LM2904 Low power dual operational amplifier Features ■ Internally frequency compensated ■ Large DC voltage gain: 100 dB ■ Wide bandwidth (unity gain): 1.1 MHz (temperature compensated) ■ Very low supply current/op (500 µA) essentially independent of supply voltage ■ Low input bias current: 20 nA (temperature compensated) ■ Low input offset current: 2 nA ■ Input common-mode voltage range includes negative rail ■ Differential input voltage range equal to the power supply voltage ■ Large output voltage swing 0 V to (VCC+ -1.5 V) N DIP8 (Plastic package) D SO-8 (Plastic micropackage) Description This circuit consists of two independent, high gain, internally frequency compensated operational amplifiers which were designed specifically for automotive and industrial control system. It operates from a single power supply over a wide range of voltages. The low power supply drain is independent of the magnitude of the power supply voltage. P TSSOP8 (Thin shrink small outline package) S MiniSO-8 Application areas include transducer amplifiers, DC gain blocks and all the conventional op-amp circuits which now can be more easily implemented in single power supply systems. For example, these circuits can be directly supplied from the standard +5 V which is used in logic systems and will easily provide the required interface electronics without requiring any additional power supply. Pin connections (top view) In the linear mode the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from a single power supply. April 2008 Rev 11 1/22 www.st.com 22 Table of contents LM2904 Table of contents 1 Schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 4 3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Typical single-supply applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4 5 Macromodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.1 Important note concerning this macromodel . . . . . . . . . . . . . . . . . . . . . . 13 4.2 Macromodel code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.1 DIP8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.2 SO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5.3 TSSOP8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.4 MiniSO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 6 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 7 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2/22 LM2904 1 Schematic diagram Schematic diagram Figure 1. Schematic diagram (1/2 LM2904) V CC 6μA 4μA 100μA Q5 Q6 CC Inverting input Q2 Q3 Q1 Q7 Q4 R SC Q11 Non-inverting input Output Q13 Q10 Q8 Q9 Q12 50mA GND 3/22 Absolute maximum ratings and operating conditions 2 LM2904 Absolute maximum ratings and operating conditions Table 1. Absolute maximum ratings (AMR) Symbol VCC Parameter Supply voltage (1) Vid Differential input voltage Vin Input voltage (2) Output short-circuit duration (3) Iin Input current (4) Value Unit ±16 or 32 V ±32 V -0.3 to 32 V Infinite s 50 mA Toper Operating free-air temperature range -40 to +125 °C Tstg Storage temperature range -65 to +150 °C 150 °C Tj Maximum junction temperature ambient(5) Rthja Thermal resistance junction to SO-8 TSSOP8 DIP8 MiniSO-8 Rthjc Thermal resistance junction to case(5) SO-8 TSSOP8 DIP8 MiniSO-8 40 37 41 39 HBM: human body model(6) 300 V 200 V 1.5 kV ESD MM: machine model(7) (8) CDM: charged device model 125 120 85 190 °C/W °C/W 1. All voltage values, except differential voltage are with respect to network ground terminal. 2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. 3. Short-circuits from the output to VCC can cause excessive heating if Vcc+ > 15 V. The maximum output current is approximately 40 mA, independent of the magnitude of VCC. Destructive dissipation can result from simultaneous short-circuits on all amplifiers. 4. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistor becoming forward biased and thereby acting as input diodes clamps. In addition to this diode action, there is also NPN parasitic action on the IC chip. This transistor action can cause the output voltages of the op-amps to go to the VCC voltage level (or to ground for a large overdrive) for the time duration than an input is driven negative. This is not destructive and normal output will set up again for input voltage higher than -0.3 V. 5. Short-circuits can cause excessive heating and destructive dissipation. Values are typical. 6. Human body model: A 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating. 7. Machine model: A 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are floating. 8. Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins. 4/22 LM2904 Table 2. Absolute maximum ratings and operating conditions Operating conditions Symbol Parameter VCC Supply voltage Vicm Common mode input voltage range Toper Operating free-air temperature range Value Unit 3 to 30 V VCC+ - 1.5 V -40 to +125 °C 5/22 Electrical characteristics LM2904 3 Electrical characteristics Table 3. VCC+ = 5V, VCC- = Ground, VO = 1.4V, Tamb = 25°C (unless otherwise specified) Symbol Vio DVio Iio DIio Parameter Min. Typ. Max. Unit Input offset voltage (1) Tamb = 25°C Tmin ≤ Tamb ≤ Tmax 2 7 9 mV Input offset voltage drift 7 30 µV/°C Input offset current Tamb = 25°C Tmin ≤ Tamb ≤ Tmax 2 30 40 nA Input offset current drift 10 300 pA/°C 20 150 200 nA (2) Iib Input bias current Tamb = 25°C Tmin ≤ Tamb ≤ Tmax Avd Large signal voltage gain VCC+ = +15V,RL=2kΩ, Vo = 1.4V to 11.4V Tamb = 25°C Tmin ≤ Tamb ≤ Tmax 50 25 100 SVR Supply voltage rejection ratio (RS ≤10kΩ) Tamb = 25°C Tmin ≤ Tamb ≤ Tmax 65 65 100 V/mV dB ICC Supply current, all amp, no load Tamb = 25°C, VCC+ = +5V Tmin ≤ Tamb ≤ Tmax, VCC+ = +30V Vicm Input common mode voltage range (VCC+= +30V) (3) Tamb = 25°C Tmin ≤ Tamb ≤ Tmax 0 0 CMR Common-mode rejection ratio (RS = 10kΩ) Tamb = 25°C Tmin ≤ Tamb ≤ Tmax 70 60 85 Isource Output short-circuit current VCC+ = +15V, Vo = +2V, Vid = +1V 20 40 20 50 mA µA 27 V 0.7 Isink Output sink current VO = 2V, VCC+ = +5V VO = +0.2V, VCC+ = +15V 10 12 VOH High level output voltage (VCC+ = + 30V) Tamb = +25°C, RL = 2kΩ Tmin ≤ Tamb ≤ Tmax Tamb = +25°C, RL = 10kΩ Tmin ≤ Tamb ≤ Tmax 26 26 27 27 VOL 6/22 Low level output voltage (RL = 10kΩ) Tamb = +25°C Tmin ≤ Tamb ≤ Tmax 1.2 2 mA VCC+ -1.5 VCC+ -2 V dB 60 mA 28 5 20 20 mV LM2904 Table 3. Symbol SR VCC+ = 5V, VCC- = Ground, VO = 1.4V, Tamb = 25°C (unless otherwise specified) Parameter Min. Typ. 0.3 0.2 0.6 0.7 1.1 MHz 0.02 % Equivalent input noise voltage f = 1kHz, RS = 100Ω, VCC+ = 30V 55 nV/√ Hz Channel separation (4) 1kHz ≤ f ≤ 20kHz 120 dB Slew rate VCC+ = 15V, Vin = 0.5 to 3V, RL = 2kΩ, CL = 100pF, unity gain Tmin ≤ Tamb ≤ Tmax GBP Gain bandwidth product f = 100kHz VCC+ = 30V, Vin = 10mV, RL = 2kΩ, CL = 100pF THD Total harmonic distortion f = 1kHz, AV = 20dB, RL = 2kΩ, Vo = 2Vpp, CL = 100pF, VCC+ = 30V en VO1/VO2 1. Electrical characteristics Max. Unit V/µs VO = 1.4V, RS = 0Ω, 5V < VCC+ < 30V, 0V < Vic < VCC+ - 1.5V. 2. The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output, so there is no change in the loading charge on the input lines. 3. The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common-mode voltage range is VCC+ –1.5 V, but either or both inputs can go to +32 V without damage. 4. Due to the proximity of external components ensure that stray capacitance does not cause coupling between these external parts. This typically can be detected at higher frequencies because this type of capacitance increases. 7/22 Electrical characteristics Figure 2. LM2904 Open loop frequency response Figure 3. Large signal frequency response 20 140 100k Ω 10MΩ 1k Ω VCC VOLTAGE GAIN (dB) - 100 VO VI VCC/2 OUTPUT SWING (Vpp) 0.1μF 120 + 80 VCC = 30V & -55°C Tamb 60 +125°C 40 20 VCC = +10 to + 15V & -55°C Tamb +125°C 15 2k Ω + 10 5 0 1.0 10 100 1k 10k 100k 1M 10M 1k 10k FREQUENCY (Hz) Figure 4. Voltage follower pulse response Figure 5. 10 VCC = +5V VCC = +15V VCC = +30V OUTPUT VOLTAGE (V) 1 0 3 2 1 v cc v cc /2 - 0.1 IO 1 Tamb = +25°C 0.01 0 10 20 30 40 0,001 TIME (μs) + eO - 50pF 400 Input 350 Output 300 Tamb = +25°C VCC = 30 V 250 0 1 2 3 4 5 TIME (ms) 6 7 Figure 7. OUTPUT VOLTAGE REFERENCED 500 el 0,01 0,1 1 10 100 OUTPUT SINK CURRENT (mA) Voltage follower pulse response 450 VO + 8 Output characteristics 8 V CC 7 6 TO VCC+ (V) OUTPUT VOLTAGE (V) 2 Figure 6. 1M Output characteristics RL 2 kΩ VCC = +15V 3 INPUT VOLTAGE (V) 100k FREQUENCY (Hz) 4 OUTPUT VOLTAGE (mV) VO VI +7V 0 8/22 +15V - V CC /2 5 + VO IO - 4 3 2 Independent of V CC T amb = +25°C 1 0,001 0,01 0,1 1 10 100 OUTPUT SOURCE CURRENT (mA) LM2904 Electrical characteristics Figure 8. Input current versus temperature Figure 9. 90 90 80 VI = 0 V 70 OUTPUT CURRENT (mA) INPUT CURRENT (mA) Current limiting VCC = +30 V 60 50 VCC = +15 V 40 30 VCC = +5 V 20 - 80 60 + 50 40 30 20 10 10 0 0 -55 -35 -15 5 25 45 65 85 105 -55 -35 125 TEMPERATURE (°C) -15 5 25 45 65 85 105 125 TEMPERATURE (°C) Figure 10. Input voltage range Figure 11. Supply current 4 15 VCC 10 SUPPLY CURRENT (mA) INPUT VOLTAGE (V) IO 70 Négative Positive 5 ID mA 3 - 2 + Tamb = 0°C to +125°C 1 Tamb = -55°C 0 5 10 15 0 POWER SUPPLY VOLTAGE (±V) Figure 12. Voltage gain 20 30 Figure 13. Input current versus supply voltage 100 160 INPUT CURRENT (nA) R L = 20kΩ VOLTAGE GAIN (dB) 10 POSITIVE SUPPLY VOLTAGE (V) 120 R L = 2k Ω 80 40 0 10 20 30 40 POSITIVE SUPPLY VOLTAGE (V) 75 50 25 Tamb= +25°C 0 10 20 30 POSITIVE SUPPLY VOLTAGE (V) 9/22 Electrical characteristics LM2904 1.5 1.35 1.2 1.05 0.9 0.75 VCC = 15V 0.6 0.45 0.3 0.15 0 -55-35-15 5 25 45 65 85 105 125 TEMPERATURE (°C) COMMON MODE REJECTION RATIO (dB) Figure 16. Common mode rejection ratio 10/22 Figure 15. Power supply rejection ratio POWER SUPPLY REJECTION RATIO (dB) GAIN BANDWIDTH PRODUCT (MHz) Figure 14. Gain bandwidth product 115 110 SVR 105 100 95 90 85 80 75 70 65 60-55-35-15 5 25 45 65 85 105 125 TEMPERATURE (°C) Figure 17. Phase margin vs capacitive load Phase Margin at Vcc=15V and Vicm=7.5V Vs. Iout and Capacitive load value 115 110 105 100 95 90 85 80 75 70 65 60-55-35-15 5 25 45 65 85 105 125 TEMPERATURE (°C) LM2904 Electrical characteristics Typical single-supply applications Figure 18. AC coupled inverting amplifier Rf 100kΩ 1/2 LM2904 eI ~ R2 VCC 100kΩ R1 100kΩ Rf R1 (as shown AV = -10) R1 10kΩ CI AV = - Figure 19. AC coupled non-inverting amplifier RB 6.2kΩ R3 100kΩ 2VPP Co 1/2 LM2904 CI RL 10kΩ R3 1MΩ eI ~ 2VPP 0 eo RB 6.2kΩ RL 10k Ω R4 100kΩ VCC C1 10μF C2 10μF Figure 20. Non-inverting DC gain R5 100kΩ Figure 21. DC summing amplifier e1 100kΩ A V = 1 + R2 R1 (As shown A V = 101) 10kΩ R2 1M Ω eO +5V 100kΩ e2 100kΩ e3 100kΩ 1/2 LM2904 e O (V) 1/2 LM2904 R1 10kΩ A V= 1 + R2 R1 (as shown A V = 11) C1 0.1μF Co 0 eo R2 1MΩ 100kΩ e4 0 100kΩ eo = e1 + e2 - e3 - e4 where (e1 + e2) ≥ (e3 + e4) to keep eo ≥ 0V e I (mV) Figure 22. High input Z, DC differential amplifier Figure 23. Using symmetrical amplifiers to reduce input current 1/2 1/2 LM2904 I R4 100kΩ R2 100kΩ R1 100kΩ eO eI IB I eo I B LM2904 2N 929 R3 100kΩ +V1 +V2 1/2 LM2904 0.001μ F Vo IB If R1 = R5 and R3 = R4 = R6 = R7 eo = [ 1 + 2R1 ] (e2 - e1) R2 As shown eo = 101 (e2 - e1) IB 3MΩ 1.5MΩ IB 1/2 LM2904 Input current compensation 11/22 Electrical characteristics LM2904 Figure 24. Low drift peak detector Figure 25. Active bandpass filter R1 100kΩ IB C1 330pF 1/2 I B LM2904 1/2 LM2904 eI C 1μ F ZI 2N 929 2IB R 1M Ω R5 470kΩ R4 10MΩ R3 100kΩ IB IB 12/22 +V1 0.001μ F 3R 3M Ω R2 100kΩ eo Zo 2IB 1/2 LM2904 C2 330pF 1/2 LM2904 R6 470kΩ Vo 1/2 LM2904 VCC 1/2 LM2904 Input current compensation R7 100kΩ R8 100kΩ Fo = 1kHz Q = 50 Av = 100 (40dB) C3 10μF LM2904 Macromodel 4 Macromodel 4.1 Important note concerning this macromodel Please consider the following remarks before using this macromodel. ● All models are a trade-off between accuracy and complexity (i.e. simulation time). ● Macromodels are not a substitute to breadboarding; rather, they confirm the validity of a design approach and help to select surrounding component values. ● A macromodel emulates the nominal performance of a typical device within specified operating conditions (temperature, supply voltage, for example). Thus the macromodel is often not as exhaustive as the datasheet, its purpose is to illustrate the main parameters of the product. Data derived from macromodels used outside of the specified conditions (VCC, temperature, for example) or even worse, outside of the device operating conditions (VCC, Vicm, for example), is not reliable in any way. 4.2 Macromodel code ** Standard Linear Ics Macromodels, 1993. ** CONNECTIONS : * 1 INVERTING INPUT * 2 NON-INVERTING INPUT * 3 OUTPUT * 4 POSITIVE POWER SUPPLY * 5 NEGATIVE POWER SUPPLY .SUBCKT LM2904 1 2 3 4 5 *************************** .MODEL MDTH D IS=1E-8 KF=3.104131E-15 CJO=10F * INPUT STAGE CIP 2 5 1.000000E-12 CIN 1 5 1.000000E-12 EIP 10 5 2 5 1 EIN 16 5 1 5 1 RIP 10 11 2.600000E+01 RIN 15 16 2.600000E+01 RIS 11 15 2.003862E+02 DIP 11 12 MDTH 400E-12 DIN 15 14 MDTH 400E-12 VOFP 12 13 DC 0 VOFN 13 14 DC 0 IPOL 13 5 1.000000E-05 CPS 11 15 3.783376E-09 DINN 17 13 MDTH 400E-12 VIN 17 5 0.000000e+00 DINR 15 18 MDTH 400E-12 VIP 4 18 2.000000E+00 FCP 4 5 VOFP 3.400000E+01 FCN 5 4 VOFN 3.400000E+01 FIBP 2 5 VOFN 2.000000E-03 13/22 Macromodel FIBN 5 1 VOFP 2.000000E-03 * AMPLIFYING STAGE FIP 5 19 VOFP 3.600000E+02 FIN 5 19 VOFN 3.600000E+02 RG1 19 5 3.652997E+06 RG2 19 4 3.652997E+06 CC 19 5 6.000000E-09 DOPM 19 22 MDTH 400E-12 DONM 21 19 MDTH 400E-12 HOPM 22 28 VOUT 7.500000E+03 VIPM 28 4 1.500000E+02 HONM 21 27 VOUT 7.500000E+03 VINM 5 27 1.500000E+02 EOUT 26 23 19 5 1 VOUT 23 5 0 ROUT 26 3 20 COUT 3 5 1.000000E-12 DOP 19 25 MDTH 400E-12 VOP 4 25 2.242230E+00 DON 24 19 MDTH 400E-12 VON 24 5 7.922301E-01 .ENDS 14/22 LM2904 LM2904 5 Package information Package information In order to meet environmental requirements, STMicroelectronics offers these devices in ECOPACK® packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an STMicroelectronics trademark. ECOPACK specifications are available at: www.st.com. 15/22 Package information 5.1 LM2904 DIP8 package information Figure 26. DIP8 package mechanical drawing Table 4. DIP8 package mechanical data Dimensions Ref. Millimeters Min. Typ. A Max. Min. Typ. 5.33 Max. 0.210 A1 0.38 0.015 A2 2.92 3.30 4.95 0.115 0.130 0.195 b 0.36 0.46 0.56 0.014 0.018 0.022 b2 1.14 1.52 1.78 0.045 0.060 0.070 c 0.20 0.25 0.36 0.008 0.010 0.014 D 9.02 9.27 10.16 0.355 0.365 0.400 E 7.62 7.87 8.26 0.300 0.310 0.325 E1 6.10 6.35 7.11 0.240 0.250 0.280 e 2.54 0.100 eA 7.62 0.300 eB L 16/22 Inches 10.92 2.92 3.30 3.81 0.430 0.115 0.130 0.150 LM2904 5.2 Package information SO-8 package information Figure 27. SO-8 package mechanical drawing Table 5. SO-8 package mechanical data Dimensions Ref. Millimeters Min. Typ. A Inches Max. Min. Typ. 1.75 0.069 A1 0.10 A2 1.25 b 0.28 0.48 0.011 0.019 c 0.17 0.23 0.007 0.010 D 4.80 4.90 5.00 0.189 0.193 0.197 E 5.80 6.00 6.20 0.228 0.236 0.244 E1 3.80 3.90 4.00 0.150 0.154 0.157 e 0.25 Max. 0.004 0.010 0.049 1.27 0.050 h 0.25 0.50 0.010 0.020 L 0.40 1.27 0.016 0.050 k 1° 8° 1° 8° ccc 0.10 0.004 17/22 Package information 5.3 LM2904 TSSOP8 package information Figure 28. TSSOP8 package mechanical drawing Table 6. TSSOP8 package mechanical data Dimensions Ref. Millimeters Min. Typ. A Max. Min. Typ. 1.2 A1 0.05 A2 0.80 b Max. 0.047 0.15 0.002 1.05 0.031 0.19 0.30 0.007 0.012 c 0.09 0.20 0.004 0.008 D 2.90 3.00 3.10 0.114 0.118 0.122 E 6.20 6.40 6.60 0.244 0.252 0.260 E1 4.30 4.40 4.50 0.169 0.173 0.177 e 18/22 Inches 1.00 0.65 k 0° L 0.45 0.60 0.006 0.039 0.041 0.0256 8° 0° 0.75 0.018 8° 0.024 L1 1 0.039 aaa 0.1 0.004 0.030 LM2904 5.4 Package information MiniSO-8 package information Figure 29. MiniSO-8 package mechanical drawing Table 7. MiniSO-8 package mechanical data Dimensions Ref. Millimeters Min. Typ. A Inches Max. Min. Typ. 1.1 A1 0 A2 0.75 b Max. 0.043 0.15 0 0.95 0.030 0.22 0.40 0.009 0.016 c 0.08 0.23 0.003 0.009 D 2.80 3.00 3.20 0.11 0.118 0.126 E 4.65 4.90 5.15 0.183 0.193 0.203 E1 2.80 3.00 3.10 0.11 0.118 0.122 e L 0.85 0.65 0.40 0.60 0.006 0.033 0.026 0.80 0.016 0.024 L1 0.95 0.037 L2 0.25 0.010 k ccc 0° 0.037 8° 0.10 0° 0.031 8° 0.004 19/22 Ordering information LM2904 6 Ordering information Table 8. Order codes Order code Temperature range Package Packing Marking LM2904N DIP8 Tube LM2904N LM2904D/DT SO-8 Tube or tape & reel TSSOP8 (Thin shrink outline package) Tape & reel MiniSO-8 Tape & reel LM2904YD LM2904YDT(1) SO-8 (Automotive grade level) Tube or tape & reel (2) LM2904YPT TSSOP8 (Automotive grade level) Tape & reel LM2904YST(2) MiniSO-8 (Automotive grade level) Tape & reel 2904 LM2904PT LM2904ST (1) -40°C to +125°C K403 2904Y K409 1. Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent. 2. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent are on-going. 20/22 LM2904 7 Revision history Revision history Table 9. Document revision history Date Revision 2-Jan-2002 1 Initial release. 20-Jun-2005 2 PPAP references inserted in the datasheet ,see Table 8 on page 20. ESD protection inserted in Table 1 on page 4. 10-Oct-2005 3 PPAP part numbers added in table Table 8 on page 20. 12-Dec-2005 4 Pin connections identification added on cover page figure. Thermal resistance junction to case information added see Table 1 on page 4. 1-Feb-2006 5 Maximum junction temperature parameter added in Table 1 on page 4. 2-May-2006 6 Minimum slew rate parameter in temperature Table 3 on page 6. 13-Jul- 2006 7 Modified ESD values and added explanation on VCC, Vid in Table 1 on page 4. Added macromodel information. 8 Modified ESD/HBM values in Table 1 on page 4. Updated miniSO-8 package information. Added note relative to automotive grade level part numbers in Table 8 on page 20. 9 Power dissipation value corrected in Table 1: Absolute maximum ratings (AMR). Table 2: Operating conditions added. Equivalent input noise voltage parameter added in Table 3. Electrical characteristics curves updated. Figure 17: Phase margin vs capacitive load added. Section 5: Package information updated. 10 Removed power dissipation parameter from Table 1: Absolute maximum ratings (AMR). Removed Vopp from electrical characteristics in Table 3. Corrected MiniSO-8 package mechanical data in Section 5.4: MiniSO-8 package information. 11 Added table of contents. Corrected the scale of Figure 5 (mA not µA). Corrected SO-8 package information. 28-Feb-2007 18-Jun-2007 18-Dec-2007 8-Apr-2008 Changes 21/22 LM2904 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2008 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 22/22