® MPY600 FPO Wide Bandwidth SIGNAL MULTIPLIER FEATURES APPLICATIONS ● WIDE BANDWIDTH: 75MHz — Current Output 30MHz — Voltage Output ● LOW NOISE ● LOW FEEDTHROUGH: –60dB (5MHz) ● GROUND-REFERRED OUTPUT ● LOW OFFSET VOLTAGE ● MODULATOR/DEMODULATOR ● VIDEO SIGNAL PROCESSING ● CRT GEOMETRY CORRECTION ● CRT FOCUS CORRECTION ● VOLTAGE-CONTROLLED CIRCUITS DESCRIPTION The MPY600 is a wide-bandwidth four-quadrant signal multiplier. Its output voltage is equal to the algebraic product of the X and Y input voltages. For signals up to 30MHz, the on-board output op amp provides the complete multiplication function with a low-impedance voltage output. Differential current outputs extend multiplier bandwidth to 75MHz. The MPY600 offers improved performance compared to common semiconductor modulator or multiplier circuits. It can be used for both two-quadrant (voltagecontrolled amplifier) and four-quadrant (doublebalanced) applications. While previous devices required cumbersome circuitry for trimming, balance and level-shifting, the MPY600 requires no external components. A single external resistor can be used to program the conversion gain for optimum spuriousfree dynamic range. When used as a modulator, carrier feedthrough measures –60dB at 5MHz. Differential X, Y and Z inputs can be connected in a variety of useful configurations, including squarer, divider, and square-rooter circuits. The MPY600 is available in 16-pin plastic DIP, specified for the industrial temperature range. X1 + X2 – Multiplier Core IP IN Y1 + Y2 – ∆ I O = (X 1 – X 2 )(Y 1 – Y 2 ) mA + VO RY – RY Z1 + Z2 – V Reference and Bias +VS VO = A [ –VS (X 1 – X 2 ) (Y 1 – Y 2 ) 2V + Z 2 – Z1 ] International Airport Industrial Park • Mailing Address: PO Box 11400 Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706 Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132 © PDS-1019C 1989 Burr-Brown Corporation Printed in U.S.A. October, 1993 SPECIFICATIONS At VS = ±5V, TA = +25°C unless otherwise noted. MPY600AP SPECIFICATION CONDITIONS INPUTS (X, Y, Z) Full-Scale Differential Input X1-X2 Y1-Y2 Z1-Z2 Input Voltage Range Differential Input Range Input Impedance Input Offset Voltage Drift CMRR PSRR Input Bias Current (X, Y) Z Input MIN ±1 ±2 ±2 VCM = ±2V TYP ±2.2 ±2.5 100 || 1.5 ±0.5 25 70 70 +15 –15 MAX UNITS ±5 V V V V V kΩ || pF mV µV/°C dB dB µA µA VOLTAGE OUTPUT (X1–X2)(Y1–Y2) VO = ——————— + Z2 2 Transfer Function Total Multiplier Error(1) Gain Error Gain Temperature Drift Power Supply Rejection Noise Output Voltage Swing Output Current Short-Circuit Limit Bandwidth Slew Rate Settling Time to 0.1% Differential Gain Error Differential Phase Error Capacitive Load, Max Feedthrough, X Feedthrough, Y Distortion, X Distortion, Y CURRENT OUTPUT Transfer Function Total Multiplier Error(1) Gain Error Gain Temperature Drift Power Supply Rejection Noise, Output Voltage Compliance Range Peak Output Current Noise, Input-Referred Bandwidth, Small-Signal Settling Time to 0.1% Feedthrough, X Feedthrough, Y Distortion, X Distortion, Y –1V ≤ X ≤ 1V, –2V ≤ Y ≤ 2V –2V ≤ X ≤ 2V, –2V ≤ Y ≤ 2V VS = ±4 to ±6V f = 1kHz to 30MHz RL = 100Ω ±2.2 ±22 Small Signal 4V Step 3.58MHz, 0 to 0.7V 3.58MHz, 0 to 0.7V Stable Operation X = 0dBm, f = 500kHz; Y Nulled X = 0dBm, f = 5MHz; Y Nulled Y = 0dBm, f = 500kHz; X Nulled Y = 0dBm, f = 5MHz; X Nulled X = 0dBm, f = 500kHz, Y = 2V X = 0dBm, f = 5MHz, Y = 2V Y = 0dBm, f = 500kHz, X = 2V Y = 0dBm, f = 5MHz, X = 2V ±15 ±25 ±1 ±200 70 120 ±3 ±30 50 30 150 150 0.2 0.2 100 –65 –60 –70 –50 –60 –55 –65 –55 ∆IO = (X1 – X2)( Y1 – Y2)/1000 ±20 ±80 ±1 ±200 50 100 ±2.5 5 50 75 150 –65 –45 –75 –55 –55 –50 –65 –50 –1V ≤ X ≤ 1V, –2V ≤ Y ≤ 2V –2V ≤ X ≤ 2V, –2V ≤ Y ≤ 2V VS = ±4 to ±6V f = 1kHz to 75MHz 4mA Step X = 0dBm, f = 1MHz; Y Nulled X = 0dBm, f = 10MHz; Y Nulled Y = 0dBm, f = 1MHz; X Nulled Y = 0dBm, f = 10MHz; X Nulled X = 0dBm, f = 1MHz, Y = 2V X = 0dBm, f = 10MHz, Y = 2V Y = 0dBm, f = 1MHz, X = 2V Y = 0dBm, f = 10MHz, X = 2V POWER SUPPLY Rated Performance Operating Current ±4.75 TEMPERATURE RANGE Specified Temperature Range Storage Temperature Range Thermal Resistance, θJ-A ±5 ±30 –25 –40 MPY600 50 2 ±25 ±80 ±8 ±35 +85 +125 NOTE: (1) Deviation from ideal transfer function referred to full scale output. Includes gain, nonlinearity and offset errors. ® V mV mV % ppm/°C dB nV/ Hz V mA mA MHz V/µs ns % Degrees pF dB dB dB dB dB dB dB dB A µA µA % ppm/°C dB pA/√Hz V mA nV/√Hz MHz ns dB dB dB dB dB dB dB dB V V mA °C °C °C/W ABSOLUTE MAXIMUM RATINGS PIN CONFIGURATION Supply Voltage ................................................................................... ±18V Input Voltage Range ............................................................................ ±VS Op Amp Output Current ................................................................. 100mA Operating Temperature ................................................................. +125°C Storage Temperature ..................................................................... +150°C Junction Temperature .................................................................... +150°C Lead Temperature (soldering, 10s) ............................................... +300°C Top View Voltage Output 1 VO I P 16 +Current Output Z1 Input 2 Z1 I N 15 –Current Output Z2 Input 3 Z2 NC 14 NC Y1 Input 4 Y1 X 1 13 X 1 Input Y-Gain Adj. 5 RY NC 12 NC Y-Gain Adj. 6 RY NC 11 NC Y2 Input 7 Y2 X 2 10 X 2 Input +VS Power 8 +VS ORDERING INFORMATION PACKAGE SPECIFIED TEMPERATURE RANGE 16-Pin Plastic DIP –25°C to +85°C MODEL MPY600AP PACKAGE INFORMATION PACKAGE PACKAGE DRAWING NUMBER(1) 16-Pin Plastic DIP 180 MODEL MPY600AP DIP NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix D of Burr-Brown IC Data Book. –V S 9 –V S Power NC: No internal connection. TYPICAL PERFORMANCE CURVES TA = +25°C, VS = ±5V unless otherwise noted. MULTIPLIER GAIN vs FREQUENCY VOLTAGE OUTPUT FREQUENCY RESPONSE 30 With 10x Feedback Attenuator 20 R Y = 0Ω RY = 18Ω 20 CL = 100pF V OUT / V Y (dB) Gain (dB) 10 0 –10 R Y = 50Ω RY = 100Ω RY = 200Ω 10 RY = 500Ω 0 R Y = Open –10 For X = 1V –20 –20 10k 100k 1M 10M 100M 10k 100k 1M Frequency (Hz) 10M 100M Frequency (Hz) NOISE FIGURE vs R Y RESISTANCE VOLTAGE OUTPUT PHASE SHIFT vs FREQUENCY 35 100 30 R S = 50 Ω Noise Figure (dB) Phase Shift (Deg) 10 1.0 25 20 15 0.1 10 5 0.01 1k 10k 100k 1M 10M 1 100M 10 100 1000 10000 R Y Resistance (Ω ) Frequency (Hz) ® 3 MPY600 TYPICAL PERFORMANCE CURVES (CONT) TA = +25°C, VS = ±5V unless otherwise noted. VOLTAGE OUTPUT FEEDTHROUGH vs FREQUENCY Y- CHANNEL GAIN vs RY RESISTANCE 0 20 V X = 1V Feedthrough (dBc) Gain: V O / V Y (V/V) –20 15 10 5 X-Input Nulled Y-Input 0dBm –40 –60 Y-Input Nulled X-Input 0dBm –80 0 –100 1 10 100 1k 10k 10k 100k R Y Resistance ( Ω) –20 –40 Distortion (dBc) –30 Y-Input Nulled X-Input 0dBm –60 X-Input Nulled Y-Input 0dBm 100M X = 1V Y = 0dBm –50 –60 3f 2f –70 –100 –80 10k 100k 1M 10M 100M 10k 100k Frequency (Hz) 1M 10M 100M Frequency (Hz) CURRENT OUTPUT HARMONIC DISTORTION vs INPUT POWER VOLTAGE OUTPUT HARMONIC DISTORTION vs FREQUENCY 0 –30 –20 –40 X = 1V Y = 0dBm f = 10MHz Distortion (dBc) Distortion (dBc) Feedthrough (dBc) 0 –80 10M CURRENT OUTPUT HARMONIC DISTORTION vs FREQUENCY CURRENT OUTPUT FEEDTHROUGH vs FREQUENCY –40 1M Frequency (Hz) –50 –60 2f –40 2f –60 3f –80 –70 3f –100 –80 10k 100k 1M 10M –60 100M ® MPY600 –50 –40 –30 –20 –10 Input Power (dBm) Frequency (Hz) 4 0 10 20 TYPICAL PERFORMANCE CURVES (CONT) TA = +25°C, VS = ±5V unless otherwise noted. INPUT-REFERRED DYNAMIC RANGE vs INPUT POWER VOLTAGE OUTPUT HARMONIC DISTORTION vs INPUT POWER 0 0 3rd Order IMD Intercept = 37dBm –20 Dynamic Range (dBc) –20 3f –80 –50 –40 –30 –20 –10 0 10 P Fl r IM oo r –80 –100 –100 20 –80 –60 –40 –20 0 20 Input Power (dBm) INPUT-REFERRED DYNAMIC RANGE vs INPUT POWER OUTPUT-REFERRED DYNAMIC RANGE vs INPUT POWER 40 40 1dB Compresion pt 3rd Order IMD Intercept = –5dBm 20 Gain = 30dB –20 ise Fl oo –60 r 1dB Compression pt = –13dBm RY = 0 D r IM –20 RY = 0 de No Or Hz 0 Output Power (dBm) 1k –40 –40 –60 84dB –80 –80 1kHz Noise Floor –100 –100 –140 1dB Compression pt = 17dBm Frequency (Hz) 0 Dynamic Range (dBc) ise –60 –100 –60 No de –60 Hz Or 2f RY = ∞ 1k –40 3rd –40 3rd Distortion (dBc) f = 5MHz –120 –100 –80 –60 –40 –20 –120 –120 0 –100 –80 –60 –40 Input Power (dBm) Power In (dBm) OUTPUT-REFERRED DYNAMIC RANGE vs INPUT POWER DIVIDER RESPONSE vs FREQUENCY –20 0 20 60 40 1dB Compresion pt 20 Gain: VO /V Z D –40 Or de r IM –20 V Y = 0.02VDC 40 RY = ∞ 3rd Output Power (dBm) Gain = 0dB 0 –60 V Y = 0.2VDC 20 92dB –100 –120 –100 V Y = 2VDC 0 –80 1kHz Noise Floor –20 –80 –60 –40 –20 0 20 10k 40 100k 1M 10M 100M Frequency (Hz) Input Power (dBm) ® 5 MPY600 TYPICAL PERFORMANCE CURVES (CONT) TA = +25°C, VS = ±5V unless otherwise noted. VOLTAGE OUTPUT SQUARER FREQUENCY RESPONSE 5 V OUT / V IN (dB) 0 –5 –10 –15 –20 10k 100k 1M 10M 100M Frequency (Hz) APPLICATION INFORMATION For example, in the basic multiplier connection (Figure 1), Z1 = VO and Z2 = 0. Setting this equal to zero: POWER SUPPLIES The MPY600 may be operated from power supplies from ±4.75V to ±8V. Operation from ±5V supplies is recommended. Since input and output levels are ±2V, larger supply voltage is not required for full output voltage swing. Furthermore, power dissipation can be minimized by using lower power supply voltage. Power supplies should be bypassed with good high-frequency capacitors such as ceramic or solid tantalum. ( X 1 – X 2 ) • ( Y1 – Y 2 ) – VO = 0 2V Solving for VO yields the transfer function of the circuit. The X input is specified for ±1V full-scale differential input. X inputs up to ±2V provide useful operation with somewhat reduced accuracy and distortion performance. The Y input is rated for ±2V full-scale input. The Y input gain (and therefore its full-scale range) can be varied with an external resistor connected to the RY terminals—see “Modulator/ Demodulator.” Full-scale inputs (X = ±1V, Y = ±2V) produce a ±1V output. TRANSFER FUNCTION The open-loop transfer function of the MPY600 is: ( X – X 2 ) • ( Y1 – Y 2 ) VO = A 1 – ( Z1 – Z 2 ) 2V The differential inputs, X1, X2, and Y1, Y2, make it easy to trim offset voltage. The trim voltage is applied to the X2 or Y2 input, which is otherwise grounded (see X2 input, Figure 5). Polarity of the input signals can be reversed by interchanging the inputs (reversing the connections X1 and X2, for instance). The unused current outputs (pins 15 and 16) must be grounded (or loaded—see discussion on current outputs). where A = open-loop gain of the output amplifier (typically 70dB). X, Y, Z are differential input voltages— ±2V max. An intuitive understanding of the transfer function can be gained by analogy to an op amp. Assuming that the openloop gain is infinite, any output voltage can be created by an infinitesimally small quantity with the brackets. An applications circuit can be analyzed by assigning circuit voltages to the X, Y and Z inputs and setting the bracketed quantity equal to zero. The output amplifier is operated in unity gain. The output voltage can be increased (for small input signals) by placing the internal output op amp in higher gain (Figure 2). This reduces bandwidth and increases output offset voltage errors. ® MPY600 6 VO= (X 1 – X 2 ) • (Y1 – Y2 ) 2V V O : ±2V, FS + Z2 R1 V Y : ±2V, FS 1 VO I P 16 2 Z1 I N 15 3 Z2 4 Y1 5 RY (NC) 12 6 RY (NC) 11 7 Y2 (NC) 1 VO I P 16 2 Z1 I N 15 3 Z2 4 Y1 14 V Y : ±2V, FS X 1 13 R2 NC 5 RY (NC) 12 NC 6 RY (NC) 11 7 Y2 X 2 10 +5V 8 +VS –V S X 1 13 MPY600 MPY600 +5V 14 (NC) X 2 10 8 +VS 9 9 –V S –5V –5V V X : ±1V, FS V X : ±1V, FS VO= FIGURE 1. Basic Multiplier Connection. (X1 – X 2 ) • (Y1 – Y2 ) 2V • R 2 / (R1 + R 2 ) + Z2 R2 / (R1 + R2) FIGURE 2. Adjusting the Scale Factor with Feedback. CURRENT OUTPUT The current output connections of the MPY600 can achieve wider bandwidth multiplier operation (Figure 3). The current output is determined by the X and Y inputs only, so applications which use the Z input to modify the transfer function (e.g., divider and square-root modes) cannot be used. A full-scale input of ±1V on the X and ±2V on the Y inputs produces a 2mA differential current at the current outputs. This consists of approximately 2.5mA quiescent current ±1mA signal current on each output. The current outputs may be used to drive any load impedance which maintains the voltage on the current outputs within their compliance range. This compliance limit is approximately 2.5V from the power supply voltages. The current outputs and voltage output may be used simultaneously, if desired. IP IN +1V 3.5mA 2.5mA 1.5mA 0 –1V VO V Y : ±2V, FS 1 VO IP 16 2 Z1 IN 15 3 Z2 4 Y1 (NC) X1 RL RL 14 13 MPY600 Output capacitance and stray capacitance at the current output terminals will limit the multiplier bandwidth. This makes large output resistors (greater than approximately 1kΩ) impractical. The current outputs can be used to drive 50Ω or 75Ω loads directly. The circuit shown in Figure 4 uses the current outputs to drive an external OPA621 op amp configured as a currentdifference amplifier. It operates in a noise gain of 3.5. The OPA621 is stable in a noise gain of two or greater and has a 500MHz gain-bandwidth product. It achieves the full bandwidth performance of the MPY600. R1 determines the transfer function gain. R3 provides a proper load to optimize high-frequency effects. R4 is made equal to the parallel combination of R1 and R3. +5V 5 RY (NC) 12 6 RY (NC) 11 7 Y2 X2 10 8 +VS –V S 9 –5V V X : ±1V, FS IP – I N = (X –1X )2(Y –1 Y ) 2 mA FIGURE 3. Current Output Connection. ® 7 MPY600 +5V C3 V X : ±1V, FS 0.1µF R1 1 VO IP 2 Z1 I N 15 3 Z2 4 Y1 5 RY (NC) 12 6 RY (NC) 11 7 Y2 X2 10 8 +VS –V S 9 499Ω 16 2 3 7 – OPA621 + VO = 4 V Y : ±2V, FS (NC) X1 6 14 –(X1 – X2 ) (Y1 – Y2 ) 2V • (500/R 1 ) 0.1µF 13 R3 MPY600 200Ω (1) R4 143Ω –5V NOTE: (1) R4 = R1 // R3 +5V –5V 0.1µF 0.1µF FIGURE 4. 75MHz DC-Coupled Multiplier. MODULATOR/DEMODULATOR The balanced modulator or demodulator shown in Figure 5 uses the basic multiplier configuration. It shows the offset of the X input trimmed to null carrier feedthrough. It also illustrates the use of RY to change the gain of the Y input. This can be used to optimize the spurious-free dynamic range for a given input level. The Y input is optimized for ±2V inputs. For lower input signals, the Y input can be programmed for higher gain by connecting an external resistor to the RY terminals. The conceptual diagram in Figure 6 reveals why varying the Y-channel gain can yield improved dynamic range. The RY selection curve in Figure 5 shows the optimum value of RY for a given Y-input signal level. feedback connection is made to a multiplying input, the effective gain of the output amplifier varies as a function of the denominator input. This causes the bandwidth to vary with denominator (see Typical Performance Curves for divider bandwidth performance). Accuracy in divider operation is approximately 3% for a 10:1 denominator range. Errors grow large and will eventually saturate the output as the denominator voltage approaches 0V. SQUARE-ROOT CIRCUIT The circuit in Figure 8 provides an output voltage proportional to the square-root of the input (for positive input voltages). Diode D1 prevents latch-up if the input should go negative. The circuit can be configured for negative input and positive output by reversing the polarity of both the X and Y differential inputs. The output polarity can be inverted by reversing the X input polarity and the diode. Accuracy can be improved by trimming the offset at the Z input. DIVIDER OPERATION The MPY600 can be configured as a divider as shown in Figure 7. Numerator voltage is applied to the Z inputs; denominator voltage is applied to the Y1 input. Since the ® MPY600 8 Modulation Input ± EM 1 VO I P 16 2 Z1 I N 15 3 Z2 4 Y1 (NC) V O = ±1/2EM E C Sin (ω t) 14 X 1 13 MPY600 R TERM 50Ω 5 RY (NC) 12 6 RY (NC) 11 7 Y2 RY R1 X 2 10 –V S 8 +VS 10Ω R2 1k Ω 9 +5V –5V –5V Carrier Input E C Sin ω t R TERM 50Ω 10k DOWN-CONVERTER TWO-TONE RESPONSE –5 VALUE OF R Y FOR MAXIMUM DYNAMIC RANGE vs INPUT LEVEL –15 –25 –35 (dBm) 1k R Y Resistance ( Ω) +5V Carrier Null 100 –45 ∆ RL –5dBm Marker ∆ 100kHz –74.46dB 1 –55 –65 –75 10 –85 1 –105 ∆ –95 –45 –40 –35 –30 –25 –20 –15 –10 1MHz 2-Tone, –5dBm, 10MHz input down converted to 1MHz Y = –5dBm at 10.05MHz + –5dBm at 9.95MHz X = 15dBm at 9MHz Input Power Level (dBm) FIGURE 5. Balanced Modulator. Bandwidth varies with denominator voltage. See Typical Performance Curves. V O = –2 VZ VY X-Channel has Constant Gain VX ±1V, FS + G=1 – 1 VO IP 2 Z1 I N 15 3 Z2 4 Y1 16 ±1V, FS V Z : ±2V, FS Numerator Output + VY G – ±2V, FS Multiplier Core: 1) Constant Noise Level 2) Constant Clipping Level V Y : 0 to 2V, FS (NC) X1 14 13 MPY600 Denominator ±2V: R Y = ∞ 5 RY (NC) 12 6 RY (NC) 11 7 Y2 X2 10 8 +VS –V S 9 ±100mV: R Y = 0 RY Y-Channel Gain Varies Inversely with R Y FIGURE 6. Variable Y-Channel Gain—Conceptual Model. V X : ±1V, FS +5V –5V FIGURE 7. Divider Circuit. ® 9 MPY600 VO = D1 1N914 RL 10k Ω (required) V IN: 0 to 2V 2V IN V O = 1/2 V IN 2 1 VO IP 16 1 VO I P 16 2 Z1 I N 15 2 Z1 I N 15 3 Z2 3 Z2 4 Y1 4 Y1 (NC) X1 14 V IN : ±1V, FS 13 MPY600 RY (NC) 12 NC 6 RY (NC) 11 7 Y2 X2 10 8 +VS –V S 9 +5V –5V BW ≈ V IN MIN 2V X1 14 13 MPY600 NC 5 V X : ±1V, FS (NC) NC 5 RY (NC) 12 NC 6 RY (NC) 11 7 Y2 X2 10 8 +VS –V S 9 –5V +5V • 25MHz FIGURE 8. Square-Root Circuit. R1 FIGURE 9. Squaring Circuit. VO = 1kΩ A1 A2 4 cos (θ ) V O = (1 ±1/2Em ) EC Sin (ω t) C1 0.1µF 1 2 3 V1 = A 1 Sin (ω t) 4 VO I P 16 Z1 I N 15 (NC) Z2 X1 Y1 Modulation Input ±Em 14 6 7 RY (NC) RY (NC) Y2 8 +VS +5V X2 –V S VO I P 16 2 Z1 I N 15 3 Z2 4 Y1 (NC) X 1 13 13 5 RY (NC) 12 6 RY (NC) 11 7 Y2 12 11 X 2 10 10 8 +VS +5V 9 Carrier Input EC Sin (ω t) –5V V2 = A 1 Sin (ω t + θ ) FIGURE 11. Linear AM Modulator. FIGURE 10. Phase Detector. ® MPY600 14 MPY600 MPY600 5 1 10 –V S 9 –5V +5V 1 4 VO C Carrier 0.01µF Input 6 OPA621 5 VO CL R1 Modulation Input RL 150Ω C 0.01µF –5V 1 VO IP 2 Z1 I N 15 3 Z2 R 1k Ω 16 1 VO I P 16 2 Z1 I N 15 3 Z2 4 Y1 5 RY (NC) 12 6 RY (NC) 11 7 Y2 X2 10 8 +VS –V S 9 (NC) 14 X1 R 1k Ω 13 MPY600 VY 4 (NC) Y1 14 R 1k Ω X1 13 VS = +10V MPY600 NC 5 RY NC 6 RY 7 Y2 8 +VS (NC) 12 11 R1 100 Ω X2 10 R2 100Ω –V S 9 (NC) +5V –5V VX R 1k Ω C1 0.1µF Maximum peak-to-peak signal amplitude = VS – 5V for both inputs and the output. FIGURE 12. 25MHz Multiplier with Improved Load Driving Capability. FIGURE 13. Single-Supply Balanced Modulator. X 2 2 V O = 1/2 ( X + Y ) Y 1 VO I P 16 1 VO IP 2 Z1 I N 15 2 Z1 I N 15 3 Z2 14 3 Z2 4 Y1 13 4 Y1 (NC) X1 MPY600 +5V (NC) X1 16 14 13 MPY600 5 RY (NC) 12 5 RY (NC) 12 6 RY (NC) 11 6 RY (NC) 11 7 Y2 X2 10 7 Y2 X2 10 8 +VS –V S 9 8 +VS –V S 9 +5V –5V –5V FIGURE 14. CRT Focus Correction. ® 11 MPY600 2 2 V O = X/2 (X /2 + Y /2) 2 2 (X /2 + Y /2) X 1 VO I P 16 1 VO IP 2 Z1 I N 15 2 Z1 I N 15 3 Z2 14 3 Z2 4 Y1 13 4 Y1 (NC) X1 MPY600 2 X1 14 13 MPY600 5 RY (NC) 12 5 RY (NC) 12 6 RY (NC) 11 6 RY (NC) 11 7 Y2 X2 10 7 Y2 X2 10 8 +VS –V S 8 +VS –V S 9 +5V Y 2 (NC) 16 9 –5V +5V –5V 1 VO IP 16 1 VO I P 16 2 Z1 I N 15 2 Z1 I N 15 3 Z2 14 3 Z2 4 Y1 13 4 Y1 (NC) Y X1 MPY600 (NC) VO = 2 2 Y/2 (X /2 + Y /2) 14 X 1 13 MPY600 5 RY (NC) 12 5 RY (NC) 12 6 RY (NC) 11 6 RY (NC) 11 7 Y2 X2 10 7 Y2 8 +VS –V S +5V 8 +VS 9 –5V +5V X 2 10 –V S 9 –5V FIGURE 15. CRT Geometry Correction. The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user’s own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems. ® MPY600 12