+02 DIP 11 12 MDTH 400E-12 DIN 15 14 MDTH 400E-12 VOFP 12 13 DC 0 VOFN 13 14 DC 0 IPOL 13 5 1.000000E-05 CPS 11 15 3.783376E-09 DINN 17 13 MDTH 400E-12 VIN 17 5 0.000000e+00 DINR 15 18 MDTH 400E-12 VIP 4 18 2.000000E+00 FCP 4 5 VOFP 3.400000E+01 FCN 5 4 VOFN 3.400000E+01 FIBP 2 5 VOFN 2.000000E-03 FIBN 5 1 VOFP 2.000000E-03 * AMPLIFYING STAGE FIP 5 19 VOFP 3.600000E+02 11/16 Macromodels FIN 5 19 VOFN 3.600000E+02 RG1 19 5 3.652997E+06 RG2 19 4 3.652997E+06 CC 19 5 6.000000E-09 DOPM 19 22 MDTH 400E-12 DONM 21 19 MDTH 400E-12 HOPM 22 28 VOUT 7.500000E+03 VIPM 28 4 1.500000E+02 HONM 21 27 VOUT 7.500000E+03 VINM 5 27 1.500000E+02 EOUT 26 23 19 5 1 VOUT 23 5 0 ROUT 26 3 20 COUT 3 5 1.000000E-12 DOP 19 25 MDTH 400E-12 VOP 4 25 2.242230E+00 DON 24 19 MDTH 400E-12 VON 24 5 7.922301E-01 .ENDS 12/16 LM124W-LM224W-LM324W LM124W-LM224W-LM324W 6 Package Mechanical Data Package Mechanical Data In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com. 6.1 DIP14 Package Plastic DIP-14 MECHANICAL DATA mm. inch DIM. MIN. a1 0.51 B 1.39 TYP MAX. MIN. TYP. MAX. 0.020 1.65 0.055 0.065 b 0.5 0.020 b1 0.25 0.010 D 20 0.787 E 8.5 0.335 e 2.54 0.100 e3 15.24 0.600 F 7.1 0.280 I 5.1 0.201 L Z 3.3 1.27 0.130 2.54 0.050 0.100 P001A 13/16 Package Mechanical Data 6.2 LM124W-LM224W-LM324W SO-14 Package SO-14 MECHANICAL DATA DIM. mm. MIN. TYP A a1 inch MAX. MIN. TYP. 1.75 0.1 0.068 0.2 a2 MAX. 0.003 0.007 1.65 0.064 b 0.35 0.46 0.013 0.018 b1 0.19 0.25 0.007 0.010 C 0.5 0.019 c1 45˚ (typ.) D 8.55 8.75 0.336 E 5.8 6.2 0.228 e 1.27 e3 3.8 G L M S 0.244 0.050 7.62 F 0.344 0.300 4.0 0.149 4.6 5.3 0.181 0.208 0.5 1.27 0.019 0.050 0.68 0.157 0.026 8 ˚ (max.) PO13G 14/16 LM124W-LM224W-LM324W 6.3 Package Mechanical Data TSSOP14 Package TSSOP14 MECHANICAL DATA mm. inch DIM. MIN. TYP A MAX. MIN. TYP. MAX. 1.2 A1 0.05 A2 0.8 b 0.047 0.15 0.002 0.004 0.006 1.05 0.031 0.039 0.041 0.19 0.30 0.007 0.012 c 0.09 0.20 0.004 0.0089 D 4.9 5 5.1 0.193 0.197 0.201 E 6.2 6.4 6.6 0.244 0.252 0.260 E1 4.3 4.4 4.48 0.169 0.173 0.176 1 e 0.65 BSC K 0˚ L 0.45 A 0.60 0.0256 BSC 8˚ 0˚ 0.75 0.018 8˚ 0.024 0.030 A2 A1 b e K c L E D E1 PIN 1 IDENTIFICATION 1 0080337D 15/16 Revision History 7 LM124W-LM224W-LM324W Revision History Date Revision Changes Sept. 2003 1 First Release June 2005 3 ESD protection inserted in Table 1 on page 2 Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2005 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 16/16