TS512 Precision dual operational amplifier Features ■ Low input offset voltage: 500 µV max. ■ Low power consumption ■ Short-circuit protection ■ Low distortion, low noise ■ High gain-bandwidth product: 3 MHz ■ High channel separation ■ ESD protection 2 kV ■ Macromodel included in this specification N DIP8 (Plastic package) D SO-8 (Plastic micropackage) Description The TS512 is a high performance dual operational amplifier with frequency and phase compensation built into the chip. The internal phase compensation allows stable operation in voltage follower in spite of its high gain-bandwidth product. The circuit presents very stable electrical characteristics over the entire supply voltage range, and is particularly intended for professional and telecom applications (such as active filtering). May 2008 Pin connections (Top view) Output 1 1 Inverting Input 1 2 - Non-inverting Input 1 3 + VCC - 4 Rev 3 + 8 VCC + 7 Output 6 Inverting Input 2 5 Non-inverting Input 2 1/16 www.st.com 16 Absolute maximum ratings and operating conditions 1 TS512 Absolute maximum ratings and operating conditions Table 1. Absolute maximum ratings Symbol Parameter VCC Supply voltage Vin Input voltage Vid Differential input voltage Value Unit ±18 V ±VCC ±(VCC - 1) Rthja Thermal resistance junction to ambient (1) DIP8 SO-8 85 125 °C/W Rthjc Thermal resistance junction to case (1) DIP8 SO-8 41 40 °C/W + 150 °C Storage temperature range -65 to +150 °C HBM: human body model(2) 2 kV 200 V 1.5 kV Tj Tstg ESD Junction temperature MM: machine model (3) CDM: charged device model (4) 1. Short-circuits can cause excessive heating and destructive dissipation.Rth are typical values. 2. Human body model: A 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating. 3. Machine model: A 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are floating. 4. Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins. Table 2. Operating conditions Symbol Parameter VCC Supply voltage(1) Vicm Common mode input voltage range Toper Operating free air temperature range 1. Value with respect to VDD pin. 2/16 Value Unit 6 to 30V V VDD+1.5 to VCC-1.5 V -40 to +125 °C TS512 2 Schematic diagram Schematic diagram Figure 1. Schematic diagram (1/2 TS512) VCC R16 4kΩ R5 4kΩ R2 2kΩ R1 2kΩ R11 1kΩ R6 4kΩ R18 2kΩ Q14 Q13 Q25 Q11 Q35 Q12 Q2 R12 812Ω Q3 Q29 Q27 Q21 R13 27Ω Q37 Q36 Non-inverting Input Inverting Input Output Q38 Q15 R17 4kΩ R14 27Ω Q22 Q5 Q28 C2 23pF Q30 Q7 Q31 Q4 Q6 R15 150kΩ Q8 Q9 Q17 Q32 Q18 Q10 R4 1.2kΩ Q19 Q23 R8 150kΩ C1 43pF R3 60kΩ Q20 R7 15kΩ Q33 R9 15kΩ Q34 R10 45kΩ VCC 3/16 Electrical characteristics 3 Electrical characteristics Table 3. VCC = ±15V, Tamb = 25°C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Unit ICC Supply current (per operator) Tmin ≤ Tamb ≤T max 0.5 0.6 0.75 mA Iib Input bias current Tmin ≤ Tamb ≤T max 50 150 300 nA Rin Input resistance, f = 1kHz 1 Vio Input offset voltage TS512 TS512A Tmin ≤ Tamb ≤ Tmax TS512 TS512A ΔVio Iio Ios Output short-circuit current Avd Large signal voltage gain RL = 2kΩ, VCC = ±15V, Tmin ≤ Tamb ≤T max VCC = ± 4V Gain-bandwidth product, f = 100kHz Total harmonic distortion Av = 20dB, RL = 2kΩ Vo = 2Vpp, f = 1kHz ±Vopp Output voltage swing RL = 2kΩ, VCC = ±15V, Tmin ≤ Tamb ≤T max VCC = ± 4V 5 mV µV/°C 20 40 nA 0.08 nA -------°C 23 mA 90 100 95 dB 1.8 3 MHz 8 10 18 nV -----------Hz 0.03 % V ±13 ±3 Vopp Large signal voltage swing RL = 10kΩ, f = 10kHz SR Slew rate Unity gain, RL = 2kΩ 0.8 Common mode rejection ratio Vic = ±10V 90 CMR 2.5 0.5 2 Equivalent input noise voltage, f = 1kHz Rs = 50Ω Rs = 1kΩ Rs = 10kΩ THD MΩ 3.5 1.5 Input offset current Tmin ≤ Tamb ≤ Tmax Input offset current drift Tmin ≤ Tamb ≤ Tmax en 0.5 Input offset voltage drift Tmin ≤ Tamb ≤ Tmax ΔIio GBP 4/16 TS512 28 Vpp 1.5 V/µs dB TS512 Electrical characteristics Table 3. Symbol SVR VCC = ±15V, Tamb = 25°C (unless otherwise specified) Parameter Supply voltage rejection ratio Vo1/Vo2 Channel separation, f = 1kHz Min. Typ. 90 Max. Unit dB 120 dB 5/16 Electrical characteristics Figure 2. TS512 Vio distribution at VCC= ±15V and T= 25°C Figure 3. 30 Vio distribution at VCC= ±15V and T= 125°C 20 Vio distribution at T = 125 °C Vio distribution at T = 25 °C 25 15 Population % Population % 20 15 10 10 5 5 0 0 -400 -200 0 200 -400 400 -200 Figure 4. Input offset voltage vs. input Figure 5. common mode voltage at VCC= 10V 400 Input offset voltage vs. input common mode voltage at VCC= 30V T=125°C 0.2 T=125°C 0.0 T=25°C -0.2 T=-40°C -0.4 0.2 T=25°C 0.0 T=-40°C -0.2 -0.4 -0.6 Vcc = 30 V Vcc = 10 V -0.8 -0.6 1 Figure 6. 2 3 4 5 6 7 Input Common Mode Voltage (V) 8 9 0 Supply current (per operator) vs. supply voltage at Vicm= VCC/2 Figure 7. 5 10 15 20 25 Input Common Mode Voltage (V) 30 Supply current (per operator) vs. input common mode voltage at VCC= 6V 0.50 0.6 0.45 0.5 T=125°C Supply Current (mA) Supply Current (mA) 200 0.4 Input Offset Voltage (mV) Input Offset Voltage (mV) 0.4 T=25°C 0.4 T=-40°C 0.3 0.2 T=125°C 0.40 T=25°C 0.35 T=-40°C 0.30 0.25 Follower configuration Vcc = 6 V Vicm = Vcc/2 0.1 6 6/16 0 Input offset voltage (µV) Input offset voltage (µV) 9 12 15 18 21 Supply voltage (V) 24 27 30 0.20 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 Input Common Mode Voltage (V) 5.5 6.0 TS512 Electrical characteristics Figure 8. Supply current (per operator) vs. input common mode voltage at VCC= 10V Figure 9. 0.55 0.45 T=125°C 0.40 T=25°C 0.35 T=-40°C 0.50 Supply Current (mA) Supply Current (mA) 0.50 Supply current (per operator) vs. input common mode voltage at VCC= 30V 0.30 T=125°C 0.45 T=25°C 0.40 T=-40°C 0.35 0.30 Follower configuration Vcc = 10 V 0.25 Follower configuration Vcc = 30 V 0.25 1 2 3 4 5 6 7 8 Input Common Mode Voltage (V) 9 10 0 5 10 15 20 25 Input Common Mode Voltage (V) 30 Figure 10. Output current vs. supply voltage at Figure 11. Output current vs. output voltage at Vicm= VCC/2 VCC = 6V 40 40 Source Vid = 1V 30 Output Current (mA) Output Current (mA) 20 T=125°C 10 Vicm = Vcc/2 0 -10 T=125°C -20 T=25°C Sink Vid = -1V -30 Source Vid = 1V T=25°C T=25°C 20 T=-40°C 30 T=-40°C T=-40°C -40 T=125°C 10 0 Vcc = 6 V -10 T=125°C -20 Sink Vid = -1V -30 T=25°C T=-40°C -40 10.0 15.0 20.0 Supply voltage (V) 25.0 30.0 0 1 2 3 4 Output Voltage (V) 5 6 Figure 12. Output current vs. output voltage at Figure 13. Output current vs. output voltage at VCC = 10V VCC = 30V 40 40 T=-40°C 30 T=125°C 10 Vcc = 10 V T=125°C -10 Sink Vid = -1V -20 T=-40°C T=125°C 10 0 Vcc = 30 V -10 T=125°C -20 T=-40°C T=25°C -30 Sink Vid = -1V -30 T=-40°C -40 Source Vid = 1V T=25°C 20 Output Current (mA) Output Current (mA) 20 0 30 Source Vid = 1V T=25°C T=25°C -40 0 2 4 6 Output Voltage (V) 8 10 0 5 10 15 20 Output Voltage (V) 25 30 7/16 Electrical characteristics TS512 Figure 14. Voltage gain and phase for different Figure 15. Voltage gain and phase for different capacitive loads at VCC= 6V, capacitive loads at VCC= 10V, Vicm= 3V and T= 25°C Vicm= 5V and T= 25°C 45 50 0 40 -45 30 45 Phase Gain (dB) 30 20 CL=100pF 10 -135 CL=600pF CL=330pF 0 -20 3 10 10 4 10 5 10 6 Gain 0 -45 Phase CL=100pF 20 CL=600pF 10 -180 Vcc = 6 V, Vicm = 3 V, G = -100 RL = 2 kΩ connected to the ground T amb = 25 °C -10 -90 Gain (dB) 40 Phase (°) Gain -135 CL=330pF 0 -180 Vcc = 10 V, Vicm = 5 V, G = -100 RL = 2 kΩ connected to the ground T amb = 25 °C -225 -10 -270 -20 3 10 10 Frequency (Hz) 4 10 -90 5 -225 10 6 -270 Frequency (Hz) Figure 16. Voltage gain and phase for different Figure 17. Frequency response for different capacitive loads at VCC= 30V, capacitive loads at VCC= 6V, Vicm= 15V and T= 25°C Vicm= 3V and T= 25°C 50 45 20 Gain 40 0 30 -45 CL=600pF 10 -135 CL=330pF 0 -10 -20 3 10 10 4 10 5 10 6 Gain with CL=100 pF -10 -225 -30 -270 -40 10k Figure 18. Frequency response for different capacitive loads at VCC= 10V, Vicm= 5V and T= 25°C Gain with CL=600 pF 10 Gain (dB) Gain (dB) 10M Gain with CL=600 pF 0 Gain with CL=100 pF -10 Gain with CL=330 pF -20 -10 Gain with CL=100 pF Gain with CL=330 pF -20 Vcc = 10 V, Vicm = 5 V RL = 2 kΩ connected to the ground Tamb = 25 C 100k 1M Frequency (Hz) 8/16 1M 20 0 -40 10k 100k Figure 19. Frequency response for different capacitive loads at VCC= 30V, Vicm= 15V and T= 25°C 20 -30 Vcc = 6 V, Vicm = 3 V RL = 2 kΩ connected to the ground Tamb = 25 C Frequency (Hz) Frequency (Hz) 10 Gain with CL=330 pF -20 -180 Vcc = 30 V, Vicm = 15 V, G = -100 RL = 2 kΩ connected to the ground Tamb = 25 °C Gain with CL=600 pF 0 -90 Gain (dB) CL=100pF Phase (°) Gain (dB) Phase 20 10 -30 10M -40 10k Vcc = 30 V, Vicm = 15 V RL = 2 kΩ connected to the ground Tamb = 25 C 100k 1M Frequency (Hz) 10M Phase (°) 50 TS512 Electrical characteristics Figure 20. Phase margin vs. output current, at Figure 21. Phase margin vs. output current, at VCC= 6V, Vicm= 3V and T= 25°C VCC= 10V, Vicm= 5V and T= 25°C 70 70 Recommended area 60 50 CL=330 pF 40 CL=600 pF Phase Margin (°) Phase Margin (°) 50 30 20 10 0 -20 -30 -40 -3 -2 -1 0 1 2 CL=100 pF CL=330 pF 40 CL=600 pF 30 20 10 0 Vcc = 6 V Vicm = 3 V Tamb = 25 °C RL = 2 k Ω -10 Recommended area 60 CL=100 pF Vcc = 10 V Vicm = 5 V Tamb = 25 °C RL = 2 kΩ -10 -20 3 Output Current (mA) -30 -3 -2 -1 0 1 2 3 Output Current (mA) Figure 22. Phase margin vs. output current, at VCC= 30V, Vicm= 15V and T= 25°C 70 Recommended area 60 CL=100 pF Phase Margin (°) 50 CL=330 pF CL=600 pF 40 30 20 10 Vcc = 30 V Vicm = 15 V Tamb = 25 °C RL = 2 k Ω 0 -10 -20 -3 -2 -1 0 1 2 3 Output Current (mA) 9/16 Macromodels TS512 4 Macromodels 4.1 Important note concerning this macromodel Please consider the following remarks before using this macromodel. ● All models are a trade-off between accuracy and complexity (i.e. simulation time). ● Macromodels are not a substitute to breadboarding; rather, they confirm the validity of a design approach and help to select surrounding component values. ● A macromodel emulates the nominal performance of a typical device within specified operating conditions (temperature, supply voltage, for example). Thus the macromodel is often not as exhaustive as the datasheet, its purpose is to illustrate the main parameters of the product. Data derived from macromodels used outside of the specified conditions (VCC, temperature, for example) or even worse, outside of the device operating conditions (VCC, Vicm, for example), is not reliable in any way. 4.2 Macromodel code ** Standard Linear Ics Macromodels, 1993. ** CONNECTIONS : * 1 INVERTING INPUT * 2 NON-INVERTING INPUT * 3 OUTPUT * 4 POSITIVE POWER SUPPLY * 5 NEGATIVE POWER SUPPLY .SUBCKT TS512 1 3 2 4 5 ******************************************************** .MODEL MDTH D IS=1E-8 KF=6.565195E-17 CJO=10F * INPUT STAGE CIP 2 5 1.000000E-12 CIN 1 5 1.000000E-12 EIP 10 5 2 5 1 EIN 16 5 1 5 1 RIP 10 11 2.600000E+01 RIN 15 16 2.600000E+01 RIS 11 15 1.061852E+02 DIP 11 12 MDTH 400E-12 DIN 15 14 MDTH 400E-12 VOFP 12 13 DC 0 VOFN 13 14 DC 0 IPOL 13 5 1.000000E-05 CPS 11 15 12.47E-10 DINN 17 13 MDTH 400E-12 VIN 17 5 1.500000e+00 DINR 15 18 MDTH 400E-12 VIP 4 18 1.500000E+00 FCP 4 5 VOFP 3.400000E+01 FCN 5 4 VOFN 3.400000E+01 10/16 TS512 Macromodels FIBP 2 5 VOFN 1.000000E-02 FIBN 5 1 VOFP 1.000000E-02 * AMPLIFYING STAGE FIP 5 19 VOFP 9.000000E+02 FIN 5 19 VOFN 9.000000E+02 RG1 19 5 1.727221E+06 RG2 19 4 1.727221E+06 CC 19 5 6.000000E-09 DOPM 19 22 MDTH 400E-12 DONM 21 19 MDTH 400E-12 HOPM 22 28 VOUT 6.521739E+03 VIPM 28 4 1.500000E+02 HONM 21 27 VOUT 6.521739E+03 VINM 5 27 1.500000E+02 GCOMP 5 4 4 5 6.485084E-04 RPM1 5 80 1E+06 RPM2 4 80 1E+06 GAVPH 5 82 19 80 2.59E-03 RAVPHGH 82 4 771 RAVPHGB 82 5 771 RAVPHDH 82 83 1000 RAVPHDB 82 84 1000 CAVPHH 4 83 0.331E-09 CAVPHB 5 84 0.331E-09 EOUT 26 23 82 5 1 VOUT 23 5 0 ROUT 26 3 6.498455E+01 COUT 3 5 1.000000E-12 DOP 19 25 MDTH 400E-12 VOP 4 25 1.742230E+00 DON 24 19 MDTH 400E-12 VON 24 5 1.742230E+00 .ENDS Table 4. VCC = ±15V, Tamb = 25°C (unless otherwise specified) Symbol Conditions Vio Value Unit 0 mV Avd RL = 2kΩ 100 V/mV ICC No load, per operator 350 µA -13.4 to 14 V Vicm VOH RL = 2kΩ +14 V VOL RL = 2kΩ -14 V Isink Vo = 0V 27.5 mA Isource Vo = 0V 27.5 mA GBP RL = 2kΩ, CL = 100pF 2.5 MHz SR RL = 2kΩ 1.4 V/μs ∅m RL = 2kΩ, CL = 100pF 55 Degrees 11/16 Package information 5 TS512 Package information In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com. 12/16 TS512 Package information Figure 23. DIP8 package mechanical drawing Table 5. DIP8 package mechanical data Dimensions Ref. Millimeters Min. Typ. A Inches Max. Min. Typ. 5.33 Max. 0.210 A1 0.38 0.015 A2 2.92 3.30 4.95 0.115 0.130 0.195 b 0.36 0.46 0.56 0.014 0.018 0.022 b2 1.14 1.52 1.78 0.045 0.060 0.070 c 0.20 0.25 0.36 0.008 0.010 0.014 D 9.02 9.27 10.16 0.355 0.365 0.400 E 7.62 7.87 8.26 0.300 0.310 0.325 E1 6.10 6.35 7.11 0.240 0.250 0.280 e 2.54 0.100 eA 7.62 0.300 eB L 10.92 2.92 3.30 3.81 0.430 0.115 0.130 0.150 13/16 Package information TS512 Figure 24. SO-8 package mechanical drawing Table 6. SO-8 package mechanical data Dimensions Ref. Millimeters Min. Typ. A Max. Min. Typ. 1.75 0.25 Max. 0.069 A1 0.10 A2 1.25 b 0.28 0.48 0.011 0.019 c 0.17 0.23 0.007 0.010 D 4.80 4.90 5.00 0.189 0.193 0.197 E 5.80 6.00 6.20 0.228 0.236 0.244 E1 3.80 3.90 4.00 0.150 0.154 0.157 e 0.004 0.010 0.049 1.27 0.050 h 0.25 0.50 0.010 0.020 L 0.40 1.27 0.016 0.050 k 1° 8° 1° 8° ccc 14/16 Inches 0.10 0.004 TS512 6 Ordering information Ordering information Table 7. Order codes Temperature range Order code Package Packaging DIP8 Tube TS512IN Marking 512IN TS512AIN 512AIN TS512ID TS512IDT Tube or Tape & reel SO-8 TS512AID-DT -40°C, + 125°C 512I 512AI (1) TS512IYD TS512IYDT(1) 512IY SO-8 (Automotive grade) TS512AIYD(1) TS512AIYDT(1) Tube or Tape & reel 512AIY 1. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent are on-going. 7 Revision history Table 8. Document revision history Date Revision 21-Nov-2001 1 Initial release. 23-Jun-2005 2 PPAP references inserted in the datasheet, see Table 7: Order codes. 3 AC and DC performance characteristics curves added for VCC= 6V, VCC= 10V and VCC= 30V. Modified ICC typ, added parameters over temperature range in electrical characteristics table. Corrected macromodel information. 5-May-2008 Changes 15/16 TS512 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2008 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 16/16