STMICROELECTRONICS RHF43BK-01V

RHF43B
RAD-hardened
precision bipolar single operational amplifier
Features
■
High immunity to radiations, 300kRad TID; SEL
immune at 68MeV/cm²/mg LET ions.
■
Rail-to-rail input/output
■
8MHz gain bandwidth at 16V
■
Stable for gain ≥ 5
■
Low input offset voltage: 100µV typ
■
Supply current: 2.2mA typ
■
Operating from 3V to 16V
■
Ceramic Flat-8
1
ESD internal protection ≥ 2kV
■
Latch-up immunity: 200mA
■
Soon RHA QML-V qualified with smd
n° 5962-062xx
IN -
NC
+VCC
VCC
IN +
OUT
NC
-VCC
VDD
Input bias current: 30nA typ
■
8
NC
4
5
Description
The RHF43B is a precision bipolar operational
amplifier available in hermetic 8-pin flat package
and in die form. ln addition to its low offset
voltage, rail-to-rail feature, wide supply voltage,
the RHF43B is designed for increased tolerance
to radiation. Its intrinsic ELDRS-free rad-hard
design allows this product to be used in space
environment and in applications operating in
harsh environments.
Applications
■
Space probes and satellites
■
Defense systems
■
Scientific instrumentation
■
Nuclear systems
January 2008
Rev 3
1/12
www.st.com
12
Absolute maximum ratings and operating conditions
1
RHF43B
Absolute maximum ratings and operating conditions
Table 1.
Absolute maximum ratings (AMR)
Symbol
Parameter
VCC
Supply voltage(1)
Vid
Differential input voltage (2)
(3)
Vin
Input voltage range
IIN
Input current
Tstg
Value
Unit
18
±9
V
±1.2
V
VDD-0.3 to 16
V
45
mA
-65 to +150
°C
Thermal resistance junction to
ambient(4)(5)
125
°C/W
Rthjc
Thermal resistance junction to
case(4)(5)
80
°C/W
Tj
Maximum junction temperature
150
°C
2
kV
Latch-up immunity
200
mA
Lead temperature (soldering, 10 sec)
260
°C
300
kRad
300
kRad
68
MeV.cm-2.mg
2+14
n.cm-2
Rthja
ESD
Storage temperature
HBM: human body
model(6)
Radiation related parameters
Low dose rate of 0.01 rad.sec-1
High dose rate of 50-300
rad.sec-1
Heavy ion latch-up (SEL) immune with heavy ions
characterized by:
Neutron immunity
1. All values, except differential voltage are with respect to network terminal.
2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
3. The magnitude of input and output terminal must never exceed VCC+0.3V.
4. Short-circuits can cause excessive heating and destructive dissipation.
5. Rth are typical values.
6. Human body model: 100pF discharged through a 1.5kΩ resistor between two pins of the device, done for
all couples of pin combinations with other pins floating.
Table 2.
Operating conditions
Symbol
2/12
Parameter
Value
Unit
3 to 16
V
VCC
Supply voltage
Vicm
Common mode input voltage range
VDD to VCC
V
Toper
Operating free air temperature range
-55 to +125
°C
RHF43B
Electrical characteristics
2
Electrical characteristics
Table 3.
VCC = +16V, VDD = 0V, Vicm = VCC/2, Tamb = 25°C, RL connected to VCC/2 (unless
otherwise specified)
Symbol
Parameter
Test conditions
Min.
Typ.
Max.
100
300
Unit
DC performance
T= 25°C
Vio
DVio
Iib
DIib
Offset voltage
µV
Tmin < Top < Tmax
500
Input offset voltage drift
Input bias current
Vicm = VCC/2, T = 25°C
Tmin < Top < Tmax
30
Input offset current temperature
drift
Vicm = VCC/2, T = 25°C
Tmin < Top < Tmax
CMR
Common mode rejection ratio
0 < Vicm < 16V
Tmin < Top < Tmax
72
72
110
SVR
Supply rejection ratio
3V < VCC <16V, Vicm =VCC/2
Tmin < Top < Tmax
90
80
120
AVD
Large signal voltage gain
RL = 10kΩ, Vout= 0.5V to 15.5V
Tmin < Top < Tmax
74
60
85
RL = 1kΩ connected to VCC/2
Tmin < Top < Tmax
15.7
15.6
15.8
RL = 10kΩ connected to VCC/2
Tmin < Top < Tmax
15.9
15.8
15.96
VOH
VOL
High level output voltage
Low level output voltage
ICC
1
nA
pA/°C
15
35
nA
dB
dB
dB
V
V
RL = 1kΩ connected to VCC/2
Tmin. < Top < Tmax.
0.1
0.2
0.3
V
RL = 10kΩ connected to VCC/2
Tmin < Top < Tmax
0.04
0.06
0.1
V
Output sink current
Vout = VCC
Tmin < Top < Tmax
20
15
30
Output source current
Vout = VDD
Tmin < Top < Tmax
15
10
25
Supply current
No load
Tmin < Top < Tmax
Iout
60
100
100
Input offset current
(Vout = VCC/2)
Iio
μV/°C
1
mA
2.5
2.9
mA
AC performance
Gain bandwidth product
RL= 1kΩ, CL= 100pF, f= 100kHz
Tmin < Top < Tmax
Fu
Unity gain frequency
RL= 1kΩ, CL= 100pF
5
MHz
φm
Phase margin
RL = 1kΩ, CL = 100pF, G=5
50
Degrees
GBP
6
3.5
8
MHz
3/12
Electrical characteristics
Table 3.
RHF43B
VCC = +16V, VDD = 0V, Vicm = VCC/2, Tamb = 25°C, RL connected to VCC/2 (unless
otherwise specified) (continued)
Symbol
Parameter
Test conditions
SR
Slew rate
RL = 1kΩ, CL = 100pF
Tmin < Top < Tmax
en
Equivalent input noise voltage
f = 1kHz
Total harmonic distortion
Vout = (VCC-1V)/5, G= -5.1,
Vicm=VCC/2
THD+en
4/12
Min.
Typ.
2
1.7
3
Max.
Unit
V/μs
8
nV
-----------Hz
0.01
%
RHF43B
Table 4.
Electrical characteristics
VCC = +3V, VDD = 0V, Vicm = VCC/2, Tamb = 25°C, RL connected to VCC/2 (unless
otherwise specified)
Symbol
Parameter
Test conditions
Min.
Typ.
Max.
100
300
Unit
DC performance
T=25°C
Vio
DVio
Iib
DIib
Offset voltage
µV
Tmin < Top < Tmax
500
Input offset voltage drift
Input bias current
VCC= 4V, Vicm= VCC/2, T= 25°C
Tmin < Top < Tmax
30
Input offset current temperature
VCC = 4V, Vicm = VCC/2
drift
VCC = 4V, Vicm = VCC/2, T= 25°C
Tmin < Top < Tmax
CMR
Common mode rejection ratio
0 < Vicm < 3V
Tmin < Top < Tmax
72
72
90
AVD
Large signal voltage gain
RL = 10kΩ, Vout= 0.5V to 2.5V
Tmin < Top < Tmax
74
60
85
RL = 1kΩ connected to VCC/2
Tmin < Top < Tmax
2.9
2.8
2.95
RL = 10kΩ connected to VCC/2
Tmin < Top < Tmax
2.94
2.9
2.98
VOH
VOL
High level output voltage
Low level output voltage
ICC
1
nA
pA/°C
15
35
nA
dB
dB
V
V
RL = 1kΩ connected to VCC/2
Tmin < Top < Tmax
0.05
0.1
0.2
V
RL = 10kΩ connected to VCC/2
Tmin < Top < Tmax
0.02
0.06
0.1
V
Output sink current
Vout = VCC
Tmin < Top < Tmax
20
15
30
Output source current
Vout = VDD
Tmin < Top < Tmax
15
10
25
Supply current per amplifier
No load
Tmin < Top < Tmax
Iout
60
100
100
Input offset current
(Vout = Vcc/2)
Iio
μV/°C
1
mA
2.2
2.6
mA
AC performance
Gain bandwidth product
RL= 1kΩ, CL= 100pF, f = 100kHz
Tmin < Top < Tmax
Fu
Unity gain frequency
RL = 1kΩ, CL = 100pF
5
MHz
φm
Phase margin
RL = 1kΩ, CL = 100pF, G=5
50
Degrees
SR
Slew rate
RL = 1kΩ, CL = 100pF
Tmin < Top < Tmax
en
Equivalent input noise voltage
f = 1kHz
Total harmonic distortion
Vout = (VCC-1V)/5, G= -5.1,
Vicm=VCC/2
GBP
THD+en
6
3.5
2
1.7
7.5
2.7
MHz
V/µs
8
nV
-----------Hz
0.01
%
5/12
Electrical characteristics
RHF43B
Figure 1.
Input offset voltage distribution at
T = 25°C
Figure 3.
Input bias current vs. input common Figure 4.
mode voltage at VCC= 3V
Supply current vs. input common
mode voltage in follower
configuration at VCC= 3V
Figure 5.
Supply current vs. input common
mode voltage in follower
configuration at VCC= 16V
Supply current vs. supply voltage
at Vicm= VCC/2
6/12
Figure 2.
Figure 6.
Input bias current vs. supply voltage
RHF43B
Electrical characteristics
Figure 7.
Output current vs.supply voltage at Figure 8.
Vicm= VCC/2
Figure 9.
Output current vs. output voltage at Figure 10. Differential input voltage vs. output
VCC= 16V
voltage at VCC= 3V
Output current vs. output voltage at
VCC= 3V
Input equivalent noise density (nV/VHz)
Figure 11. Differential input voltage vs. output Figure 12. Noise vs. frequency at VCC= 3V and
voltage at VCC= 16V
VCC= 16V
Vcc=3V, Vicm=2.5V, Tamb=25°C
Vcc=16V, Vicm=2.5V, Tamb=25°C
7/12
Electrical characteristics
RHF43B
Figure 13. Voltage gain and phase vs.
frequency at VCC= 3V, Vicm= 1.5V,
and T= 25°C
Figure 14. Voltage gain and phase vs.
frequency at VCC= 3V and
Vicm= 2.5V at T= 25°C
50
180
50
180
40
150
40
150
120
30
0
0
−30
−60
−20
−40
−50
4
10
5
10
6
10
−30
−120
−40
−150
7
−50
4
10
−180
10
Figure 15. Voltage gain and phase vs.
frequency at VCC= 3V and
Vicm= 0.5V at T= 25°C
−30
−60
−90
Vcc=3V, Vicm=2.5V, G= −100
Rl=1kOhms, Cl=100pF, Vrl=Vcc/2
Tamb=25°C
5
10
6
10
−120
−150
7
Figure 16. Voltage gain and phase vs.
frequency at VCC= 16V and
Vicm= 8V at T= 25°C
180
50
180
40
150
40
150
120
30
20
−30
−10
−60
−20
−40
−50
4
10
Gain (dB)
0
Phase (°)
30
0
−30
20
60
10
5
10
6
10
30
0
0
−30
−10
−30
−120
−40
−150
7
60
10
−60
−20
−90
Vcc=3V, Vicm=0.5V, G= −100
Rl=1kOhms, Cl=100pF, Vrl=Vcc/2
Tamb=25°C
120
90
90
−50
4
10
−180
10
Figure 17. Voltage gain and phase vs.
frequency at VCC=16V and
Vicm= 15.5V at T= 25°C
−90
Vcc=16V, Vicm=0.5V, G= −100
Rl=1kOhms, Cl=100pF, Vrl=Vcc/2
Tamb=25°C
5
6
10
−120
−150
−180
7
10
10
Figure 18. Voltage gain and phase vs.
frequency at VCC=16V and
Vicm= 0.5V at T= 25°C
50
180
50
180
40
150
40
150
120
30
120
30
90
30
0
0
−30
−10
−60
−20
−40
−50
4
10
5
6
10
−120
7
10
60
10
30
0
0
−30
−10
−60
−20
−90
Vcc=16V, Vicm=15.5V, G= −100
Rl=1kOhms, Cl=100pF, Vrl=Vcc/2
Tamb=25°C
10
Gain (dB)
10
−30
90
20
60
Phase (°)
Gain (dB)
20
8/12
−180
10
50
30
Gain (dB)
0
−10
−20
−90
Vcc=3V, Vicm=1.5V, G= −100
Rl=1kOhms, Cl=100pF, Vrl=Vcc/2
Tamb=25°C
30
0
Phase (°)
−10
60
10
Phase (°)
30
Gain (dB)
10
−30
20
60
Phase (°)
Gain (dB)
20
120
90
90
−30
−150
−40
−180
−50
4
10
−90
Vcc=16V, Vicm=0.5V, G= −100
Rl=1kOhms, Cl=100pF, Vrl=Vcc/2
Tamb=25°C
5
10
6
10
−120
−150
7
10
−180
Phase (°)
30
RHF43B
Electrical characteristics
Figure 20. Inverting Large signal pulse
response at VCC= 16V, T= 25°C
2.0
8
1.5
6
1.0
4
Output Voltage (V))
Output Voltage (V))
Figure 19. Inverting large signal pulse
response at VCC= 3V, T= 25°C
0.5
Vcc=3V, Vin=1Vpp
G=-100
0.0
-0.5
2
Vcc=16V, Vin=1Vpp,
G= -100
0
-2
-4
-1.0
-6
-1.5
-2.0
-0.5 0.0
-8
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
-1.0 0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
9/12
Package information
3
RHF43B
Package information
Figure 21. Ceramic Flat08 package mechanical data
Symbol
A
b
c
D
E
E2
E3
e
L
Q
S1
N
10/12
Min
.088
.015
.004
.250
.250
.170
.035
.335
.026
.036
Inches
Nom
.096
.017
.005
.255
.255
.175
.040
.050
.031
.044
08
Max
.104
.019
.006
.260
.260
.180
.045
Min
2.24
0.38
0.10
6.35
6.35
4.32
0.88
.378
.036
.052
8.5
0.66
0.92
Millimeters
Nom
2.44
0.43
0.13
6.48
6.48
4.45
1.01
1.27
0.79
1.12
08
Max
2.64
0.48
0.16
6.61
6.61
4.58
1.14
9.6
0.92
1.32
RHF43B
Ordering information
4
Ordering information
Table 5.
Order codes
Description
Temperature
range
Package
Packing
Marking
RHF43BK-01V
Flight parts
-55°C, +125°C
Flat08
Individual cavity
anti-static material
trays
Marked against
QML SMD
RHF43BK1
Engineering
samples
-55°C, +125°C
Flat08
Individual cavity
anti-static material
trays
RHF43BK1
RHF43BK2
Engineering
samples with
48h burn-in
-55°C, +125°C
Flat08
Individual cavity
anti-static material
trays
RHF43BK2
43BDIE2V
QMLV
-55°C, +125°C
Naked die
Waffle-pack
No die marking
Order code
5
Revision history
Table 6.
Document revision history
Date
Revision
Changes
21-May-2007
1
First public release.
10-Dec-2007
2
Changed name of pins on pinout diagram on cover page.
Modified supply current values over temperature range in electrical
characteristics.
Power dissipation removed from AMR table.
29-Jan-2008
3
Added ELRS-free rad-hard design in description on cover page.
Modified description of heavy ion latch-up (SEL) immunity parameter in Table 1
on page 2.
11/12
RHF43B
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2008 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
12/12