BB MPY600AP

®
MPY600
FPO
Wide Bandwidth
SIGNAL MULTIPLIER
FEATURES
APPLICATIONS
● WIDE BANDWIDTH:
75MHz — Current Output
30MHz — Voltage Output
● LOW NOISE
● LOW FEEDTHROUGH: –60dB (5MHz)
● GROUND-REFERRED OUTPUT
● LOW OFFSET VOLTAGE
● MODULATOR/DEMODULATOR
● VIDEO SIGNAL PROCESSING
● CRT GEOMETRY CORRECTION
● CRT FOCUS CORRECTION
● VOLTAGE-CONTROLLED CIRCUITS
DESCRIPTION
The MPY600 is a wide-bandwidth four-quadrant
signal multiplier. Its output voltage is equal to the
algebraic product of the X and Y input voltages. For
signals up to 30MHz, the on-board output op amp
provides the complete multiplication function with a
low-impedance voltage output. Differential current
outputs extend multiplier bandwidth to 75MHz.
The MPY600 offers improved performance compared
to common semiconductor modulator or multiplier
circuits. It can be used for both two-quadrant (voltagecontrolled amplifier) and four-quadrant (doublebalanced) applications. While previous devices
required cumbersome circuitry for trimming, balance
and level-shifting, the MPY600 requires no external
components. A single external resistor can be used to
program the conversion gain for optimum spuriousfree dynamic range. When used as a modulator, carrier
feedthrough measures –60dB at 5MHz.
Differential X, Y and Z inputs can be connected in a
variety of useful configurations, including squarer,
divider, and square-rooter circuits. The MPY600 is
available in 16-pin plastic DIP, specified for the industrial temperature range.
X1
+
X2
–
Multiplier
Core
IP
IN
Y1
+
Y2
–
∆ I O = (X 1 – X 2 )(Y 1 – Y 2 ) mA
+
VO
RY
–
RY
Z1
+
Z2
–
V Reference
and
Bias
+VS
VO = A
[
–VS
(X 1 – X 2 ) (Y 1 – Y 2 )
2V
+ Z 2 – Z1
]
International Airport Industrial Park • Mailing Address: PO Box 11400
Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP •
• Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706
Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132
©
PDS-1019C
1989 Burr-Brown Corporation
Printed in U.S.A. October, 1993
SPECIFICATIONS
At VS = ±5V, TA = +25°C unless otherwise noted.
MPY600AP
SPECIFICATION
CONDITIONS
INPUTS (X, Y, Z)
Full-Scale Differential Input
X1-X2
Y1-Y2
Z1-Z2
Input Voltage Range
Differential Input Range
Input Impedance
Input Offset Voltage
Drift
CMRR
PSRR
Input Bias Current (X, Y)
Z Input
MIN
±1
±2
±2
VCM = ±2V
TYP
±2.2
±2.5
100 || 1.5
±0.5
25
70
70
+15
–15
MAX
UNITS
±5
V
V
V
V
V
kΩ || pF
mV
µV/°C
dB
dB
µA
µA
VOLTAGE OUTPUT
(X1–X2)(Y1–Y2)
VO = ——————— + Z2
2
Transfer Function
Total Multiplier
Error(1)
Gain Error
Gain Temperature Drift
Power Supply Rejection
Noise
Output Voltage Swing
Output Current
Short-Circuit Limit
Bandwidth
Slew Rate
Settling Time to 0.1%
Differential Gain Error
Differential Phase Error
Capacitive Load, Max
Feedthrough, X
Feedthrough, Y
Distortion, X
Distortion, Y
CURRENT OUTPUT
Transfer Function
Total Multiplier Error(1)
Gain Error
Gain Temperature Drift
Power Supply Rejection
Noise, Output
Voltage Compliance Range
Peak Output Current
Noise, Input-Referred
Bandwidth, Small-Signal
Settling Time to 0.1%
Feedthrough, X
Feedthrough, Y
Distortion, X
Distortion, Y
–1V ≤ X ≤ 1V, –2V ≤ Y ≤ 2V
–2V ≤ X ≤ 2V, –2V ≤ Y ≤ 2V
VS = ±4 to ±6V
f = 1kHz to 30MHz
RL = 100Ω
±2.2
±22
Small Signal
4V Step
3.58MHz, 0 to 0.7V
3.58MHz, 0 to 0.7V
Stable Operation
X = 0dBm, f = 500kHz; Y Nulled
X = 0dBm, f = 5MHz; Y Nulled
Y = 0dBm, f = 500kHz; X Nulled
Y = 0dBm, f = 5MHz; X Nulled
X = 0dBm, f = 500kHz, Y = 2V
X = 0dBm, f = 5MHz, Y = 2V
Y = 0dBm, f = 500kHz, X = 2V
Y = 0dBm, f = 5MHz, X = 2V
±15
±25
±1
±200
70
120
±3
±30
50
30
150
150
0.2
0.2
100
–65
–60
–70
–50
–60
–55
–65
–55
∆IO = (X1 – X2)( Y1 – Y2)/1000
±20
±80
±1
±200
50
100
±2.5
5
50
75
150
–65
–45
–75
–55
–55
–50
–65
–50
–1V ≤ X ≤ 1V, –2V ≤ Y ≤ 2V
–2V ≤ X ≤ 2V, –2V ≤ Y ≤ 2V
VS = ±4 to ±6V
f = 1kHz to 75MHz
4mA Step
X = 0dBm, f = 1MHz; Y Nulled
X = 0dBm, f = 10MHz; Y Nulled
Y = 0dBm, f = 1MHz; X Nulled
Y = 0dBm, f = 10MHz; X Nulled
X = 0dBm, f = 1MHz, Y = 2V
X = 0dBm, f = 10MHz, Y = 2V
Y = 0dBm, f = 1MHz, X = 2V
Y = 0dBm, f = 10MHz, X = 2V
POWER SUPPLY
Rated Performance
Operating
Current
±4.75
TEMPERATURE RANGE
Specified Temperature Range
Storage Temperature Range
Thermal Resistance, θJ-A
±5
±30
–25
–40
MPY600
50
2
±25
±80
±8
±35
+85
+125
NOTE: (1) Deviation from ideal transfer function referred to full scale output. Includes gain, nonlinearity and offset errors.
®
V
mV
mV
%
ppm/°C
dB
nV/ Hz
V
mA
mA
MHz
V/µs
ns
%
Degrees
pF
dB
dB
dB
dB
dB
dB
dB
dB
A
µA
µA
%
ppm/°C
dB
pA/√Hz
V
mA
nV/√Hz
MHz
ns
dB
dB
dB
dB
dB
dB
dB
dB
V
V
mA
°C
°C
°C/W
ABSOLUTE MAXIMUM RATINGS
PIN CONFIGURATION
Supply Voltage ................................................................................... ±18V
Input Voltage Range ............................................................................ ±VS
Op Amp Output Current ................................................................. 100mA
Operating Temperature ................................................................. +125°C
Storage Temperature ..................................................................... +150°C
Junction Temperature .................................................................... +150°C
Lead Temperature (soldering, 10s) ............................................... +300°C
Top View
Voltage Output
1
VO
I P 16
+Current Output
Z1 Input
2
Z1
I N 15
–Current Output
Z2 Input
3
Z2
NC 14
NC
Y1 Input
4
Y1
X 1 13
X 1 Input
Y-Gain Adj.
5
RY
NC 12
NC
Y-Gain Adj.
6
RY
NC 11
NC
Y2 Input
7
Y2
X 2 10
X 2 Input
+VS Power
8
+VS
ORDERING INFORMATION
PACKAGE
SPECIFIED
TEMPERATURE
RANGE
16-Pin Plastic DIP
–25°C to +85°C
MODEL
MPY600AP
PACKAGE INFORMATION
PACKAGE
PACKAGE DRAWING
NUMBER(1)
16-Pin Plastic DIP
180
MODEL
MPY600AP
DIP
NOTE: (1) For detailed drawing and dimension table, please see end of data
sheet, or Appendix D of Burr-Brown IC Data Book.
–V S
9
–V S Power
NC: No internal connection.
TYPICAL PERFORMANCE CURVES
TA = +25°C, VS = ±5V unless otherwise noted.
MULTIPLIER GAIN vs FREQUENCY
VOLTAGE OUTPUT FREQUENCY RESPONSE
30
With 10x Feedback Attenuator
20
R Y = 0Ω
RY = 18Ω
20
CL = 100pF
V OUT / V Y (dB)
Gain (dB)
10
0
–10
R Y = 50Ω
RY = 100Ω
RY = 200Ω
10
RY = 500Ω
0
R Y = Open
–10
For X = 1V
–20
–20
10k
100k
1M
10M
100M
10k
100k
1M
Frequency (Hz)
10M
100M
Frequency (Hz)
NOISE FIGURE vs R Y RESISTANCE
VOLTAGE OUTPUT PHASE SHIFT vs FREQUENCY
35
100
30
R S = 50 Ω
Noise Figure (dB)
Phase Shift (Deg)
10
1.0
25
20
15
0.1
10
5
0.01
1k
10k
100k
1M
10M
1
100M
10
100
1000
10000
R Y Resistance (Ω )
Frequency (Hz)
®
3
MPY600
TYPICAL PERFORMANCE CURVES
(CONT)
TA = +25°C, VS = ±5V unless otherwise noted.
VOLTAGE OUTPUT FEEDTHROUGH vs FREQUENCY
Y- CHANNEL GAIN vs RY RESISTANCE
0
20
V X = 1V
Feedthrough (dBc)
Gain: V O / V Y (V/V)
–20
15
10
5
X-Input Nulled
Y-Input 0dBm
–40
–60
Y-Input Nulled
X-Input 0dBm
–80
0
–100
1
10
100
1k
10k
10k
100k
R Y Resistance ( Ω)
–20
–40
Distortion (dBc)
–30
Y-Input Nulled
X-Input 0dBm
–60
X-Input Nulled
Y-Input 0dBm
100M
X = 1V
Y = 0dBm
–50
–60
3f
2f
–70
–100
–80
10k
100k
1M
10M
100M
10k
100k
Frequency (Hz)
1M
10M
100M
Frequency (Hz)
CURRENT OUTPUT HARMONIC DISTORTION
vs INPUT POWER
VOLTAGE OUTPUT HARMONIC DISTORTION
vs FREQUENCY
0
–30
–20
–40
X = 1V
Y = 0dBm
f = 10MHz
Distortion (dBc)
Distortion (dBc)
Feedthrough (dBc)
0
–80
10M
CURRENT OUTPUT HARMONIC DISTORTION
vs FREQUENCY
CURRENT OUTPUT FEEDTHROUGH vs FREQUENCY
–40
1M
Frequency (Hz)
–50
–60
2f
–40
2f
–60
3f
–80
–70
3f
–100
–80
10k
100k
1M
10M
–60
100M
®
MPY600
–50
–40
–30
–20
–10
Input Power (dBm)
Frequency (Hz)
4
0
10
20
TYPICAL PERFORMANCE CURVES
(CONT)
TA = +25°C, VS = ±5V unless otherwise noted.
INPUT-REFERRED DYNAMIC RANGE
vs INPUT POWER
VOLTAGE OUTPUT HARMONIC DISTORTION
vs INPUT POWER
0
0
3rd Order IMD
Intercept = 37dBm
–20
Dynamic Range (dBc)
–20
3f
–80
–50
–40
–30
–20
–10
0
10
P
Fl
r IM
oo
r
–80
–100
–100
20
–80
–60
–40
–20
0
20
Input Power (dBm)
INPUT-REFERRED DYNAMIC RANGE
vs INPUT POWER
OUTPUT-REFERRED DYNAMIC RANGE
vs INPUT POWER
40
40
1dB Compresion pt
3rd Order IMD
Intercept = –5dBm
20
Gain = 30dB
–20
ise
Fl
oo
–60
r
1dB Compression
pt = –13dBm
RY = 0
D
r IM
–20
RY = 0
de
No
Or
Hz
0
Output Power (dBm)
1k
–40
–40
–60
84dB
–80
–80
1kHz Noise Floor
–100
–100
–140
1dB Compression
pt = 17dBm
Frequency (Hz)
0
Dynamic Range (dBc)
ise
–60
–100
–60
No
de
–60
Hz
Or
2f
RY = ∞
1k
–40
3rd
–40
3rd
Distortion (dBc)
f = 5MHz
–120
–100
–80
–60
–40
–20
–120
–120
0
–100
–80
–60
–40
Input Power (dBm)
Power In (dBm)
OUTPUT-REFERRED DYNAMIC RANGE
vs INPUT POWER
DIVIDER RESPONSE
vs FREQUENCY
–20
0
20
60
40
1dB Compresion pt
20
Gain: VO /V Z
D
–40
Or
de
r IM
–20
V Y = 0.02VDC
40
RY = ∞
3rd
Output Power (dBm)
Gain = 0dB
0
–60
V Y = 0.2VDC
20
92dB
–100
–120
–100
V Y = 2VDC
0
–80
1kHz Noise Floor
–20
–80
–60
–40
–20
0
20
10k
40
100k
1M
10M
100M
Frequency (Hz)
Input Power (dBm)
®
5
MPY600
TYPICAL PERFORMANCE CURVES
(CONT)
TA = +25°C, VS = ±5V unless otherwise noted.
VOLTAGE OUTPUT SQUARER FREQUENCY RESPONSE
5
V OUT / V IN (dB)
0
–5
–10
–15
–20
10k
100k
1M
10M
100M
Frequency (Hz)
APPLICATION INFORMATION
For example, in the basic multiplier connection (Figure 1),
Z1 = VO and Z2 = 0. Setting this equal to zero:
POWER SUPPLIES
The MPY600 may be operated from power supplies from
±4.75V to ±8V. Operation from ±5V supplies is recommended. Since input and output levels are ±2V, larger
supply voltage is not required for full output voltage swing.
Furthermore, power dissipation can be minimized by using
lower power supply voltage. Power supplies should be
bypassed with good high-frequency capacitors such as ceramic or solid tantalum.
 ( X 1 – X 2 ) • ( Y1 – Y 2 )

– VO  = 0

2V


Solving for VO yields the transfer function of the circuit.
The X input is specified for ±1V full-scale differential input.
X inputs up to ±2V provide useful operation with somewhat
reduced accuracy and distortion performance. The Y input is
rated for ±2V full-scale input. The Y input gain (and therefore its full-scale range) can be varied with an external
resistor connected to the RY terminals—see “Modulator/
Demodulator.” Full-scale inputs (X = ±1V, Y = ±2V) produce a ±1V output.
TRANSFER FUNCTION
The open-loop transfer function of the MPY600 is:
 ( X – X 2 ) • ( Y1 – Y 2 )

VO = A  1
– ( Z1 – Z 2 ) 
2V


The differential inputs, X1, X2, and Y1, Y2, make it easy to
trim offset voltage. The trim voltage is applied to the X2 or
Y2 input, which is otherwise grounded (see X2 input, Figure
5). Polarity of the input signals can be reversed by interchanging the inputs (reversing the connections X1 and X2,
for instance). The unused current outputs (pins 15 and 16)
must be grounded (or loaded—see discussion on current
outputs).
where A = open-loop gain of the output amplifier (typically
70dB).
X, Y, Z are differential input voltages— ±2V max.
An intuitive understanding of the transfer function can be
gained by analogy to an op amp. Assuming that the openloop gain is infinite, any output voltage can be created by an
infinitesimally small quantity with the brackets. An applications circuit can be analyzed by assigning circuit voltages to
the X, Y and Z inputs and setting the bracketed quantity
equal to zero.
The output amplifier is operated in unity gain. The output
voltage can be increased (for small input signals) by placing
the internal output op amp in higher gain (Figure 2). This
reduces bandwidth and increases output offset voltage
errors.
®
MPY600
6
VO=
(X 1 – X 2 ) • (Y1 – Y2 )
2V
V O : ±2V, FS
+ Z2
R1
V Y : ±2V, FS
1
VO
I P 16
2
Z1
I N 15
3
Z2
4
Y1
5
RY
(NC)
12
6
RY
(NC)
11
7
Y2
(NC)
1
VO
I P 16
2
Z1
I N 15
3
Z2
4
Y1
14
V Y : ±2V, FS
X 1 13
R2
NC
5
RY
(NC)
12
NC
6
RY
(NC)
11
7
Y2
X 2 10
+5V
8 +VS
–V S
X 1 13
MPY600
MPY600
+5V
14
(NC)
X 2 10
8 +VS
9
9
–V S
–5V
–5V
V X : ±1V, FS
V X : ±1V, FS
VO=
FIGURE 1. Basic Multiplier Connection.
(X1 – X 2 ) • (Y1 – Y2 )
2V • R 2 / (R1 + R 2 )
+
Z2
R2 / (R1 + R2)
FIGURE 2. Adjusting the Scale Factor with Feedback.
CURRENT OUTPUT
The current output connections of the MPY600 can achieve
wider bandwidth multiplier operation (Figure 3). The current output is determined by the X and Y inputs only, so
applications which use the Z input to modify the transfer
function (e.g., divider and square-root modes) cannot be
used. A full-scale input of ±1V on the X and ±2V on the Y
inputs produces a 2mA differential current at the current
outputs. This consists of approximately 2.5mA quiescent
current ±1mA signal current on each output. The current
outputs may be used to drive any load impedance which
maintains the voltage on the current outputs within their
compliance range. This compliance limit is approximately
2.5V from the power supply voltages. The current outputs
and voltage output may be used simultaneously, if desired.
IP
IN
+1V
3.5mA
2.5mA
1.5mA
0
–1V
VO
V Y : ±2V, FS
1
VO
IP
16
2
Z1
IN
15
3
Z2
4
Y1
(NC)
X1
RL
RL
14
13
MPY600
Output capacitance and stray capacitance at the current
output terminals will limit the multiplier bandwidth. This
makes large output resistors (greater than approximately
1kΩ) impractical. The current outputs can be used to drive
50Ω or 75Ω loads directly.
The circuit shown in Figure 4 uses the current outputs to
drive an external OPA621 op amp configured as a currentdifference amplifier. It operates in a noise gain of 3.5. The
OPA621 is stable in a noise gain of two or greater and has
a 500MHz gain-bandwidth product. It achieves the full
bandwidth performance of the MPY600. R1 determines the
transfer function gain. R3 provides a proper load to optimize
high-frequency effects. R4 is made equal to the parallel
combination of R1 and R3.
+5V
5
RY
(NC)
12
6
RY
(NC)
11
7
Y2
X2
10
8 +VS
–V S
9
–5V
V X : ±1V, FS
IP – I N = (X –1X
)2(Y –1 Y ) 2 mA
FIGURE 3. Current Output Connection.
®
7
MPY600
+5V
C3
V X : ±1V, FS
0.1µF
R1
1
VO
IP
2
Z1
I N 15
3
Z2
4
Y1
5
RY
(NC)
12
6
RY
(NC)
11
7
Y2
X2
10
8 +VS
–V S
9
499Ω
16
2
3
7
–
OPA621
+
VO =
4
V Y : ±2V, FS
(NC)
X1
6
14
–(X1 – X2 ) (Y1 – Y2 )
2V • (500/R 1 )
0.1µF
13
R3
MPY600
200Ω
(1)
R4
143Ω
–5V
NOTE: (1) R4 = R1 // R3
+5V
–5V
0.1µF
0.1µF
FIGURE 4. 75MHz DC-Coupled Multiplier.
MODULATOR/DEMODULATOR
The balanced modulator or demodulator shown in Figure 5
uses the basic multiplier configuration. It shows the offset of
the X input trimmed to null carrier feedthrough. It also
illustrates the use of RY to change the gain of the Y input.
This can be used to optimize the spurious-free dynamic
range for a given input level. The Y input is optimized for
±2V inputs. For lower input signals, the Y input can be
programmed for higher gain by connecting an external
resistor to the RY terminals. The conceptual diagram in
Figure 6 reveals why varying the Y-channel gain can yield
improved dynamic range. The RY selection curve in Figure
5 shows the optimum value of RY for a given Y-input signal
level.
feedback connection is made to a multiplying input, the
effective gain of the output amplifier varies as a function of
the denominator input. This causes the bandwidth to vary
with denominator (see Typical Performance Curves for
divider bandwidth performance). Accuracy in divider operation is approximately 3% for a 10:1 denominator range.
Errors grow large and will eventually saturate the output as
the denominator voltage approaches 0V.
SQUARE-ROOT CIRCUIT
The circuit in Figure 8 provides an output voltage proportional to the square-root of the input (for positive input
voltages). Diode D1 prevents latch-up if the input should go
negative. The circuit can be configured for negative input
and positive output by reversing the polarity of both the X
and Y differential inputs. The output polarity can be inverted
by reversing the X input polarity and the diode. Accuracy
can be improved by trimming the offset at the Z input.
DIVIDER OPERATION
The MPY600 can be configured as a divider as shown in
Figure 7. Numerator voltage is applied to the Z inputs;
denominator voltage is applied to the Y1 input. Since the
®
MPY600
8
Modulation
Input ± EM
1
VO
I P 16
2
Z1
I N 15
3
Z2
4
Y1
(NC)
V O = ±1/2EM E C Sin (ω t)
14
X 1 13
MPY600
R TERM
50Ω
5
RY
(NC)
12
6
RY
(NC)
11
7
Y2
RY
R1
X 2 10
–V S
8 +VS
10Ω
R2
1k Ω
9
+5V
–5V
–5V
Carrier Input
E C Sin ω t
R TERM
50Ω
10k
DOWN-CONVERTER TWO-TONE RESPONSE
–5
VALUE OF R Y FOR MAXIMUM DYNAMIC RANGE
vs INPUT LEVEL
–15
–25
–35
(dBm)
1k
R Y Resistance ( Ω)
+5V
Carrier
Null
100
–45
∆
RL –5dBm
Marker ∆
100kHz
–74.46dB
1
–55
–65
–75
10
–85
1
–105
∆
–95
–45
–40
–35
–30
–25
–20
–15
–10
1MHz
2-Tone, –5dBm, 10MHz input down converted to 1MHz
Y = –5dBm at 10.05MHz + –5dBm at 9.95MHz
X = 15dBm at 9MHz
Input Power Level (dBm)
FIGURE 5. Balanced Modulator.
Bandwidth varies with denominator voltage.
See Typical Performance Curves.
V O = –2
VZ
VY
X-Channel has Constant Gain
VX
±1V, FS
+
G=1
–
1
VO
IP
2
Z1
I N 15
3
Z2
4
Y1
16
±1V, FS
V Z : ±2V, FS
Numerator
Output
+
VY
G
–
±2V, FS
Multiplier Core:
1) Constant Noise Level
2) Constant Clipping Level
V Y : 0 to 2V, FS
(NC)
X1
14
13
MPY600
Denominator
±2V: R Y = ∞
5
RY
(NC)
12
6
RY
(NC)
11
7
Y2
X2
10
8 +VS
–V S
9
±100mV: R Y = 0
RY
Y-Channel Gain Varies Inversely with R Y
FIGURE 6. Variable Y-Channel Gain—Conceptual Model.
V X : ±1V, FS
+5V
–5V
FIGURE 7. Divider Circuit.
®
9
MPY600
VO =
D1
1N914
RL
10k Ω
(required)
V IN: 0 to 2V
2V IN
V O = 1/2 V IN 2
1
VO
IP
16
1
VO
I P 16
2
Z1
I N 15
2
Z1
I N 15
3
Z2
3
Z2
4
Y1
4
Y1
(NC)
X1
14
V IN : ±1V, FS
13
MPY600
RY
(NC)
12
NC 6
RY
(NC)
11
7
Y2
X2
10
8 +VS
–V S
9
+5V
–5V
BW ≈
V IN MIN
2V
X1
14
13
MPY600
NC 5
V X : ±1V, FS
(NC)
NC
5
RY
(NC)
12
NC
6
RY
(NC)
11
7
Y2
X2
10
8 +VS
–V S
9
–5V
+5V
• 25MHz
FIGURE 8. Square-Root Circuit.
R1
FIGURE 9. Squaring Circuit.
VO =
1kΩ
A1 A2
4
cos (θ )
V O = (1 ±1/2Em ) EC Sin (ω t)
C1
0.1µF
1
2
3
V1 = A 1 Sin (ω t)
4
VO
I P 16
Z1
I N 15
(NC)
Z2
X1
Y1
Modulation
Input ±Em
14
6
7
RY
(NC)
RY
(NC)
Y2
8 +VS
+5V
X2
–V S
VO
I P 16
2
Z1
I N 15
3
Z2
4
Y1
(NC)
X 1 13
13
5
RY
(NC)
12
6
RY
(NC)
11
7
Y2
12
11
X 2 10
10
8 +VS
+5V
9
Carrier Input
EC Sin (ω t)
–5V
V2 = A 1 Sin (ω t + θ )
FIGURE 11. Linear AM Modulator.
FIGURE 10. Phase Detector.
®
MPY600
14
MPY600
MPY600
5
1
10
–V S
9
–5V
+5V
1
4
VO
C
Carrier
0.01µF
Input
6
OPA621
5
VO
CL
R1
Modulation
Input
RL
150Ω
C
0.01µF
–5V
1
VO
IP
2
Z1
I N 15
3
Z2
R
1k Ω
16
1
VO
I P 16
2
Z1
I N 15
3
Z2
4
Y1
5
RY
(NC)
12
6
RY
(NC)
11
7
Y2
X2
10
8 +VS
–V S
9
(NC)
14
X1
R
1k Ω
13
MPY600
VY
4
(NC)
Y1
14
R
1k Ω
X1
13
VS =
+10V
MPY600
NC 5
RY
NC 6
RY
7
Y2
8 +VS
(NC)
12
11
R1
100 Ω
X2
10
R2
100Ω
–V S
9
(NC)
+5V
–5V
VX
R
1k Ω
C1
0.1µF
Maximum peak-to-peak signal amplitude = VS – 5V
for both inputs and the output.
FIGURE 12. 25MHz Multiplier with Improved Load
Driving Capability.
FIGURE 13. Single-Supply Balanced Modulator.
X
2
2
V O = 1/2 ( X + Y )
Y
1
VO
I P 16
1
VO
IP
2
Z1
I N 15
2
Z1
I N 15
3
Z2
14
3
Z2
4
Y1
13
4
Y1
(NC)
X1
MPY600
+5V
(NC)
X1
16
14
13
MPY600
5
RY
(NC)
12
5
RY
(NC)
12
6
RY
(NC)
11
6
RY
(NC)
11
7
Y2
X2
10
7
Y2
X2
10
8 +VS
–V S
9
8 +VS
–V S
9
+5V
–5V
–5V
FIGURE 14. CRT Focus Correction.
®
11
MPY600
2
2
V O = X/2 (X /2 + Y /2)
2
2
(X /2 + Y /2)
X
1
VO
I P 16
1
VO
IP
2
Z1
I N 15
2
Z1
I N 15
3
Z2
14
3
Z2
4
Y1
13
4
Y1
(NC)
X1
MPY600
2
X1
14
13
MPY600
5
RY
(NC)
12
5
RY
(NC)
12
6
RY
(NC)
11
6
RY
(NC)
11
7
Y2
X2
10
7
Y2
X2
10
8 +VS
–V S
8 +VS
–V S
9
+5V
Y
2
(NC)
16
9
–5V
+5V
–5V
1
VO
IP
16
1
VO
I P 16
2
Z1
I N 15
2
Z1
I N 15
3
Z2
14
3
Z2
4
Y1
13
4
Y1
(NC)
Y
X1
MPY600
(NC)
VO =
2
2
Y/2 (X /2 + Y /2)
14
X 1 13
MPY600
5
RY
(NC)
12
5
RY
(NC)
12
6
RY
(NC)
11
6
RY
(NC)
11
7
Y2
X2
10
7
Y2
8 +VS
–V S
+5V
8 +VS
9
–5V
+5V
X 2 10
–V S
9
–5V
FIGURE 15. CRT Geometry Correction.
The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes
no responsibility for the use of this information, and all use of such information shall be entirely at the user’s own risk. Prices and specifications are subject to change
without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant
any BURR-BROWN product for use in life support devices and/or systems.
®
MPY600
12