LM158W-LM258W-LM358W Low power dual operational amplifiers Features ■ Internally frequency compensated ■ Large DC voltage gain: 100 dB ■ Wide bandwidth (unity gain): 1.1 MHz (temperature compensated) ■ Very low supply current per operator essentially independent of supply voltage ■ Low input bias current: 20 nA (temperature compensated) ■ Low input offset voltage: 2 mV ■ Low input offset current: 2 nA ■ Input common-mode voltage range includes ground ■ Differential input voltage range equal to the power supply voltage ■ Large output voltage swing 0 V to VCC+- 1.5 V ■ ESD internal protection: 1.5 kV N DIP-8 (Plastic package) D&S SO-8 & miniSO-8 (Plastic micropackage) P TSSOP8 (Thin shrink small outline package) Pin connections (top view) Description 1 These circuits consist of two independent, highgain, internally frequency-compensated which were designed specifically to operate from a single power supply over a wide range of voltages. The low power supply drain is independent of the magnitude of the power supply voltage. February 2008 2 - 3 + 4 Application areas include transducer amplifiers, DC gain blocks and all the conventional op-amp circuits which now can be more easily implemented in single power supply systems. For example, these circuits can be directly supplied with the standard +5 V which is used in logic systems and will easily provide the required interface electronics without requiring any additional power supply. In the linear mode the input common-mode voltage range includes ground and the output 8 7 - 6 + 5 1 - Output 1 2 - Inverting input 3 - Non-inverting input 4 - VCC5 - Non-inverting input 2 6 - Inverting input 2 7 - Output 2 8 - VCC+ voltage can also swing to ground, even though operated from only a single power supply voltage. Rev 7 1/18 www.st.com 18 Schematic diagram 1 Schematic diagram Figure 1. 2/18 LM158W-LM258W-LM358W Schematic diagram (1/2 LM158W) LM158W-LM258W-LM358W Absolute maximum ratings and operating conditions 2 Absolute maximum ratings and operating conditions Table 1. Absolute maximum ratings Symbol VCC+ Vin Vid Parameter LM158W/AW LM258W/AW LM358W/AW Unit +32 V Supply voltage Input voltage -0.3 to VCC Differential input voltage Input current V Infinite (2) 50 Toper Operating free-air temperature range Tstg Storage temperature range Tj V + -0.3 to VCC +0.3 Output short-circuit duration (1) Iin + +0.3 Maximum junction temperature -55 to +125 -40 to +105 mA 0 to +70 °C -65 to +150 °C 150 °C ambient(3) Rthja Thermal resistance junction to SO-8 MiniSO-8 TSSOP8 DIP-8 Rthjc Thermal resistance junction to case(3) SO-8 MiniSO-8 TSSOP8 DIP-8 40 39 37 41 HBM: human body model(4) 1.5 kV 200 V 1.5 kV ESD MM: machine model(5) (6) CDM: charged device model 125 190 120 85 °C/W °C/W 1. Short-circuits from the output to VCC can cause excessive heating if VCC > 15V. The maximum output current is approximately 40 mA independent of the magnitude of VCC. Destructive dissipation can result from simultaneous shortcircuits on all amplifiers. 2. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistor becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also NPN parasitic action on the IC chip. This transistor action can cause the output voltages of the Op-amps to go to the VCC voltage level (or to ground for a large overdrive) for the time during which an input is driven negative. This is not destructive and normal output will be restored for input voltage higher than -0.3 V. 3. Short-circuits can cause excessive heating and destructive dissipation. Rth are typical values. 4. Human body model: 100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for all couples of pin combinations with other pins floating. 5. Machine model: a 200 pF cap is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating. 6. Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to the ground. 3/18 Absolute maximum ratings and operating conditions Table 2. Operating conditions Symbol 4/18 LM158W-LM258W-LM358W Parameter VCC+ Supply voltage Vicm Common mode input voltage range Toper Operating free air temperature range LM158W LM258W LM358W Value Unit 3 to 30 V VDD -0.3 to VCC -1.5 V -55 to +125 -40 to +105 0 to +70 °C LM158W-LM258W-LM358W Electrical characteristics 3 Electrical characteristics Table 3. VCC+ = +5 V, VCC-= Ground, Vo = 1.4 V, Tamb = +25°C (unless otherwise specified) Symbol Vio Parameter Min. Input offset voltage (1) LM158AW LM258AW, LM358AW LM158W, LM258W LM358W Tmin ≤ Tamb ≤ Tmax LM158AW, LM258AW, LM358AW LM158W, LM258W LM358W DVio Input offset voltage drift LM158AW, LM258AW, LM358AW LM158W, LM258W, LM358W Iio Input offset current LM158AW, LM258AW, LM358AW LM158W, LM258W, LM358W Tmin ≤ Tamb ≤ Tmax LM158AW, LM258AW, LM358AW LM158W, LM258W, LM358W DIio Input offset current drift LM158AW, LM258AW, LM358AW LM158W, LM258W, LM358W Iib Input bias current (2) LM158AW, LM258AW, LM358AW LM158W, LM258W, LM358W Tmin ≤ Tamb ≤ Tmax LM158AW, LM258AW, LM358AW LM158W, LM258W, LM358W Typ. Max. Unit 1 1 2 2 2 3 5 7 mV 4 7 9 7 7 15 30 2 2 10 30 µV/°C nA 30 40 10 10 200 300 20 20 50 150 pA/°C nA 100 200 Avd Large signal voltage gain VCC+ = +15 V, RL = 2 kΩ, Vo = 1.4 V to 11.4 V Tmin ≤ Tamb ≤ Tmax 50 25 100 V/mV SVR Supply voltage rejection ratio Rs ≤10 kΩ, VCC+ = 5 V to 30 V Tmin ≤ Tamb ≤ Tmax 65 65 100 dB ICC Supply current, all amp, no load Tmin ≤ Tamb ≤ Tmax, VCC+ = +5 V Tmin ≤ Tamb ≤ Tmax, VCC+ = +30 V Vicm Input common mode voltage range VCC+ = +30 V (3) Tamb = +25° C Tmin ≤ Tamb ≤ Tmax 0.7 0 0 1.2 2 mA VCC+ -1.5 VCC+ -2 V 5/18 Electrical characteristics Table 3. LM158W-LM258W-LM358W VCC+ = +5 V, VCC-= Ground, Vo = 1.4 V, Tamb = +25°C (unless otherwise specified) Symbol Parameter Min. Typ. CMR Common mode rejection ratio Rs ≤10kΩ Tmin ≤ Tamb ≤ Tmax 70 60 85 Isource Output current source VCC+ = +15 V, Vo = +2 V, Vid = +1 V 20 40 Isink Output sink current VCC+ = +15V, Vo = +2V, Vid = -1 V VCC+ = +15V, Vo = +0.2V, Vid = -1 V 10 12 20 50 26 26 27 27 27 VOH High level output voltage RL = 2 kΩ, VCC+ = 30 V Tmin ≤ Tamb ≤ Tmax RL = 10 kΩ, VCC+ = 30 V Tmin ≤ Tamb ≤ Tmax Max. Unit dB 60 mA mA µA V 28 VOL Low level output voltage RL = 10 kΩ Tmin ≤ Tamb ≤ Tmax SR Slew rate VCC+ = 15 V, Vi = 0.5 to 3 V, RL = 2 kΩ, CL = 100 pF, unity gain 0.3 0.6 V/µs GBP Gain bandwidth product VCC+ = 30 V, f =100 kHz, Vin =10 mV, RL=2 kΩ, CL = 100 pF 0.7 1.1 MHz THD Total harmonic distortion f = 1 kHz, Av = 20 dB, RL = 2 kΩ, Vo = 2 Vpp, CL = 100 pF, VO = 2 Vpp 0.02 % 55 nV -----------Hz 120 dB en Vo1/Vo2 5 Equivalent input noise voltage f = 1 kHz, Rs = 100 Ω, VCC+ = 30 V Channel separation (4) 1 kHz ≤ f ≤ 20 kHz + 20 20 mV + 1. Vo = 1.4 V, Rs = 0 Ω, 5 V < VCC < 30 V, 0 < Vic < VCC - 1.5 V 2. The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output so there is no change in the load on the input lines. 3. The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common-mode voltage range is VCC+ - 1.5 V, but either or both inputs can go to +32 V without damage. 4. Due to the proximity of external components ensure that there is no coupling originating via stray capacitance between these external parts. Typically, this can be detected at higher frequencies because then this type of capacitance increases. 6/18 LM158W-LM258W-LM358W Figure 2. Electrical characteristics Open loop frequency response OPEN LOOP FREQUENCY RESPONSE (NOTE 3) 140 Large signal frequency response LARGE SIGNAL FREQUENCY RESPONSE 20 0.1mF 100 VCC - VI VCC/2 80 VO + VCC = 30V & -55°C Tamb 60 100k W 10M W OUTPUT SWING (Vpp) 120 VOLTAGE GAIN (dB) Figure 3. +125°C 40 20 VCC = +10 to + 15V & -55°C Tamb +125°C 0 1k W 15 +7V 10 100 1k 10k 100k 1M 5 10M 1k 10k Voltage follower pulse response Figure 5. OUTPUT VOLTAGE (mV) OUTPUT VOLTAGE (V) 2 1 0 INPUT VOLTAGE (V) Voltage follower pulse response 500 RL 2 k W VCC = +15V 3 2 + 450 eO el - 50pF 400 Input 350 Output 300 Tamb = +25°C VCC = 30 V 1 0 10 20 30 250 40 0 1 2 TIME (ms) Figure 7. OUTPUT VOLTAGE (V) VI = 0 V VCC = +30 V 50 VCC = +15 V 40 30 VCC = +5 V 20 -55 -35 5 25 45 65 7 8 1 v cc /2 85 105 TEMPERATURE (°C) 125 v cc - 0.1 IO VO + Tamb = +25°C 0.01 -15 6 VCC = +5V VCC = +15V VCC = +30V 10 0 5 OUTPUT CHARACTERISTICS 10 60 4 Output characteristics INPUT CURRENT (Note 1) 90 70 3 TIME (ms) Input current 80 1M VOLTAGE FOLLOWER PULSSE RESPONSE (SMALL SIGNAL) 4 3 100k FREQUENCY (Hz) VOLAGE FOLLOWER PULSE RESPONSE INPUT CURRENT (mA) 2k W + 10 FREQUENCY (Hz) Figure 6. VO 0 1.0 Figure 4. +15V - VI 0,001 0,01 0,1 1 10 100 OUTPUT SINK CURRENT (mA) 7/18 Electrical characteristics Output characteristics Figure 9. Current limiting CURRENT LIMITING (Note 1) OUTPUT CHARACTERISTICS 8 90 OUTPUT CURRENT (mA) V CC 7 6 TO VCC+ (V) OUTPUT VOLTAGE REFERENCED Figure 8. LM158W-LM258W-LM358W + V CC /2 5 VO IO - 4 3 2 Independent of V CC T amb = +25°C - 80 60 + 50 40 30 20 10 1 0 0,001 0,01 0,1 IO 70 1 10 -55 -35 100 OUTPUT SOURCE CURRENT (mA) Figure 10. Input voltage range -15 5 25 45 160 VOLTAGE GAIN (dB) INPUT VOLTAGE (V) Négative Positive 0 5 10 R L = 20k W 120 R L = 2k W 80 40 0 15 10 Figure 12. Input voltage range 30 40 Figure 13. Supply current 160 SUPPLY CURRENT 4 R L = 20k W VCC 120 SUPPLY CURRENT (mA) VOLTAGE GAIN (dB) 20 POSITIVE SUPPLY VOLTAGE (V) POWER SUPPLY VOLTAGE (±V) R L = 2k W 80 40 0 10 20 30 POSITIVE SUPPLY VOLTAGE (V) 8/18 125 Figure 11. Positive supply voltage INPUT VOLTAGE RANGE 5 85 105 TEMPERATURE (°C) 15 10 65 ID mA 3 - 2 + Tamb = 0°C to +125°C 1 Tamb = -55°C 0 10 20 POSITIVE SUPPLY VOLTAGE (V) 30 LM158W-LM258W-LM358W Electrical characteristics INPUT CURRENT (nA) 100 75 50 25 Tamb= +25°C 0 10 20 30 POSITIVE SUPPLY VOLTAGE (V) POWER SUPPLY REJECTION RATIO (dB) Figure 16. Power supply rejection ratio 115 110 SVR 105 100 95 90 85 80 75 70 65 60-55-35-15 5 25 45 65 85 105 125 TEMPERATURE (°C) GAIN BANDWIDTH PRODUCT (MHz) Figure 15. Gain bandwidth product 1.5 1.35 1.2 1.05 0.9 0.75 0.6 VCC = 15V 0.45 0.3 0.15 0 -55-35-15 5 25 45 65 85 105 125 TEMPERATURE (°C) Figure 17. Common mode rejection ratio COMMON MODE REJECTION RATIO (dB) Figure 14. Input current 115 110 105 100 95 90 85 80 75 70 65 60-55-35-15 5 25 45 65 85 105 125 TEMPERATURE (°C) Figure 18. Phase margin vs. capacitive load Phase Margin at Vcc=15V and Vicm=7.5V Vs. Iout and Capacitive load value 9/18 Typical applications 4 LM158W-LM258W-LM358W Typical applications Single supply voltage VCC = +5 VDC Figure 19. AC coupled inverting amplifier Rf 100k W R1 10kW 10k W 2VPP 0 eo RB 6.2kW R3 100kW eO 1/2 LM158 Co 1/2 LM158 eI ~ R2 VCC 100k W A V = 1 + R2 R1 (As shown A V = 101) Rf R1 (as shown A V = -10) +5V RL 10k W R2 1M W e O R1 10k W (V) CI AV= - Figure 20. Non-inverting DC amplifier C1 10mF 0 Figure 21. AC coupled non-inverting amplifier R1 100kW Co 1/2 LM158 100kW eI ~ 2VPP 0 eo RB 6.2kW R3 1M W RL 10k W e2 100k W e3 100kW 1/2 LM158 eO 100kW R4 100kW e4 VCC C2 10mF 100kW A = 1 + R2 V R1 (as shown A V = 11) C1 0.1mF CI Figure 22. DC summing amplifier e1 R2 1MW e I (mV) R5 100kW 100kW eo = e1 + e2 - e3 - e4 where (e1 + e2) ≥ (e3 + e4) to keep eo ≥ 0V Figure 23. High input Z, DC differential amplifier Figure 24. High input Z adjustable gain DC instrumentation amplifier R1 100k W R4 100kW R2 100kW 1/2 LM158 e1 R1 100kW 1/2 LM158 R3 100kW +V1 +V2 R2 2k W 1/2 LM158 e2 R2 R2 As shown eo = 101 (e2 + e1) As shown eo = 101 (e2 + e1) 10/18 R5 100k W Vo if R1 = R5 and R3 = R4 = R6 = R7 eo = [1 + 2R1 -----------] ((e2 + e1) R4 100k W 1/2 LM158 Gain adjust 1/2 LM158 if R1 = R5 and R3 = R4 = R6 = R7 eo = [1 + 2R1 ----------- ] ((e2 + e1) R3 100k W R6 100k W R7 100k W eO LM158W-LM258W-LM358W Package information Figure 25. Using symmetrical amplifiers to reduce input current I eI IB I IB 1/2 LM158 Figure 26. Low drift peak detector IB eo 2N 929 IB 1mF ZI IB 3MW C eI 0.001mF IB IB 1/2 LM158 Input current compensation 1.5MW R 1MW eo Zo 2I B 2N 929 2IB 1/2 LM158 1/2 LM158 0.001mF IB 3R 3MW IB 1/2 LM158 Input current compensation Figure 27. Active band-pass filter R1 100kW C1 330pF R2 100kW +V1 1/2 LM158 R5 470kW R4 10MW 1/2 LM158 C2 R3 100kW 330 pF R6 470kW Vo 1/2 LM158 R7 100kW VCC R8 100kW 5 C3 10mF Package information In order to meet environmental requirements, STMicroelectronics offers these devices in ECOPACK® packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an STMicroelectronics trademark. ECOPACK specifications are available at: www.st.com. 11/18 Package information 5.1 LM158W-LM258W-LM358W DIP8 package information Figure 28. DIP8 package mechanical drawing Table 4. DIP8 package mechanical data Dimensions Ref. Millimeters Min. A Typ. Max. Min. 3.3 Typ. Max. 0.130 a1 0.7 B 1.39 1.65 0.055 0.065 B1 0.91 1.04 0.036 0.041 b b1 0.028 0.5 0.38 0.020 0.5 D 0.015 0.020 9.8 0.386 E 8.8 0.346 e 2.54 0.100 e3 7.62 0.300 e4 7.62 0.300 F 7.1 0.280 I 4.8 0.189 L Z 12/18 Inches 3.3 0.44 0.130 1.6 0.017 0.063 LM158W-LM258W-LM358W 5.2 Package information SO-8 package information Figure 29. Package mechanical drawing Table 5. Package mechanical data Dimensions Ref. Millimeters Min. Typ. A Inches Max. Min. Typ. 1.75 0.069 A1 0.10 A2 1.25 b 0.28 0.48 0.011 0.019 c 0.17 0.23 0.007 0.010 D 4.80 4.90 5.00 0.189 0.193 0.197 H 5.80 6.00 6.20 0.228 0.236 0.244 E1 3.80 3.90 4.00 0.150 0.154 0.157 e 0.25 Max. 0.004 0.010 0.049 1.27 0.050 h 0.25 0.50 0.010 0.020 L 0.40 1.27 0.016 0.050 k 1° 8° 1° 8° ccc 0.10 0.004 13/18 Package information 5.3 LM158W-LM258W-LM358W MiniSO-8 package information Figure 30. MiniSO-8 package mechanical drawing Table 6. MiniSO-8 package mechanical data Dimensions Ref. Millimeters Min. Typ. A Max. Min. Typ. 1.1 A1 0 A2 0.75 b Max. 0.043 0.15 0 0.95 0.030 0.22 0.40 0.009 0.016 c 0.08 0.23 0.003 0.009 D 2.80 3.00 3.20 0.11 0.118 0.126 E 4.65 4.90 5.15 0.183 0.193 0.203 E1 2.80 3.00 3.10 0.11 0.118 0.122 e L 0.85 0.65 0.40 0.60 0.006 0.033 0.80 0.016 0.024 0.95 0.037 L2 0.25 0.010 ccc 0° 0.037 0.026 L1 k 14/18 Inches 8° 0.10 0° 0.031 8° 0.004 LM158W-LM258W-LM358W 5.4 Package information TSSOP8 package information Figure 31. TSSOP8 package mechanical drawing Dimensions Ref. Millimeters Min. Typ. A Inches Max. Min. Typ. 1.2 A1 0.05 A2 0.80 b Max. 0.047 0.15 0.002 1.05 0.031 0.19 0.30 0.007 0.012 c 0.09 0.20 0.004 0.008 D 2.90 3.00 3.10 0.114 0.118 0.122 E 6.20 6.40 6.60 0.244 0.252 0.260 E1 4.30 4.40 4.50 0.169 0.173 0.177 e 1.00 0.65 k 0° L 0.45 0.60 0.006 0.039 0.041 0.0256 8° 0° 0.75 0.018 8° 0.024 L1 1 0.039 aaa 0.1 0.004 0.030 15/18 Ordering information 6 LM158W-LM258W-LM358W Ordering information Table 7. Order codes Order code Temperature range Package Packaging Marking DIP-8 Tube LM158WN SO-8 Tube or tape & reel 158W LM258WAN DIP-8 Tube LM258WA LM258WAD LM258WADT SO-8 Tube or tape & reel 258WA LM258WN DIP-8 Tube LM258WN LM258WD LM258WDT SO-8 Tube or tape & reel 258W TSSOP8 (Automotive grade) Tape & reel SO-8 (Automotive grade) Tube or tape & reel DIP-8 Tube SO-8 Tube or tape & reel LM158WN -55°C, +125°C LM158WD LM158WDT -40°C, +105°C LM258WYPT (1) LM258AWYPT(1) LM258WYD(2) LM258WYDT (2) LM358WN 258WY 258AWY LM358WN 358W 0°C, +70°C LM358AWD LM358AWDT 358AW LM358WYD(2) LM358WYDT(2) LM358AWYD(2) LM358AWYDT(2) LM358WYPT(1) LM358AWYPT K410 40°C, +105°C LM258AWYD(2) LM258AWYDT(2) LM358WD LM358WDT 258WY (1) 358WY SO-8 (Automotive grade) Tube or tape & reel TSSOP8 (Automotive grade) Tape & reel 358AWY 0°C, +70°C 358WY K411 1. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent are on-going. 2. Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent. 16/18 LM158W-LM258W-LM358W 7 Revision history Revision history Table 8. Document revision history Date Revision 01-Nov-2002 1 First release. 01-Jul-2005 2 ESD protection inserted in Table 1: Absolute maximum ratings on page 3. 06-Oct-2006 3 ESD tolerance for model HBM improved to 2kV (Table 1: Absolute maximum ratings on page 3). Rthja and Rthjc typical values added in Table 1: Absolute maximum ratings on page 3. Added Figure 18: Phase margin vs. capacitive load on page 9. 02-Jan-2007 4 Order codes added (automotive grade level) to Section 6: Ordering information. 15-Mar-2007 5 Previously called revision 4. Footnote for automotive grade order codes added to Section 6: Ordering information. 25-Apr-2007 6 Added missing Revision 4 of January 2007 in revision history. Corrected revision number of March 2007 to Revision 5. 7 Reformatted electrical characteristics table. Reformatted package information. Corrected MiniSO-8 package information. Corrected operating temperature range for automotive grade parts. 11-Feb-2008 Changes 17/18 LM158W-LM258W-LM358W Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2008 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 18/18