BB MPC509

®
MP
MPC508A
MPC509A
C50
MP
8
C50
9
Single-Ended 8-Channel/Differential 4-Channel
CMOS ANALOG MULTIPLEXERS
FEATURES
●
ANALOG OVERVOLTAGE PROTECTION:
70Vp-p
●
NO CHANNEL INTERACTION DURING
OVERVOLTAGE
●
BREAK-BEFORE-MAKE SWITCHING
●
ANALOG SIGNAL RANGE: ±15V
●
STANDBY POWER: 7.5mW typ
●
The MPC508A and MPC509A are fabricated with
Burr-Brown’s dielectrically isolated CMOS technology. The multiplexers are available in plastic DIP and
plastic SOIC packages. Temperature range is –40°C to
+85°C.
FUNCTIONAL DIAGRAMS
1kΩ
In 1
TRUE SECOND SOURCE
Out
1kΩ
In 2
DESCRIPTION
The MPC508A is an 8-channel single-ended analog
multiplexer and the MPC509A is a 4-channel differential multiplexer.
The MPC508A and MPC509A multiplexers have input overvoltage protection. Analog input voltages may
exceed either power supply voltage without damaging
the device or disturbing the signal path of other channels. The protection circuitry assures that signal fidelity is maintained even under fault conditions that
would destroy other multiplexers. Analog inputs can
withstand 70Vp-p signal levels and standard ESD
tests. Signal sources are protected from short circuits
should multiplexer power loss occur; each input presents a 1kΩ resistance under this condition. Digital
inputs can also sustain continuous faults up to 4V
greater than either supply voltage.
Decoder/
Driver
1kΩ
In 8
Overvoltage
Clamp and
Signal
Isolation
5V
Ref
Level
Shift
(1) (1)
NOTE: (1) Digital
Input Protection.
MPC508A
(1)
A0 A1 A2
(1)
EN
1kΩ
In 1A
Out A
1kΩ
In 4A
1kΩ
In 1B
Out B
1kΩ
Decoder/
Driver
In 4B
These features make the MPC508A and MPC509A
ideal for use in systems where the analog signals
originate from external equipment or separately powered sources.
Overvoltage
Clamp and
Signal
Isolation
5V
Ref
NOTE: (1) Digital
Input Protection.
MPC509A
Level
Shift
(1) (1)
(1)
A0 A1
EN
International Airport Industrial Park • Mailing Address: PO Box 11400, Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706 • Tel: (520) 746-1111 • Twx: 910-952-1111
Internet: http://www.burr-brown.com/ • FAXLine: (800) 548-6133 (US/Canada Only) • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132
®
©
1988 Burr-Brown Corporation
1
PDS-775E
MPC508A, 509A
Printed in U.S.A. March, 1998
SPECIFICATIONS
ELECTRICAL
Supplies = +15V, –15V; VAH (Logic Level High) = +4.0V, VAL (Logic Level Low) = +0.8V, unless otherwise specified.
MPC508A/509A
PARAMETER
ANALOG CHANNEL CHARACTERISTICS
VS, Analog Signal Range
RON, On Resistance(1)
IS (OFF), Off Input Leakage Current
ID (OFF), Off Output Leakage Current
MPC508A
MPC509A
ID (OFF) with Input Overvoltage Applied(2)
ID (ON), On Channel Leakage Current
MPC508A
MPC509A
IDIFF Differential Off Output Leakage Current
(MPC509A Only)
DIGITAL INPUT CHARACTERISTICS
VAL, Input Low Threshold Drive
VAH, Input High Threshold(3)
IA, Input Leakage Current (High or Low)(4)
SWITCHING CHARACTERISTICS
tA, Access Time
tOPEN, Break-Before-Make Delay
tON (EN), Enable Delay (ON)
tOFF (EN), Enable Delay (OFF)
Settling Time (0.1%)
(0.01%)
"OFF Isolation"(5)
CS (OFF), Channel Input Capacitance
CD (OFF), Channel Output Capacitance: MPC508A
MPC509A
CA, Digital Input Capacitance
CDS (OFF), Input to Output Capacitance
POWER REQUIREMENTS
PD, Power Dissipation
I+, Current Pin 1(6)
I–, Current Pin 27(6)
TEMP
MIN
Full
+25°C
Full
+25°C
Full
+25°C
Full
Full
+25°C
Full
+25°C
Full
Full
–15
TYP
1.3
1.5
0.5
MAX
UNITS
+15
1.5
1.8
10
10
V
kΩ
kΩ
nA
nA
nA
nA
nA
nA
µA
nA
nA
nA
10
nA
0.8
V
V
µA
10
0.2
5
5
4.0
2
Full
Full
Full
Full
4.0
1.0
+25°C
Full
+25°C
+25°C
Full
+25°C
Full
+25°C
+25°C
+25°C
+25°C
+25°C
+25°C
25°C
+25°C
0.5
0.6
25
80
200
500
250
500
50
Full
Full
Full
1.2
3.5
68
5
25
12
5
0.1
7.5
0.7
5
1.5
20
µs
µs
ns
ns
ns
ns
ns
µs
µs
dB
pF
pF
pF
pF
pF
mW
mA
µA
NOTES: (1) VOUT = ±10V, IOUT = –100µA. (2) Analog overvoltage = ±33V. (3) To drive from DTL/TTL circuits. 1kΩ pull-up resistors to +5.0V supply are recommended.
(4) Digital input leakage is primarily due to the clamp diodes. Typical leakage is less than 1nA at 25°C. (5) VEN = 0.8V, RL = 1kΩ, CL = 15pF, VS = 7Vrms, f = 100kHz.
Worst-case isolation occurs on channel 4 due to proximity of the output pins. (6) VEN, VA = 0V or 4.0V.
The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN
assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user’s own risk. Prices and specifications are subject
to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not
authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.
®
MPC508A, 509A
2
PIN CONFIGURATIONS
Top View
Top View
A0
1
16 A1
A0
1
16 A1
En
2
15 A2
En
2
15
–VSUPPLY
3
14 Ground
–VSUPPLY
3
14 +VSUPPLY
In 1
4
13
In 1A
4
13 In 1B
In 2
5
12 In 5
In 2A
5
12 In 2B
In 3
6
11 In 6
In 3A
6
11 In 3B
In 4
7
10 In 7
In 4A
7
10 In 4B
Out
8
9
In 8
Out A
8
9
+VSUPPLY
MPC508A (Plastic)
Ground
Out B
MPC509 A (Plastic)
TRUTH TABLES
MPC508A
MPC509A
A2
A1
A0
EN
"ON"
CHANNEL
X
L
L
L
L
H
H
H
H
X
L
L
H
H
L
L
H
H
X
L
H
L
H
L
H
L
H
L
H
H
H
H
H
H
H
H
None
1
2
3
4
5
6
7
8
"ON"
CHANNEL
A1
A0
EN
PAIR
X
L
L
H
H
X
L
H
L
H
L
H
H
H
H
None
1
2
3
4
ORDERING INFORMATION
ABSOLUTE MAXIMUM RATINGS(1)
Voltage between supply pins ............................................................... 44V
V+ to ground ........................................................................................ 22V
V– to ground ........................................................................................ 25V
Digital input overvoltage VEN, VA:
VSUPPLY (+) ................................................... +4V
VSUPPLY (–) .................................................... –4V
or 20mA, whichever occurs first.
Analog input overvoltage VS:
VSUPPLY (+) ................................................ +20V
VSUPPLY (–) ................................................. –20V
Continuous current, S or D ............................................................... 20mA
Peak current, S or D
(pulsed at 1ms, 10% duty cycle max) ............................................ 40mA
Power dissipation(2) .......................................................................... 1.28W
Operating temperature range ............................................ –40°C to +85°C
Storage temperature range ............................................. –65°C to +150°C
PRODUCT
PACKAGE
TEMPERATURE
RANGE
MPC508AP
16-Pin Plastic DIP
–40°C to +85°C
8-Channel
Single-Ended
MPC508AU
16-Pin Plastic SOIC
–40°C to +85°C
8-Channel
Single-Ended
MPC509AP
16-Pin Plastic DIP
–40°C to +85°C
4-Channel
Differential
MPC509AU
16-Pin Plastic SOIC
–40°C to +85°C
4-Channel
Differential
DESCRIPTION
PACKAGE INFORMATION
PRODUCT
MPC508/509AP
MPC508/509AU
NOTE: (1) Absolute maximum ratings are limiting values, applied individually, beyond which the serviceability of the circuit may be impaired. Functional operation under any of these conditions is not necessarily implied.
(2) Derate 1.28mW/°C above TA = +70°C.
PACKAGE
PACKAGE DRAWING
NUMBER(1)
16-Pin Plastic DIP
16-Pin Plastic SOIC
180
211
NOTE: (1) For detailed drawing and dimension table, please see end of data
sheet, or Appendix C of Burr-Brown IC Data Book.
®
3
MPC508A, 509A
TYPICAL PERFORMANCE CURVES
Typical at +25°C, unless otherwise noted.
SETTLING TIME vs
SOURCE RESISTANCE FOR 20V STEP CHANGE
CROSSTALK vs SIGNAL FREQUENCY
1k
Crosstalk (% of Off Channel Signal)
1
To ±0.01%
10
To ±0.1%
1
0.1
0.01
0.1
Rs = 100kΩ
Rs = 10kΩ
0.01
Rs = 1kΩ
Rs = 100Ω
0.001
0.0001
0.1
10
1
100
1
10
Source Resistance (kΩ)
120
G = 500
100
G = 100
80
G = 10
60
40
20
0
1
10
100
Frequency (Hz)
®
MPC508A, 509A
100
Signal Frequency (Hz)
COMBINED CMR vs
FREQUENCY MPC509A AND INA110
Common-Mode Rejection (dB)
Settling Time (µs)
100
4
1k
10k
1k
10k
DISCUSSION OF
PERFORMANCE
Differential Multiplexer Static Accuracy
Static accuracy errors in a differential multiplexer are difficult to control, especially when it is used for multiplexing
low-level signals with full-scale ranges of 10mV to 100mV.
DC CHARACTERISTICS
The static or dc transfer accuracy of transmitting the multiplexer input voltage to the output depends on the channel ON
resistance (RON), the load impedance, the source impedance,
the load bias current and the multiplexer leakage current.
The matching properties of the multiplexer, source and
output load play a very important part in determining the
transfer accuracy of the multiplexer. The source impedance
unbalance, common-mode impedance, load bias current mismatch, load differential impedance mismatch, and commonmode impedance of the load all contribute errors to the
multiplexer. The multiplexer ON resistance mismatch, leakage current mismatch and ON resistance also contribute to
differential errors.
Single-Ended Multiplexer Static Accuracy
The major contributors to static transfer accuracy for singleended multiplexers are:
Source resistance loading error;
Multiplexer ON resistance error;
and, DC offset error caused by both load bias current and
multiplexer leakage current.
The effects of these errors can be minimized by following the
general guidelines described in this section, especially for
low-level multiplexing applications. Refer to Figure 2.
Resistive Loading Errors
Load (Output Device) Characteristics
The source and load impedances will determine the input
resistive loading errors. To minimize these errors:
•
Use devices with very low bias current. Generally, FET
input amplifiers should be used for low-level signals less
than 50mV FSR. Low bias current bipolar input amplifiers are acceptable for signal ranges higher than 50mV
FSR. Bias current matching will determine the input
offset.
•
The system dc common-mode rejection (CMR) can never
be better than the combined CMR of the multiplexer and
driven load. System CMR will be less than the device
which has the lower CMR figure.
•
Load impedances, differential and common-mode, should
be 1010Ω or higher.
•
•
Keep loading impedance as high as possible. This
minimizes the resistive loading effects of the source
resistance and multiplexer ON resistance. As a guideline,
load impedances of 108Ω, or greater, will keep resistive
loading errors to 0.002% or less for 1000Ω source impedances. A 106Ω load impedance will increase source
loading error to 0.2% or more.
Use sources with impedances as low as possible. 1000Ω
source resistance will present less than 0.001% loading
error and 10kΩ source resistance will increase source
loading error to 0.01% with a 108 load impedance.
VM
Source and Multiplexer Resistive Loading Error
∈ ( R S+ R ON ) =
IBIAS
RON
RS1
Input resistive loading errors are determined by the following
relationship (see Figure 1).
ROFF
RS8
VS1
R S + R ON
x 100%
R S + R ON + R L
Measured
Voltage
IL
ZL
VS8
where RS = source resistance
RL = load resistance
RON = multiplexer ON resistance
FIGURE 1. MPC508A DC Accuracy Equivalent Circuit.
RS1
RON1A
IBIAS A
Input Offset Voltage
Cd/2
Bias current generates an input OFFSET voltage as a result
of the IR drop across the multiplexer ON resistance and
source resistance. A load bias current of 10nA will generate
an offset voltage of 20µV if a 1kΩ source is used. In general,
for the MPC508A, the OFFSET voltage at the output is
determined by:
Rd/2
IL
VS1
RCM1
RCM
RS1B
RON1B
IBIAS B
ZL
CCM
Cd/2
Rd/2
RS4A
ROFF4A
ILB
VOFFSET = (IB + IL) (RON + RS)
VS8
where IB = Bias current of device multiplexer is driving
IL = Multiplexer leakage current
RON = Multiplexer ON resistance
RS = source resistance
RS48
ROFF4B
RCM4
FIGURE 2. MPC509A DC Accuracy Equivalent Circuit.
®
5
MPC508A, 509A
Source Characteristics
•
The source impedance unbalance will produce offset,
common-mode and channel-to-channel gain-scatter errors. Use sources which do not have large impedance
unbalances if at all possible.
•
Keep source impedances as low as possible to minimize
resistive loading errors.
•
Minimize ground loops. If signal lines are shielded,
ground all shields to a common point at the system
analog common.
RSA
Node A
CSA
RCMS
Source
CSB
CCMS
RSB
CdA
RdA
MPC509A Load
Channel
RdB
Node B
ZCM
CdB
If the MPC509A is used for multiplexing high-level signals
of ±1V to ±10V full-scale ranges, the foregoing precautions
should still be taken, but the parameters are not as critical as
for low-level signal applications.
DYNAMIC CHARACTERISTICS
Settling Time
FIGURE 4. Settling and Common-Mode-Effects—
MPC509A
The gate-to-source and gate-to-drain capacitance of the CMOS
FET switches, the RC time constants of the source and the
load determine the settling time of the multiplexer.
Switching Time
Governed by the charge transfer relation i = C (dV/dt), the
charge currents transferred to both load and source by the
analog switches are determined by the amplitude and rise
time of the signal driving the CMOS FET switches and the
gate-to-drain and gate-to-source junction capacitances as
shown in Figures 3 and 4. Using this relationship, one can see
that the amplitude of the switching transients, seen at the
source and load, decrease proportionally as the capacitance
of the load and source increase. The trade-off for reduced
switching transient amplitude is increased settling time. In
effect, the amplitude of the transients seen at the source and
load are:
This is the time required for the CMOS FET to turn ON after
a new digital code has been applied to the Channel Address
inputs. It is measured from the 50 percent point of the address
input signal to the 90 percent point of the analog signal seen
at the output for a 10V signal change between channels.
Crosstalk
Crosstalk is the amount of signal feedthrough from the three
(MPC509A) or seven (MPC508A) OFF channels appearing
at the multiplexer output. Crosstalk is caused by the voltage
divider effect of the OFF channel, OFF resistance and junction capacitances in series with the RON and RS impedances
of the ON channel. Crosstalk is measured with a 20Vp-p
1kHz sine wave applied to all OFF channels. The crosstalk
for these multiplexers is shown in the Typical Performance
Curves.
dVL = (i/C) dt
where i = C (dV/dt) of the CMOS FET switches
C = load or source capacitance
The source must then redistribute this charge, and the effect
of source resistance on settling time is shown in the Typical
Performance Curves. This graph shows the settling time for
a 20V step change on the input. The settling time for smaller
step changes on the input will be less than that shown in the
curve.
Common-Mode Rejection (MPC509A Only)
The matching properties of the load, multiplexer and source
affect the common-mode rejection (CMR) capability of a
differentially multiplexed system. CMR is the ability of the
multiplexer and input amplifier to reject signals that are
common to both inputs, and to pass on only the signal
difference to the output. For the MPC509A, protection is
provided for common-mode signals of ±20V above the
power supply voltages with no damage to the analog switches.
MPC508A Channel
Source
Load
Node A
RS
CS
CL
RL
The CMR of the MPC509A and Burr-Brown’s INA110
instrumentation amplifier is 110dB at DC to 10Hz (G = 100)
with a 6dB/octave roll off to 70dB at 1000Hz. This measurement of CMR is shown in the Typical Performance Curves
and is made with a Burr-Brown model INA110 instrumentation amplifier connected for gains of 10, 100, and 500.
FIGURE 3. Settling Time Effects—MPC508A
®
MPC508A, 509A
6
Factors which will degrade multiplexer and system DC CMR
are:
•
•
Amplifier bias current and differential impedance mismatch
Load impedance mismatch
•
Multiplexer impedance and leakage current mismatch
•
Load and source common-mode impedance
AC CMR roll off is determined by the amount of commonmode capacitances (absolute and mismatch) from each signal
line to ground. Larger capacitances will limit CMR at higher
frequencies; thus, if good CMR is desired at higher
frequencies, the common-mode capacitances and unbalance
of signal lines and multiplexer-to-amplifier wiring must be
minimized. Use twisted-shielded-pair signal lines wherever
possible.
SWITCHING WAVEFORMS
TYPICAL AT +25°C UNLESS OTHERWISE NOTED.
BREAK-BEFORE-MAKE DELAY (tOPEN)
MPC508A(1)
In 1
VAM 4.0V
Address Drive VA
(VA)
0V
50Ω
Output
50%
A2
A1
A0
In 2 Thru In 7
1 On
In 8
Output
0.5V/Div
VOUT
En
50%
VA Input
2V/Div
+5V
GND
+4.0V
Out
12.5pF
1kΩ
tOPEN
NOTE: (1) Similar connection for MPC509A.
100ns/Div
ENABLE DELAY (tON (EN), tOFF (EN))
Enable Drive
MPC508A(1)
In 1
A2
A1
In 2 Thru In 8
A0
VAM 4.0V
50%
0V
Output
90%
90%
tON(EN)
VA
En
GND
Enable Drive
2V/Div
+10V
Out
12.5pF
1kΩ
50Ω
tOFF(EN)
NOTE: (1) Similar connection for MPC509A.
Output
2V/Div
100ns/Div
®
7
MPC508A, 509A
PERFORMANCE CHARACTERISTICS AND TEST CIRCUITS
Unless otherwise specified: TA = +25, VS = ±15V, VAM = +4V, VAL = 0.8V.
ON RESISTANCE vs ANALOG INPUT SIGNAL,
SUPPLY VOLTAGE
100µA
RON = V2/100µA
V2
In
Out
VIN
NORMALIZED ON RESISTANCE
vs SUPPLY VOLTAGE
ON RESISTANCE vs
ANALOG INPUT VOLTAGE
1.6
1.4
1.3
Normalized On Resistance
(Referred to Value at ±15V)
On Resistance (kΩ)
1.2
1.1
TA = +25°C
1.0
TA = –55°C
0.9
±125°C > TA > –55°C
VIN = +5V
1.5
TA = +125°C
0.8
1.4
1.3
1.2
1.1
1.0
0.9
0.7
0.8
0.6
–10
–8
–6
–4
–2
0
2
4
6
8
±5
10
±6
±7
±8
±9
±10 ±11 ±12 ±13 ±14 ±15
Supply Voltage (V)
Analog Input (V)
SUPPLY CURRENT vs TOGGLE FREQUENCY
+15V/+10V
8
MPC508A(1)
A2
En
VA
A1
A0
50Ω
Supply Current (mA)
A +ISUPPLY
±10V/±5V
In 2 Thru In 7
±10V/±5V
In 8
En GND
–V Out
+4V
±10V/±5V
10MΩ
6
4
VS = ±15V
2
VS = ±10V
14pF
A –ISUPPLY
0
100
1k
10k
100k
–15V/–10V
Toggle Frequency (Hz)
NOTE: (1) Similar connection for MPC509A.
®
MPC508A, 509A
8
1M
10M
PERFORMANCE CHARACTERISTICS AND TEST CIRCUITS (CONT)
LEAKAGE CURRENT vs TEMPERATURE
En
+0.8V
Out
Out
A
ID (Off)
±
±10V
A
En
A1
A0
ID (On)
10V
±10V
±
10V
+4.0V
Leakage Current
100nA
Out
IS (Off)
A
±10V
En
Off Output
Current
ID (Off)
10nA
On Leakage
Current ID (On)
1nA
Off Input
Leakage Current
IS (Off)
+0.8V
10V
±
100pA
10pA
25
NOTE: (1) Two measurements per channel: +10V/–10V and –10V/+10V.
(Two measurements per device for ID (Off): +10V/–10V and –10V/+10V).
50
75
100
125
Temperature (°C)
IO (Off)
IIN
A
A
±VIN
21
7
18
6
15
5
12
4
Analog Input
Current (IIN)
9
3
6
Output Off
Leakage Current
IO (Off)
3
0
±12
±15
±18
±21
±24
±27
±30
±33
2
1
Output Off Leakage Current (nA)
Analog Input Current (mA)
ANALOG INPUT OVERVOLTAGE CHARACTERISTICS
0
±36
Analog Input Overvoltage (V)
®
9
MPC508A, 509A
PERFORMANCE CHARACTERISTICS AND TEST CIRCUITS (CONT)
ACCESS TIME vs LOGIC LEVEL (High)
1000
+15V
A2
VA
A1
A0
50Ω
+4V
900
+V
In 1
In 2 Thru
In 7
MPC
508A(1) In 8
En GND
–10V
+10V
Access Time (ns)
VREF
Probe
–V Out
10MΩ
–15V
14pF
800
700
600
500
400
300
3
4
5
6
NOTE: (1) Similar connection for MPC509A.
7
8
9
10
11
12
13
14
15
Logic Level High (V)
ACCESS TIME WAVEFORM
VAM
4.0V
Address
Drive (VA)
50%
VA Input
2V/Div
0V
10V
Output A
90%
Output A
5V/Div
10V
tA
200ns/Div
ON-CHANNEL CURRENT vs VOLTAGE
±14
–55°C
Switch Current (mA)
±12
A
±VIN
+25°C
+125°C
±10
±8
±6
±4
±2
0
0
±2
±4
±6
±8
±10
±12
VIN –Voltage Across Switch (V)
®
MPC508A, 509A
10
±14
±16
8 Analog Inputs (CH1 to 8)
INSTALLATION AND
OPERATING INSTRUCTIONS
The ENABLE input, pin 2, is included for expansion of the
number of channels on a single node as illustrated in Figure
5. With ENABLE line at a logic 1, the channel is selected by
the 2-bit (MPC509A) or 3-bit (MPC508A) Channel Select
Address (shown in the Truth Tables). If ENABLE is at logic
0, all channels are turned OFF, even if the Channel Address
Lines are active. If the ENABLE line is not to be used, simply
tie it to +VSUPPLY.
In 1
In 2
In 3
8
Out
MPC508A
En
In 8
2
Multiplexer
Output
+V
A0 A1 A2
In 1
Out
Direct
MPC508A
8 Analog Inputs (CH57 to 64)
En
If the +15V and/or –15V supply voltage is absent or shorted
to ground, the MPC509A and MPC508A multiplexers will
not be damaged; however, some signal feedthrough to the
output will occur. Total package power dissipation must not
be exceeded.
For best settling speed, the input wiring and interconnections
between multiplexer output and driven devices should be
kept as short as possible. When driving the digital inputs
from TTL, open collector output with pull-up resistors are
recommended.
In 1
In 2
In 3
In 8
+V
Buffered
OPA602
1/4 OPA404
Out
8
MPC508A
En
2
+V
A0 A1 A2
Settling Time to
±0.01% is 20µs
with RS = 100Ω
To preserve common-mode rejection of the MPC509A, use
twisted-shielded pair wire for signal lines and inter-tier
connections and/or multiplexer output lines. This will help
common-mode capacitance balance and reduce stray signal
pickup. If shields are used, all shields should be connected as
close as possible to system analog common or to the common-mode guard driver.
In 8
A0 A1 A2
4LSBs 4MSBs
6-Bit Channel
Address Generator
FIGURE 6. Channel Expansion Up to 64 Channels Using
8 x 8 Two-Tiered Expansion.
Differential Multiplexer (MPC509A)
Single or multitiered configurations can be used to expand
multiplexer channel capacity up to 32 channels using a
32 x 1 or 16 channels using a 4 x 4 configuration.
CHANNEL EXPANSION
Single-Ended Multiplexer (MPC508A)
Single-Node Expansion
In 1
In 2 MPC
Out
In 3 508A 8
Group 1
Group 1
Ch1-8
2
In 8
Enable
A2 A1 A0
20
21
22
8 Analog Inputs
23
24
The 32 x 1 configuration is simply eight (MPC509A) units
tied to a single node. Programming is accomplished with a
5-bit counter, using the 2LSBs of the counter to control
Channel Address inputs A0 and A1 and the 3MSBs of the
counter to drive a 1-of-8 decoder. The 1-of-8 decoder then is
used to drive the ENABLE inputs (pin 2) of the MPC509A
multiplexers.
Multiplexer
Output
Two-Tier Expansion
Using a 4 x 4 two-tier structure for expansion to 16 channels,
the programming is simplified. A 4-bit counter output does
not require a 1-of-8 decoder. The 2LSBs of the counter drive
the A0 and A1 inputs of the four first-tier multiplexers and the
2MSBs of the counter are applied to the A0 and A1 inputs of
the second-tier multiplexer.
Direct
5-Bit
To
Binary Group
Counter
2
1 of 4
Decoder
8 Analog Inputs
Up to 32 channels (four multiplexers) can be connected to a
single node, or up to 64 channels using nine MPC508A
multiplexers on a two-tiered structure as shown in Figures 5
and 6.
Buffered
OPA602
1/4 OPA404
Single vs Multitiered Channel Expansion
In addition to reducing programming complexity, two-tier
configuration offers the added advantages over single-node
expansion of reduced OFF channel current leakage (reduced
OFFSET), better CMR, and a more reliable configuration if
a channel should fail in the ON condition (short). Should a
channel fail ON in the single-node configuration, data cannot
be taken from any channel, whereas only one channel group
is failed (4 or 8) in the multitiered configuration.
To
In 1 A2 A1 A0
Group
In 2
Group 4
2
3
In 3
Enable
MPC
508A
Out
8
In 8
Group 4
Settling Time to 0.01% for RS < 100Ω
Ch25-42
—Two MPC508A units in parallels: 10µs
—Four MPC509 A units in parallels: 12µs
FIGURE 5. 32-Channel, Single-Tier Expansion.
®
11
MPC508A, 509A