STMICROELECTRONICS TS512IYDT

TS512
Precision dual operational amplifier
Features
■
Low input offset voltage: 500 µV max.
■
Low power consumption
■
Short-circuit protection
■
Low distortion, low noise
■
High gain-bandwidth product: 3 MHz
■
High channel separation
■
ESD protection 2 kV
■
Macromodel included in this specification
N
DIP8
(Plastic package)
D
SO-8
(Plastic micropackage)
Description
The TS512 is a high performance dual
operational amplifier with frequency and phase
compensation built into the chip. The internal
phase compensation allows stable operation in
voltage follower in spite of its high gain-bandwidth
product.
The circuit presents very stable electrical
characteristics over the entire supply voltage
range, and is particularly intended for professional
and telecom applications (such as active filtering).
May 2008
Pin connections
(Top view)
Output 1 1
Inverting Input 1 2
-
Non-inverting Input 1 3
+
VCC - 4
Rev 3
+
8
VCC +
7
Output
6
Inverting Input 2
5
Non-inverting Input 2
1/16
www.st.com
16
Absolute maximum ratings and operating conditions
1
TS512
Absolute maximum ratings and operating conditions
Table 1.
Absolute maximum ratings
Symbol
Parameter
VCC
Supply voltage
Vin
Input voltage
Vid
Differential input voltage
Value
Unit
±18
V
±VCC
±(VCC - 1)
Rthja
Thermal resistance junction to ambient (1)
DIP8
SO-8
85
125
°C/W
Rthjc
Thermal resistance junction to case (1)
DIP8
SO-8
41
40
°C/W
+ 150
°C
Storage temperature range
-65 to +150
°C
HBM: human body model(2)
2
kV
200
V
1.5
kV
Tj
Tstg
ESD
Junction temperature
MM: machine model
(3)
CDM: charged device model
(4)
1. Short-circuits can cause excessive heating and destructive dissipation.Rth are typical values.
2. Human body model: A 100 pF capacitor is charged to the specified voltage, then discharged through a
1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations
while the other pins are floating.
3. Machine model: A 200 pF capacitor is charged to the specified voltage, then discharged directly between
two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of
connected pin combinations while the other pins are floating.
4. Charged device model: all pins and the package are charged together to the specified voltage and then
discharged directly to the ground through only one pin. This is done for all pins.
Table 2.
Operating conditions
Symbol
Parameter
VCC
Supply voltage(1)
Vicm
Common mode input voltage range
Toper
Operating free air temperature range
1. Value with respect to VDD pin.
2/16
Value
Unit
6 to 30V
V
VDD+1.5 to VCC-1.5
V
-40 to +125
°C
TS512
2
Schematic diagram
Schematic diagram
Figure 1.
Schematic diagram (1/2 TS512)
VCC
R16
4kΩ
R5
4kΩ
R2
2kΩ
R1
2kΩ
R11
1kΩ
R6
4kΩ
R18
2kΩ
Q14
Q13
Q25
Q11
Q35
Q12
Q2
R12
812Ω
Q3
Q29
Q27
Q21
R13
27Ω
Q37
Q36
Non-inverting
Input
Inverting
Input
Output
Q38
Q15
R17
4kΩ
R14
27Ω
Q22
Q5
Q28
C2
23pF
Q30
Q7
Q31
Q4
Q6
R15
150kΩ
Q8
Q9
Q17
Q32
Q18
Q10
R4
1.2kΩ
Q19
Q23
R8
150kΩ
C1
43pF
R3
60kΩ
Q20
R7
15kΩ
Q33
R9
15kΩ
Q34
R10
45kΩ
VCC
3/16
Electrical characteristics
3
Electrical characteristics
Table 3.
VCC = ±15V, Tamb = 25°C (unless otherwise specified)
Symbol
Parameter
Min.
Typ.
Max.
Unit
ICC
Supply current (per operator)
Tmin ≤ Tamb ≤T max
0.5
0.6
0.75
mA
Iib
Input bias current
Tmin ≤ Tamb ≤T max
50
150
300
nA
Rin
Input resistance, f = 1kHz
1
Vio
Input offset voltage
TS512
TS512A
Tmin ≤ Tamb ≤ Tmax
TS512
TS512A
ΔVio
Iio
Ios
Output short-circuit current
Avd
Large signal voltage gain
RL = 2kΩ, VCC = ±15V, Tmin ≤ Tamb ≤T max
VCC = ± 4V
Gain-bandwidth product, f = 100kHz
Total harmonic distortion
Av = 20dB, RL = 2kΩ
Vo = 2Vpp, f = 1kHz
±Vopp
Output voltage swing
RL = 2kΩ, VCC = ±15V, Tmin ≤ Tamb ≤T max
VCC = ± 4V
5
mV
µV/°C
20
40
nA
0.08
nA
-------°C
23
mA
90
100
95
dB
1.8
3
MHz
8
10
18
nV
-----------Hz
0.03
%
V
±13
±3
Vopp
Large signal voltage swing
RL = 10kΩ, f = 10kHz
SR
Slew rate
Unity gain, RL = 2kΩ
0.8
Common mode rejection ratio
Vic = ±10V
90
CMR
2.5
0.5
2
Equivalent input noise voltage, f = 1kHz
Rs = 50Ω
Rs = 1kΩ
Rs = 10kΩ
THD
MΩ
3.5
1.5
Input offset current
Tmin ≤ Tamb ≤ Tmax
Input offset current drift
Tmin ≤ Tamb ≤ Tmax
en
0.5
Input offset voltage drift
Tmin ≤ Tamb ≤ Tmax
ΔIio
GBP
4/16
TS512
28
Vpp
1.5
V/µs
dB
TS512
Electrical characteristics
Table 3.
Symbol
SVR
VCC = ±15V, Tamb = 25°C (unless otherwise specified)
Parameter
Supply voltage rejection ratio
Vo1/Vo2 Channel separation, f = 1kHz
Min.
Typ.
90
Max.
Unit
dB
120
dB
5/16
Electrical characteristics
Figure 2.
TS512
Vio distribution at VCC= ±15V and
T= 25°C
Figure 3.
30
Vio distribution at VCC= ±15V and
T= 125°C
20
Vio distribution at T = 125 °C
Vio distribution at T = 25 °C
25
15
Population %
Population %
20
15
10
10
5
5
0
0
-400
-200
0
200
-400
400
-200
Figure 4.
Input offset voltage vs. input
Figure 5.
common mode voltage at VCC= 10V
400
Input offset voltage vs. input
common mode voltage at VCC= 30V
T=125°C
0.2
T=125°C
0.0
T=25°C
-0.2
T=-40°C
-0.4
0.2
T=25°C
0.0
T=-40°C
-0.2
-0.4
-0.6
Vcc = 30 V
Vcc = 10 V
-0.8
-0.6
1
Figure 6.
2
3
4
5
6
7
Input Common Mode Voltage (V)
8
9
0
Supply current (per operator) vs.
supply voltage at Vicm= VCC/2
Figure 7.
5
10
15
20
25
Input Common Mode Voltage (V)
30
Supply current (per operator) vs.
input common mode voltage at
VCC= 6V
0.50
0.6
0.45
0.5
T=125°C
Supply Current (mA)
Supply Current (mA)
200
0.4
Input Offset Voltage (mV)
Input Offset Voltage (mV)
0.4
T=25°C
0.4
T=-40°C
0.3
0.2
T=125°C
0.40
T=25°C
0.35
T=-40°C
0.30
0.25
Follower configuration
Vcc = 6 V
Vicm = Vcc/2
0.1
6
6/16
0
Input offset voltage (µV)
Input offset voltage (µV)
9
12
15
18
21
Supply voltage (V)
24
27
30
0.20
1.0
1.5
2.0 2.5 3.0 3.5 4.0 4.5 5.0
Input Common Mode Voltage (V)
5.5
6.0
TS512
Electrical characteristics
Figure 8.
Supply current (per operator) vs.
input common mode voltage at
VCC= 10V
Figure 9.
0.55
0.45
T=125°C
0.40
T=25°C
0.35
T=-40°C
0.50
Supply Current (mA)
Supply Current (mA)
0.50
Supply current (per operator) vs.
input common mode voltage at
VCC= 30V
0.30
T=125°C
0.45
T=25°C
0.40
T=-40°C
0.35
0.30
Follower configuration
Vcc = 10 V
0.25
Follower configuration
Vcc = 30 V
0.25
1
2
3
4
5
6
7
8
Input Common Mode Voltage (V)
9
10
0
5
10
15
20
25
Input Common Mode Voltage (V)
30
Figure 10. Output current vs. supply voltage at Figure 11. Output current vs. output voltage at
Vicm= VCC/2
VCC = 6V
40
40
Source
Vid = 1V
30
Output Current (mA)
Output Current (mA)
20
T=125°C
10
Vicm = Vcc/2
0
-10
T=125°C
-20
T=25°C
Sink
Vid = -1V
-30
Source
Vid = 1V
T=25°C
T=25°C
20
T=-40°C
30
T=-40°C
T=-40°C
-40
T=125°C
10
0
Vcc = 6 V
-10
T=125°C
-20 Sink
Vid = -1V
-30
T=25°C
T=-40°C
-40
10.0
15.0
20.0
Supply voltage (V)
25.0
30.0
0
1
2
3
4
Output Voltage (V)
5
6
Figure 12. Output current vs. output voltage at Figure 13. Output current vs. output voltage at
VCC = 10V
VCC = 30V
40
40
T=-40°C
30
T=125°C
10
Vcc = 10 V
T=125°C
-10
Sink
Vid = -1V
-20
T=-40°C
T=125°C
10
0
Vcc = 30 V
-10
T=125°C
-20
T=-40°C
T=25°C
-30
Sink
Vid = -1V
-30
T=-40°C
-40
Source
Vid = 1V
T=25°C
20
Output Current (mA)
Output Current (mA)
20
0
30
Source
Vid = 1V
T=25°C
T=25°C
-40
0
2
4
6
Output Voltage (V)
8
10
0
5
10
15
20
Output Voltage (V)
25
30
7/16
Electrical characteristics
TS512
Figure 14. Voltage gain and phase for different Figure 15. Voltage gain and phase for different
capacitive loads at VCC= 6V,
capacitive loads at VCC= 10V,
Vicm= 3V and T= 25°C
Vicm= 5V and T= 25°C
45
50
0
40
-45
30
45
Phase
Gain (dB)
30
20
CL=100pF
10
-135
CL=600pF
CL=330pF
0
-20
3
10
10
4
10
5
10
6
Gain
0
-45
Phase
CL=100pF
20
CL=600pF
10
-180
Vcc = 6 V, Vicm = 3 V, G = -100
RL = 2 kΩ connected to the ground
T amb = 25 °C
-10
-90
Gain (dB)
40
Phase (°)
Gain
-135
CL=330pF
0
-180
Vcc = 10 V, Vicm = 5 V, G = -100
RL = 2 kΩ connected to the ground
T amb = 25 °C
-225
-10
-270
-20
3
10
10
Frequency (Hz)
4
10
-90
5
-225
10
6
-270
Frequency (Hz)
Figure 16. Voltage gain and phase for different Figure 17. Frequency response for different
capacitive loads at VCC= 30V,
capacitive loads at VCC= 6V,
Vicm= 15V and T= 25°C
Vicm= 3V and T= 25°C
50
45
20
Gain
40
0
30
-45
CL=600pF
10
-135
CL=330pF
0
-10
-20
3
10
10
4
10
5
10
6
Gain with CL=100 pF
-10
-225
-30
-270
-40
10k
Figure 18. Frequency response for different
capacitive loads at VCC= 10V,
Vicm= 5V and T= 25°C
Gain with CL=600 pF
10
Gain (dB)
Gain (dB)
10M
Gain with CL=600 pF
0
Gain with CL=100 pF
-10
Gain with CL=330 pF
-20
-10
Gain with CL=100 pF
Gain with CL=330 pF
-20
Vcc = 10 V, Vicm = 5 V
RL = 2 kΩ connected to the ground
Tamb = 25 C
100k
1M
Frequency (Hz)
8/16
1M
20
0
-40
10k
100k
Figure 19. Frequency response for different
capacitive loads at VCC= 30V,
Vicm= 15V and T= 25°C
20
-30
Vcc = 6 V, Vicm = 3 V
RL = 2 kΩ connected to the ground
Tamb = 25 C
Frequency (Hz)
Frequency (Hz)
10
Gain with CL=330 pF
-20
-180
Vcc = 30 V, Vicm = 15 V, G = -100
RL = 2 kΩ connected to the ground
Tamb = 25 °C
Gain with CL=600 pF
0
-90
Gain (dB)
CL=100pF
Phase (°)
Gain (dB)
Phase
20
10
-30
10M
-40
10k
Vcc = 30 V, Vicm = 15 V
RL = 2 kΩ connected to the ground
Tamb = 25 C
100k
1M
Frequency (Hz)
10M
Phase (°)
50
TS512
Electrical characteristics
Figure 20. Phase margin vs. output current, at Figure 21. Phase margin vs. output current, at
VCC= 6V, Vicm= 3V and T= 25°C
VCC= 10V, Vicm= 5V and T= 25°C
70
70
Recommended area
60
50
CL=330 pF
40
CL=600 pF
Phase Margin (°)
Phase Margin (°)
50
30
20
10
0
-20
-30
-40
-3
-2
-1
0
1
2
CL=100 pF
CL=330 pF
40
CL=600 pF
30
20
10
0
Vcc = 6 V
Vicm = 3 V
Tamb = 25 °C
RL = 2 k Ω
-10
Recommended area
60
CL=100 pF
Vcc = 10 V
Vicm = 5 V
Tamb = 25 °C
RL = 2 kΩ
-10
-20
3
Output Current (mA)
-30
-3
-2
-1
0
1
2
3
Output Current (mA)
Figure 22. Phase margin vs. output current, at
VCC= 30V, Vicm= 15V and T= 25°C
70
Recommended area
60
CL=100 pF
Phase Margin (°)
50
CL=330 pF
CL=600 pF
40
30
20
10
Vcc = 30 V
Vicm = 15 V
Tamb = 25 °C
RL = 2 k Ω
0
-10
-20
-3
-2
-1
0
1
2
3
Output Current (mA)
9/16
Macromodels
TS512
4
Macromodels
4.1
Important note concerning this macromodel
Please consider the following remarks before using this macromodel.
●
All models are a trade-off between accuracy and complexity (i.e. simulation time).
●
Macromodels are not a substitute to breadboarding; rather, they confirm the validity of
a design approach and help to select surrounding component values.
●
A macromodel emulates the nominal performance of a typical device within specified
operating conditions (temperature, supply voltage, for example). Thus the
macromodel is often not as exhaustive as the datasheet, its purpose is to illustrate the
main parameters of the product.
Data derived from macromodels used outside of the specified conditions (VCC, temperature,
for example) or even worse, outside of the device operating conditions (VCC, Vicm, for
example), is not reliable in any way.
4.2
Macromodel code
** Standard Linear Ics Macromodels, 1993.
** CONNECTIONS :
* 1 INVERTING INPUT
* 2 NON-INVERTING INPUT
* 3 OUTPUT
* 4 POSITIVE POWER SUPPLY
* 5 NEGATIVE POWER SUPPLY
.SUBCKT TS512 1 3 2 4 5
********************************************************
.MODEL MDTH D IS=1E-8 KF=6.565195E-17 CJO=10F
* INPUT STAGE
CIP 2 5 1.000000E-12
CIN 1 5 1.000000E-12
EIP 10 5 2 5 1
EIN 16 5 1 5 1
RIP 10 11 2.600000E+01
RIN 15 16 2.600000E+01
RIS 11 15 1.061852E+02
DIP 11 12 MDTH 400E-12
DIN 15 14 MDTH 400E-12
VOFP 12 13 DC 0
VOFN 13 14 DC 0
IPOL 13 5 1.000000E-05
CPS 11 15 12.47E-10
DINN 17 13 MDTH 400E-12
VIN 17 5 1.500000e+00
DINR 15 18 MDTH 400E-12
VIP 4 18 1.500000E+00
FCP 4 5 VOFP 3.400000E+01
FCN 5 4 VOFN 3.400000E+01
10/16
TS512
Macromodels
FIBP 2 5 VOFN 1.000000E-02
FIBN 5 1 VOFP 1.000000E-02
* AMPLIFYING STAGE
FIP 5 19 VOFP 9.000000E+02
FIN 5 19 VOFN 9.000000E+02
RG1 19 5 1.727221E+06
RG2 19 4 1.727221E+06
CC 19 5 6.000000E-09
DOPM 19 22 MDTH 400E-12
DONM 21 19 MDTH 400E-12
HOPM 22 28 VOUT 6.521739E+03
VIPM 28 4 1.500000E+02
HONM 21 27 VOUT 6.521739E+03
VINM 5 27 1.500000E+02
GCOMP 5 4 4 5 6.485084E-04
RPM1 5 80 1E+06
RPM2 4 80 1E+06
GAVPH 5 82 19 80 2.59E-03
RAVPHGH 82 4 771
RAVPHGB 82 5 771
RAVPHDH 82 83 1000
RAVPHDB 82 84 1000
CAVPHH 4 83 0.331E-09
CAVPHB 5 84 0.331E-09
EOUT 26 23 82 5 1
VOUT 23 5 0
ROUT 26 3 6.498455E+01
COUT 3 5 1.000000E-12
DOP 19 25 MDTH 400E-12
VOP 4 25 1.742230E+00
DON 24 19 MDTH 400E-12
VON 24 5 1.742230E+00
.ENDS
Table 4.
VCC = ±15V, Tamb = 25°C (unless otherwise specified)
Symbol
Conditions
Vio
Value
Unit
0
mV
Avd
RL = 2kΩ
100
V/mV
ICC
No load, per operator
350
µA
-13.4 to 14
V
Vicm
VOH
RL = 2kΩ
+14
V
VOL
RL = 2kΩ
-14
V
Isink
Vo = 0V
27.5
mA
Isource
Vo = 0V
27.5
mA
GBP
RL = 2kΩ, CL = 100pF
2.5
MHz
SR
RL = 2kΩ
1.4
V/μs
∅m
RL = 2kΩ, CL = 100pF
55
Degrees
11/16
Package information
5
TS512
Package information
In order to meet environmental requirements, ST offers these devices in ECOPACK®
packages. These packages have a lead-free second level interconnect. The category of
second level interconnect is marked on the package and on the inner box label, in
compliance with JEDEC Standard JESD97. The maximum ratings related to soldering
conditions are also marked on the inner box label. ECOPACK is an ST trademark.
ECOPACK specifications are available at: www.st.com.
12/16
TS512
Package information
Figure 23. DIP8 package mechanical drawing
Table 5.
DIP8 package mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
A
Inches
Max.
Min.
Typ.
5.33
Max.
0.210
A1
0.38
0.015
A2
2.92
3.30
4.95
0.115
0.130
0.195
b
0.36
0.46
0.56
0.014
0.018
0.022
b2
1.14
1.52
1.78
0.045
0.060
0.070
c
0.20
0.25
0.36
0.008
0.010
0.014
D
9.02
9.27
10.16
0.355
0.365
0.400
E
7.62
7.87
8.26
0.300
0.310
0.325
E1
6.10
6.35
7.11
0.240
0.250
0.280
e
2.54
0.100
eA
7.62
0.300
eB
L
10.92
2.92
3.30
3.81
0.430
0.115
0.130
0.150
13/16
Package information
TS512
Figure 24. SO-8 package mechanical drawing
Table 6.
SO-8 package mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
A
Max.
Min.
Typ.
1.75
0.25
Max.
0.069
A1
0.10
A2
1.25
b
0.28
0.48
0.011
0.019
c
0.17
0.23
0.007
0.010
D
4.80
4.90
5.00
0.189
0.193
0.197
E
5.80
6.00
6.20
0.228
0.236
0.244
E1
3.80
3.90
4.00
0.150
0.154
0.157
e
0.004
0.010
0.049
1.27
0.050
h
0.25
0.50
0.010
0.020
L
0.40
1.27
0.016
0.050
k
1°
8°
1°
8°
ccc
14/16
Inches
0.10
0.004
TS512
6
Ordering information
Ordering information
Table 7.
Order codes
Temperature
range
Order code
Package
Packaging
DIP8
Tube
TS512IN
Marking
512IN
TS512AIN
512AIN
TS512ID
TS512IDT
Tube or
Tape & reel
SO-8
TS512AID-DT
-40°C, + 125°C
512I
512AI
(1)
TS512IYD
TS512IYDT(1)
512IY
SO-8
(Automotive grade)
TS512AIYD(1)
TS512AIYDT(1)
Tube or
Tape & reel
512AIY
1. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening
according to AEC Q001 & Q 002 or equivalent are on-going.
7
Revision history
Table 8.
Document revision history
Date
Revision
21-Nov-2001
1
Initial release.
23-Jun-2005
2
PPAP references inserted in the datasheet, see Table 7: Order
codes.
3
AC and DC performance characteristics curves added for VCC= 6V,
VCC= 10V and VCC= 30V.
Modified ICC typ, added parameters over temperature range in
electrical characteristics table.
Corrected macromodel information.
5-May-2008
Changes
15/16
TS512
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2008 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
16/16