STMICROELECTRONICS LM224W

LM124W-LM224W-LM324W
Low Power Quad Operational Amplifiers
■
Wide gain bandwidth: 1.3MHz
■
Input common-mode voltage range includes
ground
■
Large voltage gain: 100dB
■
Very low supply current/ampli: 375µA
■
Low input bias current: 20nA
■
Low input offset voltage: 3mV max.
■
Low input offset current: 2nA
■
Wide power supply range:
Single supply: +3V to +30V
Dual supplies: ±1.5V to ±15V
N
DIP14
(Plastic Package)
D
SO-14
(Plastic Micropackage)
Description
These circuits consist of four independent, high
gain,
internally
frequency
compensated
operational amplifiers. They operate from a single
power supply over a wide range of voltages.
Operation from split power supplies is also
possible and the low power supply current drain is
independent of the magnitude of the power supply
voltage.
P
TSSOP-14
(Thin Shrink Small Outline Package)
All the pins are protected against electrostatic
discharges up to 2000V (as a consequence, the
input voltages must not exceed the magnitude of
VCC+ or VCC-.)
Order Codes
Part Number
LM124WN
LM124WD/WDT
LM224WN
LM224WD/WDT
Temperature Range
-55°C, +125°C
-40°C, +105°C
LM224WPT
LM324WN
LM324WD/WDT
LM324WPT
June 2005
0°C, +70°C
Package
Packaging
DIP
SO
DIP
SO
TSSOP
(Thin Shrink Outline Package)
DIP
SO
TSSOP
(Thin Shrink Outline Package)
Tube
Tube or Tape & Reel
Tube
Tube or Tape & Reel
Tape & Reel
Tube
Tube or Tape & Reel
Tape & Reel
Rev 2
1/16
www.st.com
16
Absolute Maximum Ratings
1
LM124W-LM224W-LM324W
Absolute Maximum Ratings
Table 1.
15Key parameters and their absolute maximum ratings
Symbol
VCC
Parameter
LM124W
Supply voltage
LM224W
LM324W
Unit
±16 or 32
V
Vi
Input Voltage
-0.3 to Vcc + 0.3
V
Vid
Differential Input Voltage (1)
-0.3 to Vcc + 0.3
V
Ptot
Power Dissipation
N Suffix
D Suffix
500
500
400
Output Short-circuit Duration (2)
Iin
Operating Free-air Temperature Range
Tstg
Storage Temperature Range
Rthja
ESD
mW
Infinite
Input Current (3)
Toper
500
400
50
-55 to +125 -40 to +105
mA
0 to +70
°C
-65 to +150
°C
Thermal Resistance Junction to Ambient
SO14
TSSOP14
DIP14
103
100
66
°C/W
HBM: Human Body Model(4)
700
V
MM: Machine Model(5)
100
V
1.5
kV
CDM: Charged Device Model
+
1. Either or both input voltages must not exceed the magnitude of VCC or
VCC-.
2. Short-circuits from the output to VCC can cause excessive heating if VCC > 15V. The maximum output current
is approximately 40mA independent of the magnitude of VCC. Destructive dissipation can result from
simultaneous short-circuit on all amplifiers.
3. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the
collector-base junction of the input PNP transistor becoming forward biased and thereby acting as input diodes
clamps. In addition to this diode action, there is also NPN parasitic action on the IC chip. this transistor action
can cause the output voltages of the op-amps to go to the VCC voltage level (or to ground for a large overdrive)
for the time duration than an input is driven negative.
This is not destructive and normal output will set up again for input voltage higher than -0.3V.
4. Human body model, 100pF discharged through a 1.5kΩ resistor into pin of device.
5. Machine model ESD, a 200pF cap is charged to the specified voltage, then discharged directly into the IC with
no external series resistor (internal resistor < 5Ω), into pin to pin of device.
2/16
LM124W-LM224W-LM324W
2
Pin & Schematic Diagram
Pin & Schematic Diagram
Figure 1.
Pin connections (top view)
14 Output 4
Output 1 1
Inverting Input 1 2
-
-
13 Inverting Input 4
Non-inverting Input 1 3
+
+
12 Non-inverting Input 4
11 VCC -
VCC + 4
Non-inverting Input 2
Inverting Input 2
5
+
+
10 Non-inverting Input 3
6
-
-
9
Inverting Input 3
8
Output 3
Output 2 7
Figure 2.
Schematic diagram (1/4 LM124W)
3/16
Electrical Characteristics
3
LM124W-LM224W-LM324W
Electrical Characteristics
Table 2.
VCC+ = +5V, VCC-= Ground, Vo = 1.4V, Tamb = +25°C (unless otherwise specified)
Symbol
Parameter
Min.
Typ.
Max.
Unit
Vio
Input Offset Voltage - note (1)
Tamb = +25°C
Tmin ≤ Tamb ≤ Tmax
2
3
5
mV
Iio
Input Offset Current
Tamb = +25°C
Tmin ≤ Tamb ≤ Tmax
2
20
40
nA
Iib
Input Bias Current - note (2)
Tamb = +25°C
Tmin ≤ Tamb ≤ Tmax
20
100
200
nA
Large Signal Voltage Gain
Avd
VCC+ = +15V, RL = 2kΩ, Vo = 1.4V to 11.4V
Tamb = +25°C
Tmin ≤ Tamb ≤ Tmax
50
25
100
65
65
110
V/mV
Supply Voltage Rejection Ratio (Rs ≤ 10kΩ)
SVR
ICC
VCC+ = 5V to 30V
Tamb = +25°C
Tmin ≤ Tamb ≤ Tmax
Supply Current, all Amp, no load
Tamb = +25°C
V CC = +5V
VCC = +30V
Tmin ≤ Tamb ≤ Tmax
VCC = +5V
VCC = +30V
0.7
1.5
0.8
1.5
dB
1.2
3
1.2
3
mA
Input Common Mode Voltage Range
VCC = +30V - note (3)
Tamb = +25°C
Tmin ≤ Tamb ≤ Tmax
0
0
CMR
Common Mode Rejection Ratio (Rs ≤ 10kΩ)
Tamb = +25°C
Tmin ≤ Tamb ≤ T max
70
60
80
Isource
Output Current Source (Vid = +1V)
VCC = +15V, Vo = +2V
20
40
Output Sink Current (V id = -1V)
VCC = +15V, Vo = +2V
VCC = +15V, Vo = +0.2V
10
12
20
50
Vicm
Isink
4/16
VCC 1.5
VCC 2
V
dB
70
mA
mA
µA
LM124W-LM224W-LM324W
Table 2.
Electrical Characteristics
VCC+ = +5V, VCC-= Ground, Vo = 1.4V, Tamb = +25°C (unless otherwise specified)
Symbol
VOH
Parameter
High Level Output Voltage
VCC = +30V
Tamb = +25°C
Tmin ≤ Tamb ≤ Tmax
Tamb = +25°C
Tmin ≤ Tamb ≤ Tmax
VCC = +5V, R L = 2kΩ
Tamb = +25°C
Tmin ≤ Tamb ≤ Tmax
RL = 2kΩ
R L = 10kΩ
Min.
Typ.
26
26
27
27
27
Max.
28
V
3.5
3
VOL
Low Level Output Voltage (RL = 10kΩ)
Tamb = +25°C
Tmin ≤ Tamb ≤ Tmax
SR
Slew Rate
VCC = 15V, V i = 0.5 to 3V, R L = 2kΩ, CL = 100pF, unity Gain
0.4
GBP
Gain Bandwidth Product
VCC = 30V, f =100kHz,V in = 10mV, RL = 2kΩ, CL = 100pF
1.3
THD
Total Harmonic Distortion: f = 1kHz, Av = 20dB, RL = 2kΩ, Vo =
2Vpp, CL = 100pF, VCC = 30V
5
20
20
MHz
%
0.015
40
DV io
Input Offset Voltage Drift
7
30
DIIio
Input Offset Current Drift
10
200
Channel Separation - note (4) 1kHz ≤ f ≤ 20kHZ
120
Vo1 /Vo2
mV
V/µs
Equivalent Input Noise Voltage
f = 1kHz, Rs = 100Ω, V CC = 30V
en
Unit
nV
-----------Hz
µV/
°C
pA/
°C
dB
1. The direction of the input current is out of the IC. This current is essentially constant, independent of the state of
the output so no loading change exists on the input lines.
2. Vo = 1.4V, Rs = 0Ω, 5V < VCC + < 30V, 0 < Vic < VCC+ - 1.5V
3. The input common-mode voltage of either input signal voltage should not be allowed to go negative by more
than 0.3V. The upper end of the common-mode voltage range is VCC+ - 1.5V, but either or both inputs can go to
+32V without damage.
4. Due to the proximity of external components insure that coupling is not originating via stray capacitance
between these external parts. This typically can be detected as this type of capacitance increases at higher
frequences.
Table 3.
Vcc+ = +15V, Vcc- = 0V, Tamb = 25°C (unless otherwise specified)
Symbol
Conditions
Vio
Value
Unit
0
mV
Avd
RL = 2kΩ
100
V/mV
Icc
No load, per amplifier
350
µA
-15 to +13.5
V
+13.5
V
Vicm
VOH
RL = 2kΩ (VCC
VOL
RL = 10kΩ
+=15V)
5
mV
Ios
Vo = +2V, VCC = +15V
+40
mA
GBP
RL = 2kΩ, CL = 100pF
1.3
MHz
SR
RL = 2kΩ, CL = 100pF
0.4
V/µs
5/16
Electrical Characteristics
Figure 3.
Input bias current vs. ambient
temperature
LM124W-LM224W-LM324W
Figure 4.
Current limiting
Figure 6.
Supply current
INPUT BIAS CURRENT
versus AMBIENT TEMPERATURE
IB (nA)
24
21
18
15
12
9
6
3
0
-55-35-15 5 25 45 65 85 105 125
AMBIENT TEMPERATURE (°C)
Figure 5.
Input voltage range
SUPPLY CURRENT
4
SUPPLY CURRENT (mA)
VCC
ID
mA
3
-
2
+
Tamb = 0°C to +125°C
1
Tamb = -55°C
0
10
20
30
POSITIVE SUPPLY VOLTAGE (V)
Figure 7.
6/16
Gain bandwidth product
Figure 8.
Common mode rejection ratio
LM124W-LM224W-LM324W
Figure 9.
Electrical Characteristics
Electrical curves
7/16
Electrical Characteristics
LM124W-LM224W-LM324W
Figure 10. Input current
Figure 11. Large signal voltage gain
Figure 12. Power supply & common mode
rejection ratio
Figure 13. Voltage gain
8/16
LM124W-LM224W-LM324W
4
Typical Single - Supply Applications
Typical Single - Supply Applications
Figure 14. AC coupled inverting amplifier
R1
100kW
Rf
100k W
Rf
A V= R1
(as shown AV = -10)
R1
10kW
CI
e1
R2
VCC 100kW
2VPP
0
eo
RB
6.2kW
R3
100kW
eO
1/4
LM124W
Gain adjust
R2
2kW
R4
100kW
R3
100kW
1/4
LM124W
Co
1/4
LM124W
eI ~
Figure 15. High input Z adjustable gaind DC
instrumentation amplifier
R5
100kW
RL
10kW
R6
100kW
1/4
LM124W
R7
100kW
e2
if R1 = R5 and R3 = R4 = R6 = R7
C1
10mF
2R
e0 = 1 + ----------1- (e2 -e1)
R
2
As shown e0 = 101 (e2 - e1).
Figure 16. AC coupled non inverting amplifier
Figure 17. DC summing amplifier
e1
R1
100kW
R2
1MW
100kW
A V= 1 + R2
R1
(as shown AV = 11)
C1
0.1mF
100kW
Co
1/4
LM124W
CI
RB
6.2kW
R3
1MW
eI ~
2VPP
0
eo
RL
10kW
100k W
e3
100kW
100kW
R4
100kW
e4
VCC
C2
10mF
e2
R5
100kW
100k W
e0 = e1 +e2 -e3 -e4
Where (e1 +e2) ≥ (e3 +e4)
to keep e0 ≥ 0V
Figure 18. Non-inverting DC gain
Figure 19. Low drift peak detector
A V = 1 + R2
R1
(As shown A V = 101)
10k W
1/4
LM124W
eO
IB
IB
1/4
LM124W
+5V
eI
C
*
1mF
ZI
(V)
R
1MW
O
R1
10kW
1/4
LM124W
0.001mF
IB
3R
3MW
IB
0
e I (mV)
eo
Zo
2IB
2N 929
2IB
e
R2
1MW
eO
1/4
LM124W
1/4
LM124W
Input current
compensation
* Polycarbonate or polyethylene
9/16
Typical Single - Supply Applications
LM124W-LM224W-LM324W
Figure 20. Activer bandpass filter
Figure 21. High input Z, DC differential
amplifier
R1
100kW
R
R
1 = ------4For ------R
R
2
3
C1
330pF
1/4
LM124W
R4
10MW
e1
(CMRR depends on this resistor ratio match)
R5
470kW
R1
100kW
C2
330pF
R3
10kW
1/4
LM124W
R6
470kW
eO
1/4
LM124W
R7
100kW
+V1
+V2
V CC
Fo = 1kHz
Q = 50
Av = 100 (40dB)
C3
10mF
R8
100kW
I
eI
IB
I
IB
1/4
LM124W
eo
2N 929
0.001mF
IB
IB
3MW
IB
1.5MW
10/16
e0
⎛ 1 + R-------4⎞
⎝ R 3⎠
(e2 - e1)
As shown e0 = (e2 - e1)
Figure 22. Using symmetrical amplifiers to
reduce input current (general
concept)
1/4
LM124W
Aux. amplifier for input
current compensation
R4
100kW
R2
100kW
1/4
LM124W
R3
100kW
1/4
LM124W
Vo
LM124W-LM224W-LM324W
5
Macromodels
Note:
Note: Please consider following remarks before using this macromodel:
Macromodels
All models are a trade-off between accuracy and complexity (i.e. simulation time).
Macromodels are not a substitute to breadboarding; rather, they confirm the validity of a design
approach and help to select surrounding component values.
A macromodel emulates the NOMINAL performance of a TYPICAL device within SPECIFIED
OPERATING CONDITIONS (i.e. temperature, supply voltage, etc.). Thus the macromodel is
often not as exhaustive as the datasheet, its goal is to illustrate the main parameters of the
product.
Data issued from macromodels used outside of its specified conditions (Vcc, Temperature, etc.)
or even worse: outside of the device operating conditions (Vcc, Vicm, etc.) are not reliable in
any way.
** Standard Linear Ics Macromodels, 1993.
** CONNECTIONS :
* 1 INVERTING INPUT
* 2 NON-INVERTING INPUT
* 3 OUTPUT
* 4 POSITIVE POWER SUPPLY
* 5 NEGATIVE POWER SUPPLY
.SUBCKT LM124 1 3 2 4 5 (analog)
*******************************************************
.MODEL MDTH D IS=1E-8 KF=3.104131E-15 CJO=10F
* INPUT STAGE
CIP 2 5 1.000000E-12
CIN 1 5 1.000000E-12
EIP 10 5 2 5 1
EIN 16 5 1 5 1
RIP 10 11 2.600000E+01
RIN 15 16 2.600000E+01
RIS 11 15 2.003862E+02
DIP 11 12 MDTH 400E-12
DIN 15 14 MDTH 400E-12
VOFP 12 13 DC 0
VOFN 13 14 DC 0
IPOL 13 5 1.000000E-05
CPS 11 15 3.783376E-09
DINN 17 13 MDTH 400E-12
VIN 17 5 0.000000e+00
DINR 15 18 MDTH 400E-12
VIP 4 18 2.000000E+00
FCP 4 5 VOFP 3.400000E+01
FCN 5 4 VOFN 3.400000E+01
FIBP 2 5 VOFN 2.000000E-03
FIBN 5 1 VOFP 2.000000E-03
* AMPLIFYING STAGE
FIP 5 19 VOFP 3.600000E+02
11/16
Macromodels
FIN 5 19 VOFN 3.600000E+02
RG1 19 5 3.652997E+06
RG2 19 4 3.652997E+06
CC 19 5 6.000000E-09
DOPM 19 22 MDTH 400E-12
DONM 21 19 MDTH 400E-12
HOPM 22 28 VOUT 7.500000E+03
VIPM 28 4 1.500000E+02
HONM 21 27 VOUT 7.500000E+03
VINM 5 27 1.500000E+02
EOUT 26 23 19 5 1
VOUT 23 5 0
ROUT 26 3 20
COUT 3 5 1.000000E-12
DOP 19 25 MDTH 400E-12
VOP 4 25 2.242230E+00
DON 24 19 MDTH 400E-12
VON 24 5 7.922301E-01
.ENDS
12/16
LM124W-LM224W-LM324W
LM124W-LM224W-LM324W
6
Package Mechanical Data
Package Mechanical Data
In order to meet environmental requirements, ST offers these devices in ECOPACK® packages.
These packages have a Lead-free second level interconnect. The category of second level
interconnect is marked on the package and on the inner box label, in compliance with JEDEC
Standard JESD97. The maximum ratings related to soldering conditions are also marked on
the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at:
www.st.com.
6.1
DIP14 Package
Plastic DIP-14 MECHANICAL DATA
mm.
inch
DIM.
MIN.
a1
0.51
B
1.39
TYP
MAX.
MIN.
TYP.
MAX.
0.020
1.65
0.055
0.065
b
0.5
0.020
b1
0.25
0.010
D
20
0.787
E
8.5
0.335
e
2.54
0.100
e3
15.24
0.600
F
7.1
0.280
I
5.1
0.201
L
Z
3.3
1.27
0.130
2.54
0.050
0.100
P001A
13/16
Package Mechanical Data
6.2
LM124W-LM224W-LM324W
SO-14 Package
SO-14 MECHANICAL DATA
DIM.
mm.
MIN.
TYP
A
a1
inch
MAX.
MIN.
TYP.
1.75
0.1
0.068
0.2
a2
MAX.
0.003
0.007
1.65
0.064
b
0.35
0.46
0.013
0.018
b1
0.19
0.25
0.007
0.010
C
0.5
0.019
c1
45˚ (typ.)
D
8.55
8.75
0.336
E
5.8
6.2
0.228
e
1.27
e3
3.8
G
L
M
S
0.244
0.050
7.62
F
0.344
0.300
4.0
0.149
4.6
5.3
0.181
0.208
0.5
1.27
0.019
0.050
0.68
0.157
0.026
8 ˚ (max.)
PO13G
14/16
LM124W-LM224W-LM324W
6.3
Package Mechanical Data
TSSOP14 Package
TSSOP14 MECHANICAL DATA
mm.
inch
DIM.
MIN.
TYP
A
MAX.
MIN.
TYP.
MAX.
1.2
A1
0.05
A2
0.8
b
0.047
0.15
0.002
0.004
0.006
1.05
0.031
0.039
0.041
0.19
0.30
0.007
0.012
c
0.09
0.20
0.004
0.0089
D
4.9
5
5.1
0.193
0.197
0.201
E
6.2
6.4
6.6
0.244
0.252
0.260
E1
4.3
4.4
4.48
0.169
0.173
0.176
1
e
0.65 BSC
K
0˚
L
0.45
A
0.60
0.0256 BSC
8˚
0˚
0.75
0.018
8˚
0.024
0.030
A2
A1
b
e
K
c
L
E
D
E1
PIN 1 IDENTIFICATION
1
0080337D
15/16
Revision History
7
LM124W-LM224W-LM324W
Revision History
Date
Revision
Changes
Sept. 2003
1
First Release
June 2005
3
ESD protection inserted in Table 1 on page 2
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2005 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
16/16