VNQ5E160AK-E Quad channel high side driver with analog current sense for automotive applications Features Max supply voltage VCC 41V Operating voltage range VCC 4.5 to 28 V Max on-state resistance (per ch.) RON 160 mΩ Current limitation (typ) ILIMH 10 A Off state supply current IS 2 µA(1) 1. Typical value with all loads connected. ■ ■ ■ General – Inrush current active management by power limitation – Very low stand-by current – 3.0 V CMOS compatible inputs – Optimized electromagnetic emissions – Very low electromagnetic susceptibility – In compliance with the 2002/95/EC european directive – Very low current sense leakage Diagnostic functions – Proportional load current sense – High current sense precision for wide currents range – Current sense disable – Off state openload detection – Output short to Vcc detection – Thermal shutdown indication – Overload and short to ground (power limitation) indication Protections – Undervoltage shutdown – Overvoltage clamp – Load current limitation – Self limiting of fast thermal transients – Protection against loss of ground and loss of VCC – Over-temperature shutdown with autorestart (thermal shutdown) – Reverse battery protected (see Figure 32) March 2009 PowerSSO-24 – Electrostatic discharge protection Application ■ All types of resistive, inductive and capacitive loads ■ Suitable as LED driver Description The VNQ5E160AK-E is a double channel highside driver manufactured in the ST proprietary VIPower M0-5 technology and housed in the tiny PowerSSO-24 package. The VNQ5E160AK-E is designed to drive 12V automotive grounded loads delivering protection, diagnostics and easy 3V and 5V CMOS compatible interface with any microcontroller. The device integrates advanced protective functions such as load current limitation, inrush and overload active management by power limitation, over-temperature shut-off with auto-restart and over-voltage active clamp. A dedicated analog current sense pin is associated with every output channel in order to provide Ehnanced diagnostic functions including fast detection of overload and short-circuit to ground through power limitation indication, overtemperature indication, short-circuit to Vcc diagnosis and on & off state open load detection. The current sensing and diagnostic feedback of the whole device can be disabled by pulling the CS_DIS pin high to allow sharing of the external sense resistor with other similar devices. Rev 2 1/37 www.st.com 1 Contents VNQ5E160AK-E Contents 1 Block diagram and pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 2.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4 Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.5 Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.1 GND protection network against reverse battery . . . . . . . . . . . . . . . . . . . 24 3.1.1 Solution 1 : resistor in the ground line (RGND only) . . . . . . . . . . . . . . . 24 3.1.2 Solution 2 : diode (DGND) in the ground line . . . . . . . . . . . . . . . . . . . . 25 3.2 Load dump protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3 MCU I/Os protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.4 Current sense and diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.4.1 3.5 4 Maximum demagnetization energy (VCC = 13.5V) . . . . . . . . . . . . . . . . . 28 Package and PC board thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.1 5 Short to VCC and off state open load detection . . . . . . . . . . . . . . . . . . 27 PowerSSO-24 thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Package and packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.1 ECOPACK® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.2 PowerSSO-24 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.3 Packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 6 Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 7 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2/37 VNQ5E160AK-E List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Pin functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Suggested connections for unused and not connected pins . . . . . . . . . . . . . . . . . . . . . . . . 6 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Power section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Switching (VCC = 13V; Tj = 25°C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Logic Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Protections and diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Current sense (8V<VCC<18V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Openload detection (8V<VCC<18V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Truth table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Electrical transient requirements (part 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Electrical transient requirements (part 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Electrical transient requirements (part 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Thermal parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 PowerSSO-24 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3/37 List of figures VNQ5E160AK-E List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. 4/37 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Configuration diagram (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Current and voltage conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Current sense delay characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Openload off-state delay timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Delay response time between rising edge of ouput current and rising edge of current sense (CS enabled). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Output voltage drop limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Iout/ Isense vs. Iout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Maximum current sense ratio drift vs load current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Normal operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Overload or short to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Intermittent overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Off-state open load with external circuitry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Short to VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 TJ evolution in overload or short to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Off state output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 High level input current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Input clamp voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Input low level voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Input high level voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Input hysteresis voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 On state resistance vs. Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 On state resistance vs. VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Undervoltage shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Turn-on voltage slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 ILIMH vs. Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Turn-off voltage slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 CS_DIS high level voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 CS_DIS clamp voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 CS_DIS low level voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Current sense and diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Maximum turn-off current versus inductance (for each channel) . . . . . . . . . . . . . . . . . . . . 28 PowerSSO-24 PC board. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Rthj-amb vs. PCB copper area in open box free air condition (one channel ON). . . . . . . . 29 PowerSSO-24 thermal impedance junction ambient single pulse (one channel ON). . . . . 30 Thermal fitting model of a double channel hsd in PowerSSO-24 . . . . . . . . . . . . . . . . . . . 30 PowerSSO-24 package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 PowerSSO-24 tube shipment (no suffix) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 PowerSSO-24 tape and reel shipment (suffix “TR”) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 VNQ5E160AK-E Block diagram and pin configuration Figure 1. Block diagram VCC Signal Clamp Undervoltage IN1 Control & Diagnostic 1 Power Clamp DRIVER IN2 VON Limitation CH 1 IN3 Over temp. IN4 Current Limitation OFF State Open load CS_ DIS VSENSEH CS1 CONTROL & DIAGNOSTIC Channels 2, 3 & 4 1 Block diagram and pin configuration Current Sense CH 4 CH 3 OUT4 OUT3 CH 2 CS2 OUT2 OUT1 CS3 LOGIC CS4 OVERLOAD PROTECTION (ACTIVE POWER LIMITATION) GND Table 1. Pin functions Name VCC OUTPUTn GND INPUTn CURRENT SENSEn CS_DIS Function Battery connection Power output Ground connection. Must be reverse battery protected by an external diode/resistor network Voltage controlled input pin with hysteresis, CMOS compatible. Controls output switch state Analog current sense pin, delivers a current proportional to the load current Active high CMOS compatible pin, to disable the current sense pin 5/37 Block diagram and pin configuration Figure 2. VNQ5E160AK-E Configuration diagram (top view) OUTPUT1 OUTPUT1 OUTPUT1 OUTPUT2 OUTPUT2 OUTPUT2 OUTPUT3 OUTPUT3 OUTPUT3 OUTPUT4 OUTPUT4 OUTPUT4 VCC GND INPUT1 CURRENT SENSE1 INPUT2 CURRENT SENSE2 INPUT3 CURRENT SENSE3 INPUT4 CURRENT SENSE4 CS_DIS. VCC TAB = VCC Table 2. 6/37 Suggested connections for unused and not connected pins Connection / pin Current Sense N.C. Output Input CS_DIS Floating Not allowed X X X X To ground Through 1 kΩ resistor X Not allowed Through 10 kΩ resistor Through 10 kΩ resistor VNQ5E160AK-E 2 Electrical specifications Electrical specifications Figure 3. Current and voltage conventions IS VCC OUTPUTn CS_DIS VOUTn ISENSEn IINn VINn VCC IOUTn ICSD VCSD VFn CURRENT SENSEn INPUTn VSENSEn GND IGND Note: VFn = VOUTn - VCC during reverse battery condition. 2.1 Absolute maximum ratings Stressing the device above the rating listed in the “Absolute maximum ratings” table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to the conditions in table below for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality document. Table 3. Absolute maximum ratings Symbol Parameter Value Unit VCC DC supply voltage 41 V -VCC Reverse DC supply voltage 0.3 V -IGND DC reverse ground pin current 200 mA IOUT DC output current Internally limited A -IOUT Reverse DC output current 6 A DC input current -1 to 10 mA DC current sense disable input current -1 to 10 mA 200 mA VCC-41 +VCC V V 34 mJ IIN ICSD -ICSENSE DC reverse CS pin current VCSENSE Current sense maximum voltage EMAX Maximum switching energy (single pulse) (L= 12 mH; RL=0Ω; Vbat=13.5V; Tjstart=150ºC; IOUT = IlimL(Typ.) ) 7/37 Electrical specifications Table 3. VNQ5E160AK-E Absolute maximum ratings (continued) Symbol Value Unit VESD Electrostatic discharge (human body model: R= 1.5 KΩ; C= 100 pF) - Input - Current sense - CS_DIS - Output - VCC 4000 2000 4000 5000 5000 V V V V V VESD Charge device model (CDM-AEC-Q100-011) 750 V Junction operating temperature -40 to 150 °C Storage temperature -55 to 150 °C Tj Tstg 2.2 Thermal data Table 4. Symbol 8/37 Parameter Thermal data Parameter Rthj-case Thermal resistance junction-case (max) (with one channel ON) Rthj-amb Thermal resistance junction-ambient (max) Max. value Unit 8 °C/W See Figure 36. in the thermal section °C/W VNQ5E160AK-E 2.3 Electrical specifications Electrical characteristics Values specified in this section are for 8V<VCC<28V, -40°C< Tj <150°C, unless otherwise stated. Table 5. Power section Symbol Parameter Test conditions Min. Typ. Max. Unit 4.5 13 28 V 4.5 V VCC Operating supply voltage VUSD Undervoltage shutdown 3.5 VUSDhyst Undervoltage shutdown hysteresis 0.5 RON Vclamp IS IL(off1) VF On state resistance (2) Clamp voltage Off state output IOUT= 1A; Tj= 25°C 160 IOUT= 1A; Tj= 150°C 320 IOUT= 1A; VCC= 5V; Tj= 25°C 210 IS= 20 mA Supply current current (2) Output - VCC diode voltage(2) V 41 mΩ 46 52 V Off State; VCC= 13 V; Tj= 25°C; VIN=VOUT=VSENSE=VCSD= 0 V 2 (1) 5(1) µA On State; VCC= 13V; VIN= 5 V; IOUT= 0A 8 14 mA 0.01 3 VIN=VOUT= 0 V; VCC= 13 V; Tj= 25°C 0 VIN=VOUT= 0 V; VCC= 13 V; Tj= 125 °C 0 µA 5 -IOUT=1A; Tj=150°C 0.7 V Max. Unit 1. PowerMOS leakage included. 2. For each channel. Table 6. Symbol Switching (VCC = 13V; Tj = 25°C) Parameter Test conditions Min. Typ. td(on) Turn-on delay time RL= 13 Ω (see Figure 6.) 20 µs td(off) Turn-off delay time RL= 13 Ω (see Figure 6.) 10 µs (dVOUT/dt)on Turn-on voltage slope RL= 13 Ω See Figure 26. V/µs (dVOUT/dt)off Turn-off voltage slope RL= 13 Ω See Figure 28. V/µs WON Switching energy losses during twon RL= 13 Ω (see Figure 6.) 0.05 mJ WOFF Switching energy losses during twoff RL= 13 Ω (see Figure 6.) 0.03 mJ 9/37 Electrical specifications Table 7. Symbol VNQ5E160AK-E Logic Inputs Parameter VIL Input low level voltage IIL Low level input current VIH Input high level voltage IIH High level input current VI(hyst) Input hysteresis voltage VICL Test conditions VIN= 0.9V IIN= 1mA Unit 0.9 V 1 µA 2.1 V 10 ICSDL Low level CS_DIS current VCSDH CS_DIS high level voltage ICSDH High level CS_DIS current VCSD(hyst) CS_DIS hysteresis voltage 7 V -0.7 0.9 VCSD= 0.9V µA 2.1 V 10 0.25 µA V 5.5 7 V ICSD= -1mA -0.7 Protections and diagnostics (1) Symbol Parameter Test conditions Min. Typ. Max. Unit IlimH DC short circuit current VCC= 13V 5V<VCC<28V 7 10 14 14 A A IlimL Short circuit current during thermal cycling VCC= 13V; TR<Tj<TTSD TTSD Shutdown temperature TR Reset temperature TRS Thermal reset of STATUS THYST VDEMAG VON 150 Output voltage drop limitation 175 A 200 TRS + 1 TRS + 5 °C 7 IOUT= 1A; VIN= 0; L= 20mH IOUT= 0.03A; Tj= -40°C...150°C (see Figure 8.) °C °C 135 Thermal hysteresis (TTSD-TR) Turn-off output voltage clamp 2.5 VCC-41 VCC-46 °C VCC-52 25 1. To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be used together with a proper software strategy. If the device is subjected to abnormal conditions, this software must limit the duration and number of activation cycles. 10/37 V 1 VCSD= 2.1V ICSD= 1mA µA V 5.5 IIN= -1mA CS_DIS low level voltage Table 8. Max. 0.25 Input clamp voltage CS_DIS clamp voltage Typ. VIN= 2.1V VCSDL VCSCL Min. V mV VNQ5E160AK-E Electrical specifications Table 9. Symbol K0 K1 dK1/K1(1) K2 dK2/K2(1) K3 dK3/K3(1) ISENSE0 Current sense (8V<VCC<18V) Parameter IOUT/ISENSE IOUT/ISENSE Test conditions Min. Typ. Max. IOUT= 0.025 A; VSENSE= 0.5 V; VCSD= 0 V; Tj= -40°C...150°C 330 600 870 IOUT= 0.35A; VSENSE= 0.5 V; VCSD= 0 V; Tj= -40°C...150°C Tj= 25°C...150°C 345 395 475 475 600 555 IOUT= 0.35 A; Current sense ratio drift VSENSE= 0.5 V; VCSD= 0 V; Tj= -40°C...150°C IOUT/ISENSE IOUT= 0.5A; VSENSE=4V; VCSD= 0 V; Tj=-40°C...150°C Tj= 25°C...150°C IOUT= 0.5 A; Current sense ratio drift VSENSE= 4 V; VCSD= 0 V; Tj= -40°C...150°C IOUT/ISENSE IOUT= 1.5 A; VSENSE= 4 V; VCSD= 0 V; Tj= -40°C...150°C Tj= 25°C...150°C IOUT= 1.5 A; Current sense ratio drift VSENSE= 4 V; VCSD= 0 V; Tj= -40°C...150°C Analog sense leakage current - 12 375 415 12 470 470 -8 425 435 6 IOUT= 0 A; VSENSE= 0 V; VCSD= 5 V; VIN= 0 V; Tj= -40°C...150°C 0 1 IOUT= 0 A; VSENSE= 0 V; VCSD= 0 V; VIN= 5 V; Tj= -40°C...150°C 0 2 IOUT= 1A; VSENSE= 0V; VCSD= 5V; VIN= 5V; Tj= -40°C...150°C 0 1 5 Openload on state current detection threshold VIN = 5V, ISENSE= 5 µA 1 VSENSE Max analog sense output voltage IOUT= 1.5 A; VCSD= 0 V 5 VSENSEH Analog sense output voltage in fault condition(2) VCC= 13 V; RSENSE= 3.9 KΩ; % 505 495 -6 IOL % 565 525 8 465 465 Unit % µA mA V 8 V 11/37 Electrical specifications Table 9. Symbol VNQ5E160AK-E Current sense (8V<VCC<18V) (continued) Parameter Test conditions Min. Typ. Max. Unit ISENSEH(2) Analog sense output current in fault condition(2) VCC= 13V; VSENSE= 5 V; 9 tDSENSE1H Delay response time from falling edge of CS_DIS pin VSENSE<4V, 0.025A<Iout<1.5A ISENSE=90% of ISENSEMAX (see Figure 4) 40 100 µs tDSENSE1L Delay response time from rising edge of CS_DIS pin VSENSE<4V, 0.025A<Iout<1.5A ISENSE=10% of ISENSEMAX (see Figure 4) 5 20 µs tDSENSE2H Delay response time from rising edge of INPUT pin VSENSE<4V, 0.025A<Iout<1.5A ISENSE=90% of ISENSEMAX (see Figure 4.) 120 300 µs 110 µs 250 µs Max. Unit 2 4 V 180 1200 µs Delay response time between rising edge of ΔtDSENSE2H output current and rising edge of current sense tDSENSE2L Delay response time from falling edge of INPUT pin VSENSE < 4V, ISENSE = 90% of ISENSEMAX, IOUT = 90% of IOUTMAX IOUTMAX=1.5A (see Figure 7) VSENSE<4V, 0.025A<Iout<1.5A ISENSE=10% of ISENSEMAX (see Figure 4.) 80 mA 1. Parameter guaranteed by design; it is not tested 2. Fault condition includes: power limitation, overtemperature and open load off state detection. Table 10. Symbol VOL 12/37 Openload detection (8V<VCC<18V) Parameter Test conditions Openload off state voltage detection threshold Min. Typ. tDSTKON Output short circuit to VCC detection delay at turn off IL(off2)r Off state output current at VOUT = 4V VIN= 0 V; VSENSE= 0 V VOUT rising from 0 V to 4 V -120 0 µA IL(off2)f Off state output current at VOUT = 2V VIN= 0 V; VSENSE= VSENSEH VOUT falling from VCC to 2V -50 90 µA td_vol Delay response from output rising edge to VSENSE rising edge in openload VOUT= 4 V; VIN= 0 V VSENSE= 90% of VSENSEH 20 µs See Figure 5. VNQ5E160AK-E Figure 4. Electrical specifications Current sense delay characteristics INPUT CS_DIS LOAD CURRENT SENSE CURRENT tDSENSE2H Figure 5. tDSENSE1L tDSENSE1H tDSENSE2L Openload off-state delay timing OUTPUT STUCK TO VCC VIN VOUT > VOL VSENSEH VCS tDSTKON Figure 6. Switching characteristics VOUT tWon tWoff 90% 80% dVOUT/dt(off) dVOUT/dt(on) tr 10% tf t INPUT td(on) td(off) t 13/37 Electrical specifications Figure 7. VNQ5E160AK-E Delay response time between rising edge of ouput current and rising edge of current sense (CS enabled) VIN ΔtDSENSE2H t IOUT IOUTMAX 90% IOUTMAX t ISENSE ISENSEMAX 90% ISENSEMAX t Figure 8. Output voltage drop limitation Vcc-Vout Tj=150oC Tj=25oC Tj=-40oC Von Von/Ron(T) 14/37 Iout VNQ5E160AK-E Electrical specifications Figure 9. Iout/ Isense vs. Iout Iout / Isense 700 650 600 max Tj = -40 °C to 150 °C 550 500 max Tj = 25 °C to 150 °C typical value 450 min Tj = 25 °C to 150 °C 400 350 min Tj = -40 °C to 150 °C 300 250 200 0,35 0,58 0,81 1,04 1,27 1,5 IOUT (A) Figure 10. Maximum current sense ratio drift vs load current dk/k(%) 15 10 5 0 -5 -10 -15 0,35 0,58 0,81 1,04 1,27 1,5 IOUT (A) Note: Parameter guaranteed by design; it is not tested. 15/37 Electrical specifications Table 11. VNQ5E160AK-E Truth table Input Output Sense (VCSD=0V)(1) Normal operation L H L H 0 Nominal Overtemperature L H L L 0 VSENSEH Undervoltage L H L L 0 0 H X (no power limitation) Cycling (power limitation) Nominal Conditions Overload H VSENSEH Short circuit to GND (power limitation) L H L L 0 VSENSEH Open load off state (with external pull up) L H VSENSEH Short circuit to VCC (external pull up disconnected) L H H H VSENSEH < Nominal Negative output voltage clamp L L 0 1. If the VCSD is high, the SENSE output is at a high impedance, its potential depends on leakage currents and external circuit. 16/37 VNQ5E160AK-E Electrical specifications Table 12. ISO 7637-2: 2004(E) Test pulse Electrical transient requirements (part 1) Test levels(1) III IV 1 -75V -100V 2a +37V 3a Number of pulses or test times Burst cycle/pulse repetition time Delays and Impedance Min. Max. 5000 pulses 0.5s 5s 2 ms, 10Ω +50V 5000 pulses 0.2s 5s 50µs, 2Ω -100V -150V 1h 90ms 100ms 0.1µs, 50Ω 3b +75V +100V 1h 90ms 100ms 0.1µs, 50Ω 4 -6V -7V 1 pulse 100ms, 0.01Ω +65V +87V 1 pulse 400ms, 2Ω 5b (2) 1. The above test levels must be considered referred to VCC = 13.5V except for pulse 5b. 2. Valid in case of external load dump clamp: 40V maximum referred to ground. Table 13. Electrical transient requirements (part 2) ISO 7637-2: 2004E Test pulse III VI 1 C C 2a C C 3a C C 3b C C 4 C C C C (1) 5b Test level results 1. Valid in case of external load dump clamp: 40V maximum referred to ground. Table 14. Class Electrical transient requirements (part 3) Contents C All functions of the device performed as designed after exposure to disturbance. E One or more functions of the device did not perform as designed after exposure to disturbance and cannot be returned to proper operation without replacing the device. 17/37 Electrical specifications 2.4 VNQ5E160AK-E Waveforms Figure 11. Normal operation Normal operation INPUT Nominal load Nominal load IOUT VSENSE VCS_DIS Figure 12. Overload or short to GND Overload or Short to GND INPUT ILimH > Power Limitation Thermal cycling ILimL > IOUT VSENSE VCS_DIS 18/37 VNQ5E160AK-E Electrical specifications Figure 13. Intermittent overload Intermittent Overload INPUT Overload ILimH > ILimL > Nominal load IOUT VSENSEH> VSENSE VCS_DIS Figure 14. Off-state open load with external circuitry OFF-State Open Load with external circuitry INPUT VOUT > VOL VOUT VOL IOUT VSENSEH > tDSTK(on) VSENSE VCS_DIS 19/37 Electrical specifications VNQ5E160AK-E Figure 15. Short to VCC Short to VCC Resistive Short to VCC Hard Short to VCC VOUT > VOL VOL VOUT IOUT tDSTK(on) tDSTK(on) VCS_DIS Figure 16. TJ evolution in overload or short to GND TJ evolution in Overload or Short to GND INPUT Self-limitation of fast thermal transients TTSD THYST TR TJ_START TJ ILimH > Power Limitation < ILimL IOUT 20/37 VNQ5E160AK-E 2.5 Electrical specifications Electrical characteristics curves Figure 17. Off state output current Figure 18. High level input current Iloff (mA) Iih (µA) 200 5 4,5 Vin= 2.1 V Off State Vcc=13V Vin=Vout=0V 150 4 3,5 3 100 2,5 2 1,5 50 1 0,5 0 0 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 Tc (°C) 50 75 100 125 150 175 150 175 150 175 Tc (°C) Figure 19. Input clamp voltage Figure 20. Input low level voltage Vicl (V) Vil (V) 7 2 6,8 1,8 lin= 1 mA 6,6 1,6 6,4 1,4 6,2 1,2 6 1 5,8 0,8 5,6 0,6 5,4 0,4 5,2 0,2 5 0 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 Tc (°C) 50 75 100 125 Tc (°C) Figure 21. Input high level voltage Figure 22. Input hysteresis voltage Vih (V) Vihyst (V) 1 4 0,9 3,5 0,8 3 0,7 2,5 0,6 0,5 2 0,4 1,5 0,3 1 0,2 0,5 0,1 0 0 -50 -25 0 25 50 75 Tc (°C) 100 125 150 175 -50 -25 0 25 50 75 100 125 Tc (°C) 21/37 Electrical specifications VNQ5E160AK-E Figure 23. On state resistance vs. Tcase Figure 24. On state resistance vs. VCC Ron (Ohm) Ron (Ohm) 300 300 Tc=150°C Iout= 1A Vcc= 13V 250 250 Tc=125°C 200 200 150 Tc=25°C 150 100 100 Tc=-40°C 50 -50 -25 0 25 50 75 100 125 150 175 0 5 10 15 Tc (°C) 20 25 30 35 Vcc (V) Figure 25. Undervoltage shutdown Figure 26. Turn-on voltage slope Vusd (V) (dVout/dt )On (V/ms) 8 1000 900 Vcc= 13 V RI= 13 Ohm 800 6 700 600 500 4 400 300 2 200 100 0 0 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 Tc (°C) 50 75 100 125 150 175 150 175 Tc (°C) Figure 27. ILIMH vs. Tcase Figure 28. Turn-off voltage slope Ilimh (A) (dVout/dt )Off (V/ms) 14 1200 1100 Vcc= 13 V 12 Vcc= 13 V RI= 13 Ohm 1000 900 10 800 700 8 600 6 500 -50 -25 0 25 50 Tc (°C) 22/37 75 100 125 150 -50 -25 0 25 50 75 Tc (°C) 100 125 VNQ5E160AK-E Electrical specifications Figure 29. CS_DIS high level voltage Figure 30. CS_DIS clamp voltage Vcsdh (V) Vcsdcl(V) 4 10 3,5 9 Iin = 1 mA 3 8 2,5 7 2 6 1,5 5 1 4 0,5 0 3 -50 -25 0 25 50 75 100 125 150 175 Tc (°C) -50 -25 0 25 50 75 100 125 150 175 Tc (°C) Figure 31. CS_DIS low level voltage Vcsdl (V) 3 2,5 2 1,5 1 0,5 0 -50 -25 0 25 50 75 100 125 150 175 Tc (°C) 23/37 Application information 3 VNQ5E160AK-E Application information Figure 32. Application schematic +5V VCC Rprot CS_DIS Dld ΜCU Rprot INPUT OUTPUT Rprot CURRENT SENSE GND RSENSE VGND CEXT RGND DGND Note: Channel 2, 3, 4 have the same internal circuit as channel 1. 3.1 GND protection network against reverse battery This section provides two solutions for implementing a ground protection network against reverse battery. 3.1.1 Solution 1 : resistor in the ground line (RGND only) This can be used with any type of load. The following is an indication on how to dimension the RGND resistor. 1. RGND ≤ 600mV / (IS(on)max) 2. RGND ≥ (−VCC) / (-IGND) where -IGND is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device datasheet. Power dissipation in RGND (when VCC<0: during reverse battery situations) is: Equation 1 PD= (-VCC)2/RGND 24/37 VNQ5E160AK-E Application information This resistor can be shared amongst several different HSDs. Please note that the value of this resistor should be calculated with formula (1) where IS(on)max becomes the sum of the maximum on-state currents of the different devices. Please note that if the microprocessor ground is not shared by the device ground then the RGND will produce a shift (IS(on)max * RGND) in the input thresholds and the status output values. This shift will vary depending on how many devices are on in the case of several high side drivers sharing the same RGND. If the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then ST suggests to utilize Section 3.1.2: Solution 2 : diode (DGND) in the ground line. 3.1.2 Solution 2 : diode (DGND) in the ground line A resistor (RGND=1kΩ) should be inserted in parallel to DGND if the device drives an inductive load. This small signal diode can be safely shared amongst several different HSDs. Also in this case, the presence of the ground network will produce a shift (≈600mV) in the input threshold and in the status output values if the microprocessor ground is not common to the device ground. This shift will not vary if more than one HSD shares the same diode/resistor network. 3.2 Load dump protection Dld is necessary (voltage transient suppressor) if the load dump peak voltage exceeds the VCC max DC rating. The same applies if the device is subject to transients on the VCC line that are greater than the ones shown in the ISO 7637-2: 2004(E) table. 3.3 MCU I/Os protection If a ground protection network is used and negative transient are present on the VCC line, the control pins will be pulled negative. ST suggests to insert a resistor (Rprot) in line to prevent the µC I/Os pins to latch-up. The value of these resistors is a compromise between the leakage current of µC and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of µC I/Os: Equation 2 -VCCpeak/Ilatchup ≤ Rprot ≤ (VOHμC-VIH-VGND) / IIHmax Calculation example: For VCCpeak = - 100V and Ilatchup ≥ 20mA; VOHµC ≥ 4.5V 5kΩ ≤ Rprot ≤ 180kΩ Recommended values: Rprot =10kΩ, CEXT=10nF. 25/37 Application information 3.4 VNQ5E160AK-E Current sense and diagnostic The current sense pin performs a double function (see Figure 33: Current sense and diagnostic): ● Current mirror of the load current in normal operation, delivering a current proportional to the load one according to a know ratio KX. The current ISENSE can be easily converted to a voltage VSENSE by means of an external resistor RSENSE. Linearity between IOUT and VSENSE is ensured up to 5V minimum (see parameter VSENSE in Table 9: Current sense (8V<VCC<18V)). The current sense accuracy depends on the output current (refer to current sense electrical characteristics Table 9: Current sense (8V<VCC<18V)). ● Diagnostic flag in fault conditions, delivering a fixed voltage VSENSEH up to a maximum current ISENSEH in case of the following fault conditions (refer to Truth table): – Power limitation activation – Over-temperature – Short to VCC in off state – Open load in off state with additional external components. A logic level high on CS_DIS pin sets at the same time all the current sense pins of the device in a high impedance state, thus disabling the current monitoring and diagnostic detection. This feature allows multiplexing of the microcontroller analog inputs by sharing of sense resistance and ADC line among different devices. Figure 33. Current sense and diagnostic VPU VBAT VCC Main MOSn 41V PU_CMD Overtemperature IOUT/KX RPU + OL OFF ISENSEH VOL Pwr_Lim CS_DIS OUTn ILoff2r ILoff2f INPUTn VSENSEH CURRENT SENSEn RPROT To uC ADC 26/37 RSENSE GND Load RPD VSENSE VNQ5E160AK-E 3.4.1 Application information Short to VCC and off state open load detection Short to VCC A short circuit between VCC and output is indicated by the relevant current sense pin set to VSENSEH during the device off state. Small or no current is delivered by the current sense during the on state depending on the nature of the short circuit. Off state open load with external circuitry Detection of an open load in off mode requires an external pull-up resistor RPU connecting the output to a positive supply voltage VPU. It is preferable VPU to be switched off during the module stand-by mode in order to avoid the overall stand-by current consumption to increase in normal conditions, i.e. when load is connected. An external pull down resistor RPD connected between output and GND is mandatory to avoid misdetection in case of floating outputs in off state (see Figure 33: Current sense and diagnostic). RPD must be selected in order to ensure VOUT < VOLmin unless pulled up by the external circuitry: Equation 3 VOUT Pull − up _ OFF = RPD ⋅ I L ( off 2) f < VOL min = 2V RPD ≤ 22 KΩ is recommended. For proper open load detection in off state, the external pull-up resistor must be selected according to the following formula: Equation 4 VOUT Pull − up _ ON = RPD ⋅ VPU − RPU ⋅ RPD ⋅ I L ( off 2) r RPU + RPD > VOL max = 4V For the values of VOLmin ,VOLmax, IL(off2)r and IL(off2)f see Table 10: Openload detection (8V<VCC<18V). 27/37 Application information 3.5 VNQ5E160AK-E Maximum demagnetization energy (VCC = 13.5V) Figure 34. Maximum turn-off current versus inductance (for each channel) 100 10 A C B I (A) 1 0,1 0,1 1 L (mH) 10 100 A: Tjstart = 150°C single pulse B: Tjstart = 100°C repetitive pulse C: Tjstart = 125°C repetitive pulse VIN, IL Demagnetization Demagnetization Demagnetization t Note: Values are generated with RL = 0 Ω. In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves A and B. 28/37 VNQ5E160AK-E Package and PC board thermal data 4 Package and PC board thermal data 4.1 PowerSSO-24 thermal data Figure 35. PowerSSO-24 PC board Note: Layout condition of Rth and Zth measurements (PCB: Double layer, Thermal Vias, FR4 area= 77 mm x 86 mm, PCB thickness=1.6 mm, Cu thickness=70 mm (front and back side), Copper areas: from minimum pad lay-out to 8 cm2). Figure 36. Rthj-amb vs. PCB copper area in open box free air condition (one channel ON) RTHj_amb(°C/W) 60 55 50 45 40 35 30 0 2 4 6 8 10 PCB Cu heatsink area (cm^2) 29/37 Package and PC board thermal data VNQ5E160AK-E Figure 37. PowerSSO-24 thermal impedance junction ambient single pulse (one channel ON) ZTH (°C/W) 1000 100 Footprint 2 cm2 8 cm2 10 1 0.1 0.0001 0.001 0.01 0.1 1 Time (s) 10 100 1000 Figure 38. Thermal fitting model of a double channel hsd in PowerSSO-24 (a) 30/37 VNQ5E160AK-E Package and PC board thermal data Equation 5: pulse calculation formula: Z THδ = R TH ⋅δ+Z THtp (1 – δ) where δ = tP/T Table 15. Thermal parameters Area/island (cm2) Footprint R1 = R7 = R9 = R11 (°C/W) 1.2 R2 = R8 = R10 = R12 (°C/W) 6 R3 (°C/W) 6 R4 (°C/W) 7.7 R5 (°C/W) 2 8 9 9 8 R6 (°C/W) 28 17 10 C1 = C7 = C9 = C11 (W.s/°C) 0.0008 C2 = C8 = C10 = C12 (W.s/°C) 0.0016 C3 (W.s/°C) 0.025 C4 (W.s/°C) 0.75 C5 (W.s/°C) 1 4 9 C6 (W.s/°C) 2.2 5 17 a. The fitting model is a semplified thermal tool and is valid for transient evolutions where the embedded protections (power limitation or thermal cycling during thermal shutdown) are not triggered. 31/37 Package and packing information 5 Package and packing information 5.1 ECOPACK® VNQ5E160AK-E In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 5.2 PowerSSO-24 mechanical data Figure 39. PowerSSO-24 package dimensions 32/37 VNQ5E160AK-E Package and packing information PowerSSO-24 mechanical data(1) (2) Table 16. Millimeters Symbol Min. Typ. A Max. 2.45 A2 2.15 2.35 a1 0 0.1 b 0.33 0.51 c 0.23 0.32 D(3) 10.10 10.50 E(3) 7.40 7.60 e 0.8 e3 8.8 F 2.3 G H 0.1 10.1 10.5 h 0.4 k 0° 8° L 0.6 1 O 1.2 Q 0.8 S 2.9 T 3.65 U 1.0 N 10° X 4.1 4.7 Y 6.5 7.1 1. No intrusion allowed inwards the leads. 2. Flash or bleeds on exposed die pad shall not exceed 0.5 mm per side 3. “D and E” do not include mold flash or protusions. Mold flash or protusions shall not exceed 0.15 mm per side 33/37 Package and packing information 5.3 VNQ5E160AK-E Packing information Figure 40. PowerSSO-24 tube shipment (no suffix) C Base q.ty Bulk q.ty Tube length (± 0.5) A B C (± 0.1) B 49 1225 532 3.5 13.8 0.6 All dimensions are in mm. A Figure 41. PowerSSO-24 tape and reel shipment (suffix “TR”) Reel dimensions Base q.ty Bulk q.ty A (max) B (min) C (± 0.2) F G (+ 2 / -0) N (min) T (max) 1000 1000 330 1.5 13 20.2 24.4 100 30.4 Tape dimensions According to Electronic Industries Association (EIA) standard 481 rev. A, Feb 1986 Tape width Tape hole spacing Component spacing Hole diameter Hole diameter Hole position Compartment depth Hole spacing W P0 (± 0.1) P D (± 0.05) D1 (min) F (± 0.1) K (max) P1 (± 0.1) 24 4 12 1.55 1.5 11.5 2.85 2 End All dimensions are in mm. Start Top cover tape No components Components 500mm min No components 500mm min Empty components pockets saled with cover tape. User direction of feed 34/37 VNQ5E160AK-E 6 Order codes Order codes Table 17. Device summary Order codes Package PowerSSO-24 Tube Tape and reel VNQ5E160AK-E VNQ5E160AKTR-E 35/37 Revision history 7 VNQ5E160AK-E Revision history Table 18. Document revision history Date Revision 05-Jun-2007 1 Initial release. 2 Document restructured. Updated Table 9: Current sense (8V<VCC<18V): – added k0, k1, k2, k3, dk1/k1, dk2/k2, dk3/k3, ΔtDSENSE2H parameters values Updated Table 10: Openload detection (8V<VCC<18V): – added IL(off2)r, IL(off2)f and td_vol parameters Added Figure 9.: Iout/ Isense vs. Iout. Added Figure 10.: Maximum current sense ratio drift vs load current Added Section 2.4: Waveforms. Added Section 2.5: Electrical characteristics curves. Updated Chapter 3: Application information: – added Section 3.4: Current sense and diagnostic Added Chapter 4: Package and PC board thermal data: Updated Table 16: PowerSSO-24 mechanical data 17-Mar-2009 36/37 Changes VNQ5E160AK-E Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2009 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 37/37