RHF43B RAD-hardened precision bipolar single operational amplifier Features ■ High immunity to radiations, 300kRad TID; SEL immune at 68MeV/cm²/mg LET ions. ■ Rail-to-rail input/output ■ 8MHz gain bandwidth at 16V ■ Stable for gain ≥ 5 ■ Low input offset voltage: 100µV typ ■ Supply current: 2.2mA typ ■ Operating from 3V to 16V ■ Ceramic Flat-8 1 ESD internal protection ≥ 2kV ■ Latch-up immunity: 200mA ■ Soon RHA QML-V qualified with smd n° 5962-062xx IN - NC +VCC VCC IN + OUT NC -VCC VDD Input bias current: 30nA typ ■ 8 NC 4 5 Description The RHF43B is a precision bipolar operational amplifier available in hermetic 8-pin flat package and in die form. ln addition to its low offset voltage, rail-to-rail feature, wide supply voltage, the RHF43B is designed for increased tolerance to radiation. Its intrinsic ELDRS-free rad-hard design allows this product to be used in space environment and in applications operating in harsh environments. Applications ■ Space probes and satellites ■ Defense systems ■ Scientific instrumentation ■ Nuclear systems January 2008 Rev 3 1/12 www.st.com 12 Absolute maximum ratings and operating conditions 1 RHF43B Absolute maximum ratings and operating conditions Table 1. Absolute maximum ratings (AMR) Symbol Parameter VCC Supply voltage(1) Vid Differential input voltage (2) (3) Vin Input voltage range IIN Input current Tstg Value Unit 18 ±9 V ±1.2 V VDD-0.3 to 16 V 45 mA -65 to +150 °C Thermal resistance junction to ambient(4)(5) 125 °C/W Rthjc Thermal resistance junction to case(4)(5) 80 °C/W Tj Maximum junction temperature 150 °C 2 kV Latch-up immunity 200 mA Lead temperature (soldering, 10 sec) 260 °C 300 kRad 300 kRad 68 MeV.cm-2.mg 2+14 n.cm-2 Rthja ESD Storage temperature HBM: human body model(6) Radiation related parameters Low dose rate of 0.01 rad.sec-1 High dose rate of 50-300 rad.sec-1 Heavy ion latch-up (SEL) immune with heavy ions characterized by: Neutron immunity 1. All values, except differential voltage are with respect to network terminal. 2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. 3. The magnitude of input and output terminal must never exceed VCC+0.3V. 4. Short-circuits can cause excessive heating and destructive dissipation. 5. Rth are typical values. 6. Human body model: 100pF discharged through a 1.5kΩ resistor between two pins of the device, done for all couples of pin combinations with other pins floating. Table 2. Operating conditions Symbol 2/12 Parameter Value Unit 3 to 16 V VCC Supply voltage Vicm Common mode input voltage range VDD to VCC V Toper Operating free air temperature range -55 to +125 °C RHF43B Electrical characteristics 2 Electrical characteristics Table 3. VCC = +16V, VDD = 0V, Vicm = VCC/2, Tamb = 25°C, RL connected to VCC/2 (unless otherwise specified) Symbol Parameter Test conditions Min. Typ. Max. 100 300 Unit DC performance T= 25°C Vio DVio Iib DIib Offset voltage µV Tmin < Top < Tmax 500 Input offset voltage drift Input bias current Vicm = VCC/2, T = 25°C Tmin < Top < Tmax 30 Input offset current temperature drift Vicm = VCC/2, T = 25°C Tmin < Top < Tmax CMR Common mode rejection ratio 0 < Vicm < 16V Tmin < Top < Tmax 72 72 110 SVR Supply rejection ratio 3V < VCC <16V, Vicm =VCC/2 Tmin < Top < Tmax 90 80 120 AVD Large signal voltage gain RL = 10kΩ, Vout= 0.5V to 15.5V Tmin < Top < Tmax 74 60 85 RL = 1kΩ connected to VCC/2 Tmin < Top < Tmax 15.7 15.6 15.8 RL = 10kΩ connected to VCC/2 Tmin < Top < Tmax 15.9 15.8 15.96 VOH VOL High level output voltage Low level output voltage ICC 1 nA pA/°C 15 35 nA dB dB dB V V RL = 1kΩ connected to VCC/2 Tmin. < Top < Tmax. 0.1 0.2 0.3 V RL = 10kΩ connected to VCC/2 Tmin < Top < Tmax 0.04 0.06 0.1 V Output sink current Vout = VCC Tmin < Top < Tmax 20 15 30 Output source current Vout = VDD Tmin < Top < Tmax 15 10 25 Supply current No load Tmin < Top < Tmax Iout 60 100 100 Input offset current (Vout = VCC/2) Iio μV/°C 1 mA 2.5 2.9 mA AC performance Gain bandwidth product RL= 1kΩ, CL= 100pF, f= 100kHz Tmin < Top < Tmax Fu Unity gain frequency RL= 1kΩ, CL= 100pF 5 MHz φm Phase margin RL = 1kΩ, CL = 100pF, G=5 50 Degrees GBP 6 3.5 8 MHz 3/12 Electrical characteristics Table 3. RHF43B VCC = +16V, VDD = 0V, Vicm = VCC/2, Tamb = 25°C, RL connected to VCC/2 (unless otherwise specified) (continued) Symbol Parameter Test conditions SR Slew rate RL = 1kΩ, CL = 100pF Tmin < Top < Tmax en Equivalent input noise voltage f = 1kHz Total harmonic distortion Vout = (VCC-1V)/5, G= -5.1, Vicm=VCC/2 THD+en 4/12 Min. Typ. 2 1.7 3 Max. Unit V/μs 8 nV -----------Hz 0.01 % RHF43B Table 4. Electrical characteristics VCC = +3V, VDD = 0V, Vicm = VCC/2, Tamb = 25°C, RL connected to VCC/2 (unless otherwise specified) Symbol Parameter Test conditions Min. Typ. Max. 100 300 Unit DC performance T=25°C Vio DVio Iib DIib Offset voltage µV Tmin < Top < Tmax 500 Input offset voltage drift Input bias current VCC= 4V, Vicm= VCC/2, T= 25°C Tmin < Top < Tmax 30 Input offset current temperature VCC = 4V, Vicm = VCC/2 drift VCC = 4V, Vicm = VCC/2, T= 25°C Tmin < Top < Tmax CMR Common mode rejection ratio 0 < Vicm < 3V Tmin < Top < Tmax 72 72 90 AVD Large signal voltage gain RL = 10kΩ, Vout= 0.5V to 2.5V Tmin < Top < Tmax 74 60 85 RL = 1kΩ connected to VCC/2 Tmin < Top < Tmax 2.9 2.8 2.95 RL = 10kΩ connected to VCC/2 Tmin < Top < Tmax 2.94 2.9 2.98 VOH VOL High level output voltage Low level output voltage ICC 1 nA pA/°C 15 35 nA dB dB V V RL = 1kΩ connected to VCC/2 Tmin < Top < Tmax 0.05 0.1 0.2 V RL = 10kΩ connected to VCC/2 Tmin < Top < Tmax 0.02 0.06 0.1 V Output sink current Vout = VCC Tmin < Top < Tmax 20 15 30 Output source current Vout = VDD Tmin < Top < Tmax 15 10 25 Supply current per amplifier No load Tmin < Top < Tmax Iout 60 100 100 Input offset current (Vout = Vcc/2) Iio μV/°C 1 mA 2.2 2.6 mA AC performance Gain bandwidth product RL= 1kΩ, CL= 100pF, f = 100kHz Tmin < Top < Tmax Fu Unity gain frequency RL = 1kΩ, CL = 100pF 5 MHz φm Phase margin RL = 1kΩ, CL = 100pF, G=5 50 Degrees SR Slew rate RL = 1kΩ, CL = 100pF Tmin < Top < Tmax en Equivalent input noise voltage f = 1kHz Total harmonic distortion Vout = (VCC-1V)/5, G= -5.1, Vicm=VCC/2 GBP THD+en 6 3.5 2 1.7 7.5 2.7 MHz V/µs 8 nV -----------Hz 0.01 % 5/12 Electrical characteristics RHF43B Figure 1. Input offset voltage distribution at T = 25°C Figure 3. Input bias current vs. input common Figure 4. mode voltage at VCC= 3V Supply current vs. input common mode voltage in follower configuration at VCC= 3V Figure 5. Supply current vs. input common mode voltage in follower configuration at VCC= 16V Supply current vs. supply voltage at Vicm= VCC/2 6/12 Figure 2. Figure 6. Input bias current vs. supply voltage RHF43B Electrical characteristics Figure 7. Output current vs.supply voltage at Figure 8. Vicm= VCC/2 Figure 9. Output current vs. output voltage at Figure 10. Differential input voltage vs. output VCC= 16V voltage at VCC= 3V Output current vs. output voltage at VCC= 3V Input equivalent noise density (nV/VHz) Figure 11. Differential input voltage vs. output Figure 12. Noise vs. frequency at VCC= 3V and voltage at VCC= 16V VCC= 16V Vcc=3V, Vicm=2.5V, Tamb=25°C Vcc=16V, Vicm=2.5V, Tamb=25°C 7/12 Electrical characteristics RHF43B Figure 13. Voltage gain and phase vs. frequency at VCC= 3V, Vicm= 1.5V, and T= 25°C Figure 14. Voltage gain and phase vs. frequency at VCC= 3V and Vicm= 2.5V at T= 25°C 50 180 50 180 40 150 40 150 120 30 0 0 −30 −60 −20 −40 −50 4 10 5 10 6 10 −30 −120 −40 −150 7 −50 4 10 −180 10 Figure 15. Voltage gain and phase vs. frequency at VCC= 3V and Vicm= 0.5V at T= 25°C −30 −60 −90 Vcc=3V, Vicm=2.5V, G= −100 Rl=1kOhms, Cl=100pF, Vrl=Vcc/2 Tamb=25°C 5 10 6 10 −120 −150 7 Figure 16. Voltage gain and phase vs. frequency at VCC= 16V and Vicm= 8V at T= 25°C 180 50 180 40 150 40 150 120 30 20 −30 −10 −60 −20 −40 −50 4 10 Gain (dB) 0 Phase (°) 30 0 −30 20 60 10 5 10 6 10 30 0 0 −30 −10 −30 −120 −40 −150 7 60 10 −60 −20 −90 Vcc=3V, Vicm=0.5V, G= −100 Rl=1kOhms, Cl=100pF, Vrl=Vcc/2 Tamb=25°C 120 90 90 −50 4 10 −180 10 Figure 17. Voltage gain and phase vs. frequency at VCC=16V and Vicm= 15.5V at T= 25°C −90 Vcc=16V, Vicm=0.5V, G= −100 Rl=1kOhms, Cl=100pF, Vrl=Vcc/2 Tamb=25°C 5 6 10 −120 −150 −180 7 10 10 Figure 18. Voltage gain and phase vs. frequency at VCC=16V and Vicm= 0.5V at T= 25°C 50 180 50 180 40 150 40 150 120 30 120 30 90 30 0 0 −30 −10 −60 −20 −40 −50 4 10 5 6 10 −120 7 10 60 10 30 0 0 −30 −10 −60 −20 −90 Vcc=16V, Vicm=15.5V, G= −100 Rl=1kOhms, Cl=100pF, Vrl=Vcc/2 Tamb=25°C 10 Gain (dB) 10 −30 90 20 60 Phase (°) Gain (dB) 20 8/12 −180 10 50 30 Gain (dB) 0 −10 −20 −90 Vcc=3V, Vicm=1.5V, G= −100 Rl=1kOhms, Cl=100pF, Vrl=Vcc/2 Tamb=25°C 30 0 Phase (°) −10 60 10 Phase (°) 30 Gain (dB) 10 −30 20 60 Phase (°) Gain (dB) 20 120 90 90 −30 −150 −40 −180 −50 4 10 −90 Vcc=16V, Vicm=0.5V, G= −100 Rl=1kOhms, Cl=100pF, Vrl=Vcc/2 Tamb=25°C 5 10 6 10 −120 −150 7 10 −180 Phase (°) 30 RHF43B Electrical characteristics Figure 20. Inverting Large signal pulse response at VCC= 16V, T= 25°C 2.0 8 1.5 6 1.0 4 Output Voltage (V)) Output Voltage (V)) Figure 19. Inverting large signal pulse response at VCC= 3V, T= 25°C 0.5 Vcc=3V, Vin=1Vpp G=-100 0.0 -0.5 2 Vcc=16V, Vin=1Vpp, G= -100 0 -2 -4 -1.0 -6 -1.5 -2.0 -0.5 0.0 -8 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 9/12 Package information 3 RHF43B Package information Figure 21. Ceramic Flat08 package mechanical data Symbol A b c D E E2 E3 e L Q S1 N 10/12 Min .088 .015 .004 .250 .250 .170 .035 .335 .026 .036 Inches Nom .096 .017 .005 .255 .255 .175 .040 .050 .031 .044 08 Max .104 .019 .006 .260 .260 .180 .045 Min 2.24 0.38 0.10 6.35 6.35 4.32 0.88 .378 .036 .052 8.5 0.66 0.92 Millimeters Nom 2.44 0.43 0.13 6.48 6.48 4.45 1.01 1.27 0.79 1.12 08 Max 2.64 0.48 0.16 6.61 6.61 4.58 1.14 9.6 0.92 1.32 RHF43B Ordering information 4 Ordering information Table 5. Order codes Description Temperature range Package Packing Marking RHF43BK-01V Flight parts -55°C, +125°C Flat08 Individual cavity anti-static material trays Marked against QML SMD RHF43BK1 Engineering samples -55°C, +125°C Flat08 Individual cavity anti-static material trays RHF43BK1 RHF43BK2 Engineering samples with 48h burn-in -55°C, +125°C Flat08 Individual cavity anti-static material trays RHF43BK2 43BDIE2V QMLV -55°C, +125°C Naked die Waffle-pack No die marking Order code 5 Revision history Table 6. Document revision history Date Revision Changes 21-May-2007 1 First public release. 10-Dec-2007 2 Changed name of pins on pinout diagram on cover page. Modified supply current values over temperature range in electrical characteristics. Power dissipation removed from AMR table. 29-Jan-2008 3 Added ELRS-free rad-hard design in description on cover page. Modified description of heavy ion latch-up (SEL) immunity parameter in Table 1 on page 2. 11/12 RHF43B Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2008 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 12/12