STMICROELECTRONICS LM2904YPT

LM2904
Low power dual operational amplifier
Features
■
Internally frequency compensated
■
Large DC voltage gain: 100 dB
■
Wide bandwidth (unity gain): 1.1 MHz
(temperature compensated)
■
Very low supply current/op (500 µA) essentially
independent of supply voltage
■
Low input bias current: 20 nA (temperature
compensated)
■
Low input offset current: 2 nA
■
Input common-mode voltage range includes
negative rail
■
Differential input voltage range equal to the
power supply voltage
■
Large output voltage swing 0 V to (VCC+ -1.5 V)
N
DIP8
(Plastic package)
D
SO-8
(Plastic micropackage)
Description
This circuit consists of two independent, high
gain, internally frequency compensated
operational amplifiers which were designed
specifically for automotive and industrial control
system. It operates from a single power supply
over a wide range of voltages. The low power
supply drain is independent of the magnitude of
the power supply voltage.
P
TSSOP8
(Thin shrink small outline package)
S
MiniSO-8
Application areas include transducer amplifiers,
DC gain blocks and all the conventional op-amp
circuits which now can be more easily
implemented in single power supply systems. For
example, these circuits can be directly supplied
from the standard +5 V which is used in logic
systems and will easily provide the required
interface electronics without requiring any
additional power supply.
Pin connections (top view)
In the linear mode the input common-mode
voltage range includes ground and the output
voltage can also swing to ground, even though
operated from a single power supply.
April 2008
Rev 11
1/22
www.st.com
22
Table of contents
LM2904
Table of contents
1
Schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2
Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 4
3
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Typical single-supply applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4
5
Macromodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1
Important note concerning this macromodel . . . . . . . . . . . . . . . . . . . . . . 13
4.2
Macromodel code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.1
DIP8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2
SO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.3
TSSOP8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.4
MiniSO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2/22
LM2904
1
Schematic diagram
Schematic diagram
Figure 1.
Schematic diagram (1/2 LM2904)
V CC
6μA
4μA
100μA
Q5
Q6
CC
Inverting
input
Q2
Q3
Q1
Q7
Q4
R SC
Q11
Non-inverting
input
Output
Q13
Q10
Q8
Q9
Q12
50mA
GND
3/22
Absolute maximum ratings and operating conditions
2
LM2904
Absolute maximum ratings and operating conditions
Table 1.
Absolute maximum ratings (AMR)
Symbol
VCC
Parameter
Supply voltage (1)
Vid
Differential input voltage
Vin
Input voltage
(2)
Output short-circuit duration (3)
Iin
Input current
(4)
Value
Unit
±16 or 32
V
±32
V
-0.3 to 32
V
Infinite
s
50
mA
Toper
Operating free-air temperature range
-40 to +125
°C
Tstg
Storage temperature range
-65 to +150
°C
150
°C
Tj
Maximum junction temperature
ambient(5)
Rthja
Thermal resistance junction to
SO-8
TSSOP8
DIP8
MiniSO-8
Rthjc
Thermal resistance junction to case(5)
SO-8
TSSOP8
DIP8
MiniSO-8
40
37
41
39
HBM: human body model(6)
300
V
200
V
1.5
kV
ESD
MM: machine model(7)
(8)
CDM: charged device model
125
120
85
190
°C/W
°C/W
1. All voltage values, except differential voltage are with respect to network ground terminal.
2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
3. Short-circuits from the output to VCC can cause excessive heating if Vcc+ > 15 V. The maximum output
current is approximately 40 mA, independent of the magnitude of VCC.
Destructive dissipation can result from simultaneous short-circuits on all amplifiers.
4. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the
collector-base junction of the input PNP transistor becoming forward biased and thereby acting as input
diodes clamps. In addition to this diode action, there is also NPN parasitic action on the IC chip. This
transistor action can cause the output voltages of the op-amps to go to the VCC voltage level (or to ground
for a large overdrive) for the time duration than an input is driven negative. This is not destructive and
normal output will set up again for input voltage higher than -0.3 V.
5. Short-circuits can cause excessive heating and destructive dissipation. Values are typical.
6. Human body model: A 100 pF capacitor is charged to the specified voltage, then discharged through a
1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations
while the other pins are floating.
7. Machine model: A 200 pF capacitor is charged to the specified voltage, then discharged directly between
two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of
connected pin combinations while the other pins are floating.
8. Charged device model: all pins and the package are charged together to the specified voltage and then
discharged directly to the ground through only one pin. This is done for all pins.
4/22
LM2904
Table 2.
Absolute maximum ratings and operating conditions
Operating conditions
Symbol
Parameter
VCC
Supply voltage
Vicm
Common mode input voltage range
Toper
Operating free-air temperature range
Value
Unit
3 to 30
V
VCC+ - 1.5
V
-40 to +125
°C
5/22
Electrical characteristics
LM2904
3
Electrical characteristics
Table 3.
VCC+ = 5V, VCC- = Ground, VO = 1.4V, Tamb = 25°C (unless otherwise specified)
Symbol
Vio
DVio
Iio
DIio
Parameter
Min.
Typ.
Max.
Unit
Input offset voltage (1)
Tamb = 25°C
Tmin ≤ Tamb ≤ Tmax
2
7
9
mV
Input offset voltage drift
7
30
µV/°C
Input offset current
Tamb = 25°C
Tmin ≤ Tamb ≤ Tmax
2
30
40
nA
Input offset current drift
10
300
pA/°C
20
150
200
nA
(2)
Iib
Input bias current
Tamb = 25°C
Tmin ≤ Tamb ≤ Tmax
Avd
Large signal voltage gain
VCC+ = +15V,RL=2kΩ, Vo = 1.4V to 11.4V
Tamb = 25°C
Tmin ≤ Tamb ≤ Tmax
50
25
100
SVR
Supply voltage rejection ratio (RS ≤10kΩ)
Tamb = 25°C
Tmin ≤ Tamb ≤ Tmax
65
65
100
V/mV
dB
ICC
Supply current, all amp, no load
Tamb = 25°C, VCC+ = +5V
Tmin ≤ Tamb ≤ Tmax, VCC+ = +30V
Vicm
Input common mode voltage range (VCC+= +30V) (3)
Tamb = 25°C
Tmin ≤ Tamb ≤ Tmax
0
0
CMR
Common-mode rejection ratio (RS = 10kΩ)
Tamb = 25°C
Tmin ≤ Tamb ≤ Tmax
70
60
85
Isource
Output short-circuit current
VCC+ = +15V, Vo = +2V, Vid = +1V
20
40
20
50
mA
µA
27
V
0.7
Isink
Output sink current
VO = 2V, VCC+ = +5V
VO = +0.2V, VCC+ = +15V
10
12
VOH
High level output voltage (VCC+ = + 30V)
Tamb = +25°C, RL = 2kΩ
Tmin ≤ Tamb ≤ Tmax
Tamb = +25°C, RL = 10kΩ
Tmin ≤ Tamb ≤ Tmax
26
26
27
27
VOL
6/22
Low level output voltage (RL = 10kΩ)
Tamb = +25°C
Tmin ≤ Tamb ≤ Tmax
1.2
2
mA
VCC+ -1.5
VCC+ -2
V
dB
60
mA
28
5
20
20
mV
LM2904
Table 3.
Symbol
SR
VCC+ = 5V, VCC- = Ground, VO = 1.4V, Tamb = 25°C (unless otherwise specified)
Parameter
Min.
Typ.
0.3
0.2
0.6
0.7
1.1
MHz
0.02
%
Equivalent input noise voltage
f = 1kHz, RS = 100Ω, VCC+ = 30V
55
nV/√ Hz
Channel separation (4)
1kHz ≤ f ≤ 20kHz
120
dB
Slew rate
VCC+ = 15V, Vin = 0.5 to 3V, RL = 2kΩ, CL = 100pF,
unity gain
Tmin ≤ Tamb ≤ Tmax
GBP
Gain bandwidth product f = 100kHz
VCC+ = 30V, Vin = 10mV, RL = 2kΩ, CL = 100pF
THD
Total harmonic distortion
f = 1kHz, AV = 20dB, RL = 2kΩ, Vo = 2Vpp,
CL = 100pF, VCC+ = 30V
en
VO1/VO2
1.
Electrical characteristics
Max.
Unit
V/µs
VO = 1.4V, RS = 0Ω, 5V < VCC+ < 30V, 0V < Vic < VCC+ - 1.5V.
2. The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output,
so there is no change in the loading charge on the input lines.
3. The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3 V.
The upper end of the common-mode voltage range is VCC+ –1.5 V, but either or both inputs can go to +32 V without
damage.
4. Due to the proximity of external components ensure that stray capacitance does not cause coupling between these
external parts. This typically can be detected at higher frequencies because this type of capacitance increases.
7/22
Electrical characteristics
Figure 2.
LM2904
Open loop frequency response
Figure 3.
Large signal frequency response
20
140
100k Ω
10MΩ
1k Ω
VCC
VOLTAGE GAIN (dB)
-
100
VO
VI
VCC/2
OUTPUT SWING (Vpp)
0.1μF
120
+
80
VCC = 30V &
-55°C Tamb
60
+125°C
40
20
VCC = +10 to + 15V &
-55°C Tamb +125°C
15
2k Ω
+
10
5
0
1.0
10
100
1k
10k
100k
1M
10M
1k
10k
FREQUENCY (Hz)
Figure 4.
Voltage follower pulse response
Figure 5.
10
VCC = +5V
VCC = +15V
VCC = +30V
OUTPUT VOLTAGE (V)
1
0
3
2
1
v cc
v cc /2
-
0.1
IO
1
Tamb = +25°C
0.01
0
10
20
30
40
0,001
TIME (μs)
+
eO
-
50pF
400
Input
350
Output
300
Tamb = +25°C
VCC = 30 V
250
0
1
2
3
4
5
TIME (ms)
6
7
Figure 7.
OUTPUT VOLTAGE REFERENCED
500
el
0,01
0,1
1
10
100
OUTPUT SINK CURRENT (mA)
Voltage follower pulse response
450
VO
+
8
Output characteristics
8
V CC
7
6
TO VCC+ (V)
OUTPUT
VOLTAGE (V)
2
Figure 6.
1M
Output characteristics
RL 2 kΩ
VCC = +15V
3
INPUT
VOLTAGE (V)
100k
FREQUENCY (Hz)
4
OUTPUT VOLTAGE (mV)
VO
VI
+7V
0
8/22
+15V
-
V CC /2
5
+
VO
IO
-
4
3
2
Independent of V CC
T amb = +25°C
1
0,001 0,01
0,1
1
10
100
OUTPUT SOURCE CURRENT (mA)
LM2904
Electrical characteristics
Figure 8.
Input current versus temperature
Figure 9.
90
90
80
VI = 0 V
70
OUTPUT CURRENT (mA)
INPUT CURRENT (mA)
Current limiting
VCC = +30 V
60
50
VCC = +15 V
40
30
VCC = +5 V
20
-
80
60
+
50
40
30
20
10
10
0
0
-55 -35
-15
5
25
45
65
85 105
-55 -35
125
TEMPERATURE (°C)
-15
5
25
45
65
85 105
125
TEMPERATURE (°C)
Figure 10. Input voltage range
Figure 11. Supply current
4
15
VCC
10
SUPPLY CURRENT (mA)
INPUT VOLTAGE (V)
IO
70
Négative
Positive
5
ID
mA
3
-
2
+
Tamb = 0°C to +125°C
1
Tamb = -55°C
0
5
10
15
0
POWER SUPPLY VOLTAGE (±V)
Figure 12. Voltage gain
20
30
Figure 13. Input current versus supply voltage
100
160
INPUT CURRENT (nA)
R L = 20kΩ
VOLTAGE GAIN (dB)
10
POSITIVE SUPPLY VOLTAGE (V)
120
R L = 2k Ω
80
40
0
10
20
30
40
POSITIVE SUPPLY VOLTAGE (V)
75
50
25
Tamb= +25°C
0
10
20
30
POSITIVE SUPPLY VOLTAGE (V)
9/22
Electrical characteristics
LM2904
1.5
1.35
1.2
1.05
0.9
0.75
VCC =
15V
0.6
0.45
0.3
0.15
0
-55-35-15 5 25 45 65 85 105 125
TEMPERATURE (°C)
COMMON MODE REJECTION RATIO (dB)
Figure 16. Common mode rejection ratio
10/22
Figure 15. Power supply rejection ratio
POWER SUPPLY REJECTION RATIO (dB)
GAIN BANDWIDTH PRODUCT (MHz)
Figure 14. Gain bandwidth product
115
110
SVR
105
100
95
90
85
80
75
70
65
60-55-35-15 5 25 45 65 85 105 125
TEMPERATURE (°C)
Figure 17. Phase margin vs capacitive load
Phase Margin at Vcc=15V and Vicm=7.5V
Vs. Iout and Capacitive load value
115
110
105
100
95
90
85
80
75
70
65
60-55-35-15 5 25 45 65 85 105 125
TEMPERATURE (°C)
LM2904
Electrical characteristics
Typical single-supply applications
Figure 18. AC coupled inverting amplifier
Rf
100kΩ
1/2
LM2904
eI ~
R2
VCC 100kΩ
R1
100kΩ
Rf
R1
(as shown AV = -10)
R1
10kΩ
CI
AV = -
Figure 19. AC coupled non-inverting amplifier
RB
6.2kΩ
R3
100kΩ
2VPP
Co
1/2
LM2904
CI
RL
10kΩ
R3
1MΩ
eI ~
2VPP
0
eo
RB
6.2kΩ
RL
10k Ω
R4
100kΩ
VCC
C1
10μF
C2
10μF
Figure 20. Non-inverting DC gain
R5
100kΩ
Figure 21. DC summing amplifier
e1
100kΩ
A V = 1 + R2
R1
(As shown A V = 101)
10kΩ
R2
1M Ω
eO
+5V
100kΩ
e2
100kΩ
e3
100kΩ
1/2
LM2904
e O (V)
1/2
LM2904
R1
10kΩ
A V= 1 + R2
R1
(as shown A V = 11)
C1
0.1μF
Co
0
eo
R2
1MΩ
100kΩ
e4
0
100kΩ
eo = e1 + e2 - e3 - e4
where (e1 + e2) ≥ (e3 + e4)
to keep eo ≥ 0V
e I (mV)
Figure 22. High input Z, DC differential
amplifier
Figure 23. Using symmetrical amplifiers to
reduce input current
1/2
1/2
LM2904
I
R4
100kΩ
R2
100kΩ
R1
100kΩ
eO
eI
IB
I
eo
I B LM2904
2N 929
R3
100kΩ
+V1
+V2
1/2
LM2904
0.001μ F
Vo
IB
If R1 = R5 and R3 = R4 = R6 = R7
eo = [ 1 + 2R1 ] (e2 - e1)
R2
As shown eo = 101 (e2 - e1)
IB
3MΩ
1.5MΩ
IB
1/2
LM2904
Input current compensation
11/22
Electrical characteristics
LM2904
Figure 24. Low drift peak detector
Figure 25. Active bandpass filter
R1
100kΩ
IB
C1
330pF
1/2
I B LM2904
1/2
LM2904
eI
C
1μ F
ZI
2N 929
2IB
R
1M Ω
R5
470kΩ
R4
10MΩ
R3
100kΩ
IB
IB
12/22
+V1
0.001μ F
3R
3M Ω
R2
100kΩ
eo
Zo
2IB
1/2
LM2904
C2
330pF
1/2
LM2904
R6
470kΩ
Vo
1/2
LM2904
VCC
1/2
LM2904
Input current
compensation
R7
100kΩ
R8
100kΩ
Fo = 1kHz
Q = 50
Av = 100 (40dB)
C3
10μF
LM2904
Macromodel
4
Macromodel
4.1
Important note concerning this macromodel
Please consider the following remarks before using this macromodel.
●
All models are a trade-off between accuracy and complexity (i.e. simulation time).
●
Macromodels are not a substitute to breadboarding; rather, they confirm the validity of
a design approach and help to select surrounding component values.
●
A macromodel emulates the nominal performance of a typical device within specified
operating conditions (temperature, supply voltage, for example). Thus the
macromodel is often not as exhaustive as the datasheet, its purpose is to illustrate the
main parameters of the product.
Data derived from macromodels used outside of the specified conditions (VCC, temperature,
for example) or even worse, outside of the device operating conditions (VCC, Vicm, for
example), is not reliable in any way.
4.2
Macromodel code
** Standard Linear Ics Macromodels, 1993.
** CONNECTIONS :
* 1 INVERTING INPUT
* 2 NON-INVERTING INPUT
* 3 OUTPUT
* 4 POSITIVE POWER SUPPLY
* 5 NEGATIVE POWER SUPPLY
.SUBCKT LM2904 1 2 3 4 5
***************************
.MODEL MDTH D IS=1E-8 KF=3.104131E-15 CJO=10F
* INPUT STAGE
CIP 2 5 1.000000E-12
CIN 1 5 1.000000E-12
EIP 10 5 2 5 1
EIN 16 5 1 5 1
RIP 10 11 2.600000E+01
RIN 15 16 2.600000E+01
RIS 11 15 2.003862E+02
DIP 11 12 MDTH 400E-12
DIN 15 14 MDTH 400E-12
VOFP 12 13 DC 0
VOFN 13 14 DC 0
IPOL 13 5 1.000000E-05
CPS 11 15 3.783376E-09
DINN 17 13 MDTH 400E-12
VIN 17 5 0.000000e+00
DINR 15 18 MDTH 400E-12
VIP 4 18 2.000000E+00
FCP 4 5 VOFP 3.400000E+01
FCN 5 4 VOFN 3.400000E+01
FIBP 2 5 VOFN 2.000000E-03
13/22
Macromodel
FIBN 5 1 VOFP 2.000000E-03
* AMPLIFYING STAGE
FIP 5 19 VOFP 3.600000E+02
FIN 5 19 VOFN 3.600000E+02
RG1 19 5 3.652997E+06
RG2 19 4 3.652997E+06
CC 19 5 6.000000E-09
DOPM 19 22 MDTH 400E-12
DONM 21 19 MDTH 400E-12
HOPM 22 28 VOUT 7.500000E+03
VIPM 28 4 1.500000E+02
HONM 21 27 VOUT 7.500000E+03
VINM 5 27 1.500000E+02
EOUT 26 23 19 5 1
VOUT 23 5 0
ROUT 26 3 20
COUT 3 5 1.000000E-12
DOP 19 25 MDTH 400E-12
VOP 4 25 2.242230E+00
DON 24 19 MDTH 400E-12
VON 24 5 7.922301E-01
.ENDS
14/22
LM2904
LM2904
5
Package information
Package information
In order to meet environmental requirements, STMicroelectronics offers these devices in
ECOPACK® packages. These packages have a lead-free second level interconnect. The
category of second level interconnect is marked on the package and on the inner box label,
in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering
conditions are also marked on the inner box label. ECOPACK is an STMicroelectronics
trademark. ECOPACK specifications are available at: www.st.com.
15/22
Package information
5.1
LM2904
DIP8 package information
Figure 26. DIP8 package mechanical drawing
Table 4.
DIP8 package mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
A
Max.
Min.
Typ.
5.33
Max.
0.210
A1
0.38
0.015
A2
2.92
3.30
4.95
0.115
0.130
0.195
b
0.36
0.46
0.56
0.014
0.018
0.022
b2
1.14
1.52
1.78
0.045
0.060
0.070
c
0.20
0.25
0.36
0.008
0.010
0.014
D
9.02
9.27
10.16
0.355
0.365
0.400
E
7.62
7.87
8.26
0.300
0.310
0.325
E1
6.10
6.35
7.11
0.240
0.250
0.280
e
2.54
0.100
eA
7.62
0.300
eB
L
16/22
Inches
10.92
2.92
3.30
3.81
0.430
0.115
0.130
0.150
LM2904
5.2
Package information
SO-8 package information
Figure 27. SO-8 package mechanical drawing
Table 5.
SO-8 package mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
A
Inches
Max.
Min.
Typ.
1.75
0.069
A1
0.10
A2
1.25
b
0.28
0.48
0.011
0.019
c
0.17
0.23
0.007
0.010
D
4.80
4.90
5.00
0.189
0.193
0.197
E
5.80
6.00
6.20
0.228
0.236
0.244
E1
3.80
3.90
4.00
0.150
0.154
0.157
e
0.25
Max.
0.004
0.010
0.049
1.27
0.050
h
0.25
0.50
0.010
0.020
L
0.40
1.27
0.016
0.050
k
1°
8°
1°
8°
ccc
0.10
0.004
17/22
Package information
5.3
LM2904
TSSOP8 package information
Figure 28. TSSOP8 package mechanical drawing
Table 6.
TSSOP8 package mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
A
Max.
Min.
Typ.
1.2
A1
0.05
A2
0.80
b
Max.
0.047
0.15
0.002
1.05
0.031
0.19
0.30
0.007
0.012
c
0.09
0.20
0.004
0.008
D
2.90
3.00
3.10
0.114
0.118
0.122
E
6.20
6.40
6.60
0.244
0.252
0.260
E1
4.30
4.40
4.50
0.169
0.173
0.177
e
18/22
Inches
1.00
0.65
k
0°
L
0.45
0.60
0.006
0.039
0.041
0.0256
8°
0°
0.75
0.018
8°
0.024
L1
1
0.039
aaa
0.1
0.004
0.030
LM2904
5.4
Package information
MiniSO-8 package information
Figure 29. MiniSO-8 package mechanical drawing
Table 7.
MiniSO-8 package mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
A
Inches
Max.
Min.
Typ.
1.1
A1
0
A2
0.75
b
Max.
0.043
0.15
0
0.95
0.030
0.22
0.40
0.009
0.016
c
0.08
0.23
0.003
0.009
D
2.80
3.00
3.20
0.11
0.118
0.126
E
4.65
4.90
5.15
0.183
0.193
0.203
E1
2.80
3.00
3.10
0.11
0.118
0.122
e
L
0.85
0.65
0.40
0.60
0.006
0.033
0.026
0.80
0.016
0.024
L1
0.95
0.037
L2
0.25
0.010
k
ccc
0°
0.037
8°
0.10
0°
0.031
8°
0.004
19/22
Ordering information
LM2904
6
Ordering information
Table 8.
Order codes
Order code
Temperature range
Package
Packing
Marking
LM2904N
DIP8
Tube
LM2904N
LM2904D/DT
SO-8
Tube or
tape & reel
TSSOP8
(Thin shrink outline package)
Tape & reel
MiniSO-8
Tape & reel
LM2904YD
LM2904YDT(1)
SO-8
(Automotive grade level)
Tube or
tape & reel
(2)
LM2904YPT
TSSOP8
(Automotive grade level)
Tape & reel
LM2904YST(2)
MiniSO-8
(Automotive grade level)
Tape & reel
2904
LM2904PT
LM2904ST
(1)
-40°C to +125°C
K403
2904Y
K409
1. Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001
& Q 002 or equivalent.
2. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC
Q001 & Q 002 or equivalent are on-going.
20/22
LM2904
7
Revision history
Revision history
Table 9.
Document revision history
Date
Revision
2-Jan-2002
1
Initial release.
20-Jun-2005
2
PPAP references inserted in the datasheet ,see Table 8 on
page 20.
ESD protection inserted in Table 1 on page 4.
10-Oct-2005
3
PPAP part numbers added in table Table 8 on page 20.
12-Dec-2005
4
Pin connections identification added on cover page figure.
Thermal resistance junction to case information added see
Table 1 on page 4.
1-Feb-2006
5
Maximum junction temperature parameter added in Table 1 on
page 4.
2-May-2006
6
Minimum slew rate parameter in temperature Table 3 on
page 6.
13-Jul- 2006
7
Modified ESD values and added explanation on VCC, Vid in
Table 1 on page 4. Added macromodel information.
8
Modified ESD/HBM values in Table 1 on page 4.
Updated miniSO-8 package information.
Added note relative to automotive grade level part numbers in
Table 8 on page 20.
9
Power dissipation value corrected in Table 1: Absolute
maximum ratings (AMR).
Table 2: Operating conditions added.
Equivalent input noise voltage parameter added in Table 3.
Electrical characteristics curves updated. Figure 17: Phase
margin vs capacitive load added.
Section 5: Package information updated.
10
Removed power dissipation parameter from Table 1: Absolute
maximum ratings (AMR).
Removed Vopp from electrical characteristics in Table 3.
Corrected MiniSO-8 package mechanical data in Section 5.4:
MiniSO-8 package information.
11
Added table of contents.
Corrected the scale of Figure 5 (mA not µA).
Corrected SO-8 package information.
28-Feb-2007
18-Jun-2007
18-Dec-2007
8-Apr-2008
Changes
21/22
LM2904
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2008 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
22/22