HYUNDAI MICRO ELECTRONICS 8-BIT SINGLE-CHIP MICROCONTROLLERS GMS82512 GMS82516 GMS82524 User’s Manual (Ver. 1.00) MicroElectronics Semiconductor Group of Hyundai Electronics Industrial Co., Ltd. Version 1.00 Published by MCU Application Team 2000 HYUNDAI MicroElectronics All right reserved. Additional information of this manual may be served by HYUNDAI MicroElectronics offices in Korea or Distributors and Representatives listed at address directory. HYUNDAI MicroElectronics reserves the right to make changes to any information here in at any time without notice. The information, diagrams and other data in this manual are correct and reliable; however, HYUNDAI Micro Electronics is in no way responsible for any violations of patents or other rights of the third party generated by the use of this manual. HYUNDAI MicroElectronics GMS82512/16/24 Table of Contents 1. OVERVIEW ...........................................1 12. ANALOG DIGITAL CONVERTER ....43 Description .........................................................1 Features .............................................................1 Development Tools ............................................2 Ordering Information ..........................................2 13. BUZZER FUNCTION ........................45 14. INTERRUPTS ...................................47 3. PIN ASSIGNMENT ...............................4 Interrupt Sequence .......................................... 49 BRK Interrupt .................................................. 50 Multi Interrupt .................................................. 51 External Interrupt ............................................. 51 4. PACKAGE DIAGRAM .............................. 5 15. WATCHDOG TIMER ........................54 5. PIN FUNCTION .....................................6 16. POWER DOWN OPERATION ..........56 6. PORT STRUCTURES ...........................8 STOP Mode .................................................... 56 Minimizing Current Consumption .................... 57 2. BLOCK DIAGRAM ................................3 7. ELECTRICAL CHARACTERISTICS ...10 Absolute Maximum Ratings .............................10 Recommended Operating Conditions ..............10 A/D Converter Characteristics .........................10 DC Electrical Characteristics ...........................11 AC Characteristics ...........................................12 Typical Characteristic Curves ..........................13 8. MEMORY ORGANIZATION ................15 17. OSCILLATOR CIRCUIT ....................59 18. RESET ..............................................60 External Reset Input ........................................ 60 Watchdog Timer Reset ................................... 60 19. POWER FAIL PROCESSOR ............61 20. OTP PROGRAMMING ......................63 How to Program .............................................. 63 Pin Function .................................................... 63 Programming Specification ............................. 65 Registers ..........................................................15 Program Memory .............................................18 Data Memory ...................................................21 Addressing Mode .............................................24 A. CONTROL REGISTER LIST ................. i 9. I/O PORTS ..........................................28 B. SOFTWARE EXAMPLE ....................... ii 10. BASIC INTERVAL TIMER .................31 11. TIMER/EVENT COUNTER ...............33 8-bit Timer / Counter Mode ..............................35 16-bit Timer / Counter Mode ............................39 8-bit Capture Mode ..........................................40 16-bit Capture Mode ........................................41 7-segment LED display .....................................ii C. INSTRUCTION ................................... vii Terminology List ............................................... vii Instruction Map ................................................ viii Alphabetic order table of instruction ..................ix Instruction Table by Function .......................... xiv D. MASK ORDER SHEET ......................... xx FEB. 2000 Ver 1.00 1 HYUNDAI MicroElectronics GMS82512/16/24 GMS82512/16/24 CMOS SINGLE-CHIP 8-BIT MICROCONTROLLER WITH A/D CONVERTER 1. OVERVIEW 1.1 Description The GMS82512/16/24 are advanced CMOS 8-bit microcontrollers with 12K/16K/24K bytes of ROM. The device is one of GMS800 family. This device using the GMS800 family CPU includes several peripheral functions such as Timer, A/D converter, Programmable buzzer driver, etc. The RAM, ROM, and I/O are placed on the same memory map in addition to simple instruction set. Device name ROM Size RAM Size OTP GMS82512 12K bytes 448 bytes GMS82524T GMS82516 16K bytes 448 bytes GMS82524T GMS82524 24K bytes 448 bytes GMS82524T Package 42SDIP, 44QFP 1.2 Features • 12K/16K/24K Bytes On-chip Program Memory • 448 Bytes of On-chip Data RAM (Included stack memory) • Minimum Instruction Execution Time 0.5µ µs at 8MHz • One 8-bit Basic Interval Timer • Four 8-bit Timer/Event counter or Two 16-bit Timer/Event counter • One 6-bit Watchdog timer • Four channel 8-bit A/D converter • Four External Interrupt input ports • Buzzer Driving port - 500Hz ~ 250kHz@8MHz • 35 I/O Ports FEB. 2000 Ver 1.00 • Eleven Interrupt sources - Basic Interval Timer: 1 - External input: 4 - Timer/Event counter: 4 - ADC: 1 - WDT: 1 • Built in Noise Immunity Circuit - Noise filter - Power fail processor • Power Down Mode - STOP mode • 2.2V to 5.5V Wide Operating Range • 1~10MHz Wide Operating Frequency • 42SDIP, 44QFP package types • Available 24K bytes OTP version 1 GMS82512/16/24 HYUNDAI MicroElectronics 1.3 Development Tools The GMS825xx is supported by a full-featured macro assembler, an in-circuit emulator CHOICE-Jr.TM and OTP programmers. There are third different type programmers such as emulator add-on board type, single type, gang type. For mode detail, Refer to “20. OTP PROGRAMMING” on page 63. Macro assembler operates under the MS-Windows 95/98TM. Please contact sales part of HYUNDAI MicroElectronics. 1.4 Ordering Information Device name ROM Size RAM size Package Mask version GMS82512 K GMS82512 Q GMS82516 K GMS82516 Q GMS82524 K GMS82524 Q 12K bytes 12K bytes 16K bytes 16K bytes 24K bytes 24K bytes 448 bytes 448 bytes 448 bytes 448 bytes 448 bytes 448 bytes 42SDIP 44QFP 42SDIP 44QFP 42SDIP 44QFP OTP version GMS82524T K GMS82524T Q 24K bytes OTP 24K bytes OTP 448 bytes 448 bytes 42SDIP 44QFP 2 FEB. 2000 Ver 1.00 HYUNDAI MicroElectronics GMS82512/16/24 2. BLOCK DIAGRAM AVDD ADC Power Supply PSW A ALU X Y R00~R07 R20~R27 R30~R37 R0 R2 R3 Stack Pointer PC Data Memory (448 bytes) Program Memory Interrupt Controller Data Table System controller System Clock Controller Timing generator 8-bit Basic Interval Timer Watchdog Timer 8-bit Timer/ Counter PC 8-bit ADC Clock Generator VDD VSS XIN XOUT RESET TEST R4 Power Supply FEB. 2000 Ver 1.00 R40 / INT0 R41 / INT1 R42 / INT2 R43 / INT3 R44 / EC0 Buzzer Driver R5 R54 / WDTO R55 / BUZ R6 R64 / AN4 R65 / AN5 R66 / AN6 R67 / AN7 3 GMS82512/16/24 HYUNDAI MicroElectronics 3. PIN ASSIGNMENT 42SDIP (Top View) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 GMS82512/16/24 AN7 AN6 AN5 AN4 BUZ WDTO EC0 INT3 INT2 INT1 INT0 R30 VDD TEST AVDD R67 R66 R65 R64 R55 R54 R44 R43 R42 R41 R40 RESET XIN XOUT VSS R27 R26 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 R31 R32 R33 R34 R35 R36 R37 R00 R01 R02 R03 R04 R05 R06 R07 R20 R21 R22 R23 R24 R25 33 32 31 30 29 28 27 26 25 24 23 R37 R00 R01 R02 R03 R04 R05 R06 R07 N.C.* R20 44QFP (Top View) 34 35 36 37 38 39 40 41 42 43 44 GMS82512/16/24 22 21 20 19 18 17 16 15 14 13 12 R21 R22 R23 R24 R25 R26 R27 VSS XOUT XIN RESET AN6 AN5 AN4 R66 R65 R64 N.C.* BUZ R55 WDTO R54 EC0 R44 INT3 R43 INT2 R42 INT1 R41 INT0 R40 1 2 3 4 5 6 7 8 9 10 11 R36 R35 R34 R33 R32 R31 R30 VDD TEST AVDD R67 AN7 N .C . * : N o C onnection 4 FEB. 2000 Ver 1.00 HYUNDAI MicroElectronics GMS82512/16/24 4. PACKAGE DIAGRAM 42SDIP UNIT: INCH 0.600 Typ. min. 0.015 0.190 max. 1.465 1.455 0.140 0.120 0.070 Typ. 0.045 0.035 0.022 0.016 0.545 0.535 0.012 0.008 0-15° 44QFP 13.45 12.95 10.10 9.90 0.23 0.13 2.10 1.95 13.45 12.95 10.10 9.90 UNIT: MM 0-7° 0.25 0.10 SEE DETAIL “A” 2.35 max. 0.45 0.30 FEB. 2000 Ver 1.00 0.80 Typ. 1.03 0.73 1.60 Typ. DETAIL “A” 5 GMS82512/16/24 HYUNDAI MicroElectronics 5. PIN FUNCTION VSS: Circuit ground. R54~R55: R5 is an 2-bit CMOS bidirectional I/O port. R5 pins 1 or 0 written to the Port Direction Register can be used as outputs or inputs. TEST: Used for Test Mode. For normal operation, it should be connected to VDD. In addition, R5 serves the functions of the various following special features. VDD: Supply voltage. RESET: Reset the MCU. XIN: Input to the inverting oscillator amplifier and input to the internal main clock operating circuit. XOUT: Output from the inverting oscillator amplifier. Port pin R54 R55 Alternate function WDTO (Watchdog Timer output) BUZ (Buzzer driver output) R00~R07: R0 is an 8-bit CMOS bidirectional I/O port. R0 pins 1 or 0 written to the Port Direction Register, can be used as outputs or inputs. R64~R67: R6 is an 4-bit CMOS bidirectional I/O port. R6 pins 1 or 0 written to the Port Direction Register can be used as outputs or inputs. R20~R27: R2 is an 8-bit CMOS bidirectional I/O port. R2 pins 1 or 0 written to the Port Direction Register can be used as outputs or inputs. In addition, R6 is shared with the ADC input. R30~R37: R3 is an 8-bit CMOS bidirectional I/O port. R3 pins 1 or 0 written to the Port Direction Register can be used as outputs or inputs. R40~R44: R4 is an 5-bit CMOS bidirectional I/O port. R4 pins 1 or 0 written to the Port Direction Register can be used as outputs or inputs. In addition, R4 serves the functions of the various following special features. Port pin R40 R41 R42 R43 R44 6 Port pin R64 R66 R66 R67 Alternate function AN4 (Analog Input 4) AN5 (Analog Input 5) AN6 (Analog Input 6) AN7 (Analog Input 7) AVDD: Supply voltage to the ladder resistor of ADC circuit. To enhance the resolution of analog to digital converter, use independent power source as well as possible, other than digital power source. Alternate function INT0 (External interrupt 0) INT1 (External interrupt 1) INT2 (External interrupt 2) INT3 (External interrupt 3) EC0 (Event counter input 0) FEB. 2000 Ver 1.00 HYUNDAI MicroElectronics GMS82512/16/24 Function PIN NAME In/Out Basic Alternate VDD - Supply voltage VSS - Circuit ground TEST I Controls test mode of the chip, For normal operation, it should be connected at VDD. RESET I Reset signal input XIN I Oscillation input XOUT O Oscillation output R00~R07 I/O 8-bit general I/O ports R20~R27 I/O 8-bit general I/O ports R30~R33 I/O(I) 8-bit general I/O ports R34~R37 I/O 8-bit general I/O ports R40 (INT0) I/O (I) External interrupt 0 input R41 (INT1) I/O (I) External interrupt 1 input R42 (INT2) I/O (I) R43 (INT3) I/O (I) External interrupt 3 input R44 (EC0) I/O (I) Timer/Counter 0 external input R54 (WDTO) I/O (O) R55 (BUZ) I/O (O) R64~R67 (AN4~AN7) I/O (I) AVDD - 8-bit general I/O ports 8-bit general I/O ports 8-bit general I/O ports External interrupt 2 input Watchdog timer overflow output Buzzer driving output Analog voltage input Supply voltage input pin for ADC Table 5-1 Port Function Description FEB. 2000 Ver 1.00 7 GMS82512/16/24 HYUNDAI MicroElectronics 6. PORT STRUCTURES R00~R07, R20~R27, R30~37 R64/AN7 ~ R67/AN7 VDD VDD Data Reg. Pin Dir. Reg. Data Bus Data Bus Data Reg. Direction Reg. Pin VSS VSS MUX MUX Rd Rd Digital enable Channel Sel. A/D enable To A/D converter R40/INT0, R41/INT1, R42/INT2, R43/INT3, R44/ EC0 XIN, XOUT PMR Selection VDD Data Bus Data Reg. VDD Direction Reg. Pin XIN VSS MUX VSS VSS XOUT Rd EX) INT0 Alternate Function Stop R54/WDTO, R55/BUZ Selection RESET VDD Secondary function MUX VDD Pin Data Reg. Data Bus RESET Direction Reg. VSS VSS MUX Rd 8 FEB. 2000 Ver 1.00 HYUNDAI MicroElectronics GMS82512/16/24 TEST VDD OTP version: disconnected Mask version: connected TEST VSS FEB. 2000 Ver 1.00 9 GMS82512/16/24 HYUNDAI MicroElectronics 7. ELECTRICAL CHARACTERISTICS 7.1 Absolute Maximum Ratings Supply voltage ............................................. -0.3 to +7.0 V Maximum current (ΣIOL) ...................................... 100 mA Storage Temperature .................................. -40 to +125 °C Maximum current (ΣIOH)........................................ 50 mA Voltage on any pin with respect to Ground (VSS) ..................................................................-0.3 to VDD+0.3 Note: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum current out of VSS pin .......................... 150 mA Maximum current into V DD pin .............................. 80 mA Maximum current sunk by (I OL per I/O Pin) .......... 20 mA Maximum output current sourced by (IOH per I/O Pin) ................................................................................... 8 mA 7.2 Recommended Operating Conditions Specifications Parameter Supply Voltage Operating Frequency Operating Temperature Symbol Condition VDD fXIN=1 ~ 10 MHz fXIN=1 ~ 8 MHz fXIN=1 ~ 4 MHz fXIN VDD=4.5~5.5V VDD=2.7~5.5V VDD=2.2~5.5V TOPR Unit Normal Version Temperature Extention Version Min. Max. 4.5 2.7 2.2 5.5 5.5 5.5 V 1 1 1 10 8 4 MHz -20 -40 85 85 °C 7.3 A/D Converter Characteristics (TA=25°C, VSS=0V, VDD=5.12V@fXIN=8MHz, VDD=3.072V@fXIN=4MHz) Specifications Parameter Max. Symbol Min. Typ.1 Unit fXIN=4MHz fXIN=8MHz Analog Input Voltage Range VAIN VSS - AVDD AVDD V Non-linearity Error NNLE - ±1.0 ±1.5 ±1.5 LSB Differential Non-linearity Error NDNLE - ±1.0 ±1.5 ±1.5 LSB Zero Offset Error NZOE - ±0.5 ±1.5 ±1.5 LSB Full Scale Error NFSE - ±0.35 ±0.5 ±0.5 LSB Gain Error NGE - ±1.0 ±1.5 ±1.5 LSB Overall Accuracy NACC - ±1.0 ±1.5 ±1.5 LSB AVDD Input Current IREF - 0.5 1.0 1.0 mA TCONV - - 40 20 µs Conversion Time 10 FEB. 2000 Ver 1.00 HYUNDAI MicroElectronics GMS82512/16/24 Specifications Parameter Max. Symbol AVDD Analog Power Supply Input Range Min. Typ.1 0.9VDD VDD fXIN=4MHz Unit fXIN=8MHz 1.1VDD V 1. Data in “Typ” column is at 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. 7.4 DC Electrical Characteristics (TA=-20~85°C, VDD=2.7~5.5V, Ta= -20~85°C, fXIN=8MHz, VSS=0V), Specifications Parameter Input High Voltage Symbol VIH1 VIH2 Input Low Voltage VIL1 VIL2 Condition VDD=4.5 VDD=2.7 VDD=4.5 VDD=2.7 Unit Min. Typ.1 Max. XIN, RESET, R4, R5, R6 0.8VDD - VDD+0.3 R0, R2, R3 0.7VDD - VDD+0.3 XIN, RESET, R4, R5, R6 - 0.2VDD R0, R2, R3 - 0.3VDD VDD-1.0 - - V - - 1.0 V 1.1VPFD V V V Output High Voltage VOH VDD=4.5 R0,R2,R3,R4,R5 VDD=2.7 R6 IOH1=-2mA Output Low Voltage VOL VDD=4.5 VDD=2.7 IOL1=5mA Power Fail Detect Voltage VPFD VPFD=3.0V @ TA=25°C VPFD=2.4V Input High Leakage Current IIH1 VIN=VDD All input pins -5.0 - 5.0 µA Input Low Leakage Current IIL VIN=VSS All input pins -5.0 - 5.0 µA RESET, EC0, SIN, SCLK, INT0~INT3 0.3 0.8 V 8 20 mA 4 10 mA 1 10 µA Hysteresis Power Current VT+, VTIDD1 f XIN=8M H z IDD2 f XIN=4M H z ISTOP R0,R2,R3,R4,R5 R6 0.9VPFD All input = V SS C rystal O scillator, C L1 =C L2 =30pF@ 8M H z - All input = V SS - 1. Data in “Typ.” column is at 4.5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. FEB. 2000 Ver 1.00 11 GMS82512/16/24 HYUNDAI MicroElectronics 7.5 AC Characteristics (TA=-20~+85°C, VDD=5V±10%, VSS=0V) Specifications Parameter Symbol Pins Unit Min. Typ. Max. Operating Frequency fXIN XIN 1.0 - 10.0 MHz Oscillation Stabilizing Time tST XIN, XOUT - - 20 ms External Clock Pulse Width tCPW XIN 40 - - ns External Clock Transition Time tRCP,tFCP XIN - - 20 ns Interrupt Pulse Width tIW INT0, INT1, INT2, INT3 2 - - tSYS RESET Input Width tRST RESET 8 - - tSYS Event Counter Input Pulse Width tECW EC0 2 - - tSYS tREC,tFEC EC0 - - 20 ns Event Counter Transition Time tSYS = 1/fXIN tCPW tCPW VDD-0.5V XIN 0.5V tRCP tIW INT0~INT3 tFCP tIW 0.8VDD 0.2VDD tRST RESET 0.2VDD tECW tECW 0.8VDD EC0 0.2VDD tREC tFEC Figure 7-1 Timing Chart 12 FEB. 2000 Ver 1.00 HYUNDAI MicroElectronics GMS82512/16/24 7.6 Typical Characteristic Curves This graphs and tables provided in this section are for design guidance only and are not tested or guaranteed. The data presented in this section is a statistical summary of data collected on units from different lots over a period of time. “Typical” represents the mean of the distribution while “max” or “min” represents (mean + 3σ) and (mean − 3σ) respectively where σ is standard deviation In some graphs or tables the data presented are outside specified operating range (e.g. outside specified VDD range). This is for information only and devices are guaranteed to operate properly only within the specified range. IOH−VOH IOH (mA) VDD=4.5V Ta=25°C -12 R0~R6 pins IOH−VOH -9 -9 -6 -6 -3 -3 0 0 0.3 0.6 0.9 IOL−VOL1 1.2 1.5 (V) VDD-VOH R0~R6 pins IOL (mA) VDD=4.5V Ta=25°C 20 0.3 10 10 5 5 0.2 4 0.4 VDD−VIH1 0.6 0.8 VOL 1.0 (V) 0.2 VIH2 (V) R0~R6 pins 0.4 VDD−VIH2 0.6 0.8 VOL 1.0 (V) R0, R2, R3 pins fXIN=8MHz Ta=25°C 4 3 3 2 2 1 1 0 2 1.2 1.5 (V) VDD-VOH 0 XIN, RESET, R4, R5, R6 pins fXIN=8MHz Ta=25°C 0.9 IOL−VOL2 15 0 0.6 IOL (mA) VDD=3.0V Ta=25°C 20 15 VIH1 (V) R0~R6 pins IOH (mA) VDD=3.0V Ta=25°C -12 3 4 FEB. 2000 Ver 1.00 5 VDD 6 (V) 0 1 2 3 4 5 VDD 6 (V) 13 GMS82512/16/24 VIL2 (V) 4 HYUNDAI MicroElectronics XIN, RESET, R4, R5, R6 pins VDD−VIL1 fXIN=8MHz Ta=25°C VIL2 (V) 3 2 2 1 1 0 3 IDD−VDD IDD (mA) 4 5 VDD 6 (V) 0 1 2 3 4 ISTOP−VDD Normal Operation 5 VDD 6 (V) Operating Area Stop Mode fXIN (MHz) Ta= -20~85°C IDD (µA) Ta=25°C 20 0.4 15 0.3 10 0.2 5 R0, R2, R3 pins fXIN=8MHz Ta=25°C 4 3 2 VDD−VIL2 fXIN = 8MHz 10 8 0.1 85°C 6 25°C -20°C 4 2 4MHz 0 2 14 3 4 5 VDD 6 (V) 0 2 3 4 5 VDD 6 (V) 0 2 3 4 5 VDD 6 (V) FEB. 2000 Ver 1.00 HYUNDAI MicroElectronics GMS82512/16/24 8. MEMORY ORGANIZATION The GMS82512/16/24 has separate address spaces for Program memory and Data Memory. Program memory can only be read, not written to. It can be up to 24K bytes of Program memory. Data memory can be read and written to up to 448 bytes including the stack area. 8.1 Registers This device has six registers that are the Program Counter (PC), a Accumulator (A), two index registers (X, Y), the Stack Pointer (SP), and the Program Status Word (PSW). The Program Counter consists of 16-bit register. PCH A ACCUMULATOR X X REGISTER Y Y REGISTER SP STACK POINTER PCL PROGRAM COUNTER PSW PROGRAM STATUS WORD call is executed or an interrupt is accepted. However, if it is used in excess of the stack area permitted by the data memory allocating configuration, the user-processed data may be lost. The stack can be located at any position within 100H to 1FFH of the internal data memory. The SP is not initialized by hardware, requiring to write the initial value (the location with which the use of the stack starts) by using the initialization routine. Normally, the initial value of “FEH” is used. Bit 15 Stack Address (100H ~ 1FEH) 8 7 Bit 0 01H SP 00H~FEH Hardware fixed Figure 8-1 Configuration of Registers Accumulator: The Accumulator is the 8-bit general purpose register, used for data operation such as transfer, temporary saving, and conditional judgement, etc. The Accumulator can be used as a 16-bit register with Y Register as shown below. Y Y A A Note: The Stack Pointer must be initialized by software because its value is undefined after RESET. Example: To initialize the SP LDX #0FEH TXSP ; SP ← FEH Address 01FFH can not be used as stack. Don not use 1FFH, or malfunction would be occurred. Two 8-bit Registers can be used as a “YA” 16-bit Register Figure 8-2 Configuration of YA 16-bit Register X, Y Registers: In the addressing mode which uses these index registers, the register contents are added to the specified address, which becomes the actual address. These modes are extremely effective for referencing subroutine tables and memory tables. The index registers also have increment, decrement, comparison and data transfer functions, and they can be used as simple accumulators. Stack Pointer: The Stack Pointer is an 8-bit register used for occurrence interrupts and calling out subroutines. Stack Pointer identifies the location in the stack to be accessed (save or restore). Generally, SP is automatically updated when a subroutine FEB. 2000 Ver 1.00 Program Counter: The Program Counter is a 16-bit wide which consists of two 8-bit registers, PCH and PCL. This counter indicates the address of the next instruction to be executed. In reset state, the program counter has reset routine address (PCH:0FFH, PCL:0FEH). Program Status Word: The Program Status Word (PSW) contains several bits that reflect the current state of the CPU. The PSW is described in Figure 8-3. It contains the Negative flag, the Overflow flag, the Break flag the Half Carry (for BCD operation), the Interrupt enable flag, the Zero flag, and the Carry flag. [Carry flag C] This flag stores any carry or not borrow from the ALU of CPU after an arithmetic operation and is also changed by the Shift Instruction or Rotate Instruction. 15 GMS82512/16/24 HYUNDAI MicroElectronics [Zero flag Z] or data transfer is “0” and is cleared by any other result. This flag is set when the result of an arithmetic operation PSW MSB N V G B H NEGATIVE FLAG OVERFLOW FLAG SELECT DIRECT PAGE when G=1, page is selected to “page 1” BRK FLAG I Z LSB C RESET VALUE: 00H CARRY FLAG RECEIVES CARRY OUT ZERO FLAG INTERRUPT ENABLE FLAG HALF CARRY FLAG RECEIVES CARRY OUT FROM BIT 1 OF ADDITION OPERLANDS Figure 8-3 PSW (Program Status Word) Register [Interrupt disable flag I] This flag enables/disables all interrupts except interrupt caused by Reset or software BRK instruction. All interrupts are disabled when cleared to “0”. This flag immediately becomes “0” when an interrupt is served. It is set by the EI instruction and cleared by the DI instruction. [Half carry flag H] After operation, this is set when there is a carry from bit 3 of ALU or there is no borrow from bit 4 of ALU. This bit can not be set or cleared except CLRV instruction with Overflow flag (V). [Break flag B] This flag is set by software BRK instruction to distinguish BRK from TCALL instruction with the same vector address. [Direct page flag G] 16 This flag assigns RAM page for direct addressing mode. In the direct addressing mode, addressing area is from zero page 00H to 0FFH when this flag is "0". If it is set to "1", addressing area is assigned 100 H to 1FF H . It is set by SETG instruction and cleared by CLRG. [Overflow flag V] This flag is set to “1” when an overflow occurs as the result of an arithmetic operation involving signs. An overflow occurs when the result of an addition or subtraction exceeds +127(7FH ) or -128(80H ). The CLRV instruction clears the overflow flag. There is no set instruction. When the BIT instruction is executed, bit 6 of memory is copied to this flag. [Negative flag N] This flag is set to match the sign bit (bit 7) status of the result of a data or arithmetic operation. When the BIT instruction is executed, bit 7 of memory is copied to this flag. FEB. 2000 Ver 1.00 HYUNDAI MicroElectronics GMS82512/16/24 At execution of a CALL/TCALL/PCALL 01FE Push down 01FE PCH 01FD PCL 01FC 01FC PSW 01FB 01FB 01FD PCH PCL At execution of RET instruction At acceptance of interrupt Push down 01FE PCH 01FD PCL At execution of RET instruction 01FE PCH 01FD PCL 01FC 01FC PSW 01FB 01FB Pop up SP before execution 01FE 01FE 01FC 01FB SP after execution 01FC 01FB 01FE 01FE At execution of PUSH instruction PUSH A (X,Y,PSW) 01FE A 01FD Push down Pop up At execution of POP instruction POP A (X,Y,PSW) 01FE A 01FD 01FC 01FC 01FB 01FB Pop up 0100H Stack depth 01FEH SP before execution 01FE 01FD SP after execution 01FD 01FE Figure 8-4 Stack Operation FEB. 2000 Ver 1.00 17 GMS82512/16/24 HYUNDAI MicroElectronics 8.2 Program Memory A 16-bit program counter is capable of addressing up to 64K bytes, but this device has 24K bytes program memory space only physically implemented. Accessing a location above FFFFH will cause a wrap-around to 0000H. Figure 8-5, shows a map of Program Memory. After reset, the CPU begins execution from reset vector which is stored in address FFFEH and FFFFH as shown in Figure 8-6. As shown in Figure 8-5, each area is assigned a fixed location in Program Memory. Program Memory area contains the user program. A000H TCALL area Interrupt Vector Area GMS82524, 24K ROM GMS82516, 16K ROM GMS82512, 12K ROM FEFFH FF00H PCALL area D000H FFFFH Figure 8-5 Program Memory Map Page Call (PCALL) area contains subroutine program to reduce program byte length by using 2 bytes PCALL instead of 3 bytes CALL instruction. If it is frequently called, 18 Table Call (TCALL) causes the CPU to jump to each TCALL address, where it commences the execution of the service routine. The Table Call service area spaces 2-byte for every TCALL: 0FFC0H for TCALL15, 0FFC2H for TCALL14, etc., as shown in Figure 8-7. Example: Usage of TCALL The interrupt causes the CPU to jump to specific location, where it commences the execution of the service routine. The External interrupt 0, for example, is assigned to location 0FFFAH. The interrupt service locations spaces 2-byte interval: 0FFF8H and 0FFF9H for External Interrupt 1, 0FFFAH and 0FFFBH for External Interrupt 0, etc. Any area from 0FF00H to 0FFFFH, if it is not going to be used, its service location is available as general purpose Program Memory. C000H FFC0H FFDFH FFE0H it is more useful to save program byte length. Address Vector Area Memory 0FFE0H - E2 - E4 - E6 Basic Interval Timer E8 Watchdog Timer Interrupt EA A/D Converter - EC Timer/Counter - 3 Interrupt EE Timer/Counter - 2 Interrupt F0 Timer/Counter 1 Interrupt F2 Timer/Counter 0 Interrupt F4 External Interrupt 3 F6 External Interrupt 2 F8 External Interrupt 1 FA External Interrupt 0 FC - FE RESET Vector Area NOTE: “-” means reserved area. Figure 8-6 Interrupt Vector Area FEB. 2000 Ver 1.00 HYUNDAI MicroElectronics Address 0FF00H GMS82512/16/24 PCALL Area Memory Address PCALL Area (256 Bytes) 0FFC0H C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF 0FFFFH Program Memory TCALL 15 TCALL 14 TCALL 13 TCALL 12 TCALL 11 TCALL 10 TCALL 9 TCALL 8 TCALL 7 TCALL 6 TCALL 5 TCALL 4 TCALL 3 TCALL 2 TCALL 1 TCALL 0 / BRK * NOTE: * means that the BRK software interrupt is using same address with TCALL0. Figure 8-7 PCALL and TCALL Memory Area PCALL→ → rel TCALL→ →n 4F35 4A PCALL 35H TCALL 4 4A 4F 01001010 35 ~ ~ ~ ~ ~ ~ 0D125H ➊ ~ ~ NEXT Reverse PC: 11111111 11010110 FH FH DH 6H 0FF00H 0FF35H NEXT 0FFFFH FEB. 2000 Ver 1.00 ➌ 0FF00H 0FFD6H 25 0FFD7H D1 ➋ 0FFFFH 19 GMS82512/16/24 HYUNDAI MicroElectronics Example: The usage software example of Vector address for GMS82524. ; ; ORG 0FFE0H DW DW DW DW DW DW DW DW DW DW DW DW DW DW DW DW NOT_USED NOT_USED NOT_USED BIT_TIMER WD_TIMER ADC TIMER3 TIMER2 TIMER1 TIMER0 INT3 INT2 INT1 INT0 NOT_USED RESET ; ; ; ; ; ; ; ; ; ; ; ; ; ORG ORG ORG 0A000H 0C000H 0D000H ; 24K ROM Start address ; 16K ROM Start address ; 12K ROM Start address Basic Interval Timer Watchdog Timer ADC Timer-3 Timer-2 Timer-1 Timer-0 Int.3 Int.2 Int.1 Int.0 Reset ;******************************************* ; MAIN PROGRAM * ;******************************************* ; RESET: DI ;Disable All Interrupts CLRG LDX #0 RAM_CLR: LDA #0 ;RAM Clear(!0000H->!00BFH) STA {X}+ CMPX #0C0H BNE RAM_CLR ; LDX #0FEH ;Stack Pointer Initialize TXSP ; LDM R0, #0 ;Normal Port 0 LDM R0DD,#82H ;Normal Port Direction : : : LDM TDR0,#250 ;8us x 250 = 2000us LDM TM0,#1FH ;Start Timer0, 8us at 8MHz LDM IRQH,#0 LDM IRQL,#0 LDM IENH,#0C8H ;Enable Timer0, INT0, INT1 LDM IENL,#0 LDM IEDS,#55H ;Select falling edge detect on INT pin LDM PMR4,#3H ;Set external interrupt pin(INT0, INT1) EI ;Enable master interrupt : : : : : NOT_USED:NOP RETI 20 FEB. 2000 Ver 1.00 HYUNDAI MicroElectronics GMS82512/16/24 8.3 Data Memory Figure 8-8 shows the internal Data Memory space available. Data Memory is divided into four groups, a user RAM, control registers, Stack, and LCD memory. 0000H More detailed informations of each register are explained in each peripheral section. User Memory PAGE0 00BFH 00C0H 00FFH 0100H Note that unoccupied addresses may not be implemented on the chip. Read accesses to these addresses will in general return random data, and write accesses will have an indeterminate effect. When “G-flag=0”, this page is selected Control Registers Note: Write only registers can not be accessed by bit manipulation instruction. Do not use read-modify-write instruction. Use byte manipulation instruction, for example “LDM”. Example; To write at CKCTLR LDM User Memory or Stack Area PAGE1 When “G-flag=1” 01FFH Figure 8-8 Data Memory Map User Memory The GMS825xx has 448 × 8 bits for the user memory (RAM). Control Registers The control registers are used by the CPU and Peripheral function blocks for controlling the desired operation of the device. Therefore these registers contain control and status bits for the interrupt system, the timer/ counters, analog to digital converters and I/O ports. The control registers are in address range of 0C0H to 0FFH. FEB. 2000 Ver 1.00 CLCTLR,#09H ;Divide ratio(÷32) Stack Area The stack provides the area where the return address is saved before a jump is performed during the processing routine at the execution of a subroutine call instruction or the acceptance of an interrupt. When returning from the processing routine, executing the subroutine return instruction [RET] restores the contents of the program counter from the stack; executing the interrupt return instruction [RETI] restores the contents of the program counter and flags. The save/restore locations in the stack are determined by the stack pointed (SP). The SP is automatically decreased after the saving, and increased before the restoring. This means the value of the SP indicates the stack location number for the next save. Refer to Figure 8-4 on page 17. 21 GMS82512/16/24 Address HYUNDAI MicroElectronics Register Name Symbol R/W Initial Value Page 7 6 5 4 3 2 1 0 00C0 R0 port data register R0 R/W Undefined page 28 00C1 R0 port I/O direction register R0DD W 00000000 page 28 00C4 R2 port data register R2 R/W Undefined page 28 00C5 R2 port I/O direction register R2DD W 00000000 page 28 00C6 R3 port data register R3 R/W Undefined page 28 00C7 R3 port I/O direction register R3DD W 00000000 page 28 00C8 R4 port data register R4 R/W Undefined page 29 00C9 R4 port I/O direction register R4DD W - - - 00000 page 29 00CA R5 port data register R5 R/W Undefined page 30 00CB R5 port I/O direction register R5DD W - - 00 - - - - page 30 00CC R6 port data register R6 R/W Undefined page 30 00CD R6 port I/O direction register R6DD W 0000 - - - - page 30 00D0 R4 port mode register PMR4 W - - - 00000 page 29, page 53 00D1 R5 port mode register PMR5 W - - 00 - - - - page 30, page 45 Basic interval timer mode register BITR R Undefined page 32 CKCTLR W - - 010111 page 32 WDTR W - 0111111 page 54 00D3 Clock control register 00E0 Watchdog Timer Register 00E2 Timer mode register 0 TM0 R/W 00000000 page 34 00E3 Timer mode register 2 TM2 R/W 00000000 page 34 Timer 0 data register TDR0 W Undefined page 34 T0 R Undefined page 34 TDR1 W Undefined page 34 T1 R Undefined page 34 TDR2 W Undefined page 34 T2 R Undefined page 34 TDR3 W Undefined page 34 T3 R Undefined page 34 00E4 00E5 00E6 00E7 Timer 0 counter register Timer 1 data register Timer 1 counter register Timer 2 data register Timer 2 counter register Timer 3 data register Timer 3 counter register 00E8 A/D converter mode register ADCM R/W - - 000001 page 44 00E9 A/D converter data register ADR R Undefined page 44 00EC Buzzer driver register BUR W Undefined page 45 00F4 Interrupt enable register low IENL R/W 000 - - - - - page 48 00F5 Interrupt request flag register low IRQL R/W 000 - - - - - page 47 00F6 Interrupt enable register high IENH R/W 00000000 page 48 00F7 Interrupt request flag register high IRQH R/W 00000000 page 47 00F8 External interrupt edge selection register IEDS W 00000000 page 53 Table 8-1 Control Registers 22 FEB. 2000 Ver 1.00 HYUNDAI MicroElectronics Address Register Name GMS82512/16/24 Symbol R/W Initial Value Page 7 6 5 4 3 2 1 0 00F9 Power fail detection register PFDR R/W - - - - 1100 page 61 Table 8-1 Control Registers W R/W Registers are controlled by byte manipulation instruction such as LDM etc., do not use bit manipulation instruction such as SET1, CLR1 etc. If bit manipulation instruction is used on these registers, content of other seven bits are may varied to unwanted value. Registers are controlled by both bit and byte manipulation instruction. - : this bit location is reserved. FEB. 2000 Ver 1.00 23 GMS82512/16/24 HYUNDAI MicroElectronics 8.4 Addressing Mode The GMS800 series MCU uses six addressing modes; Example: G=1 • Register addressing E45535 LDM 35H,#55H • Immediate addressing • Direct page addressing • Absolute addressing data 0135H • Indexed addressing ➊ • Register-indirect addressing ~ ~ 0F100H (1) Register Addressing data ¨ 55H ~ ~ ➋ E4 0F101H 55 0F102H 35 Register addressing accesses the A, X, Y, C and PSW. (2) Immediate Addressing → #imm In this mode, second byte (operand) is accessed as a data immediately. In this mode, a address is specified within direct page. Example; G=0 Example: 0435 (3) Direct Page Addressing → dp ADC C535 #35H LDA ;A ←RAM[35H] 35H MEMORY 35H 04 35 data ➋ A+35H+C → A ~ ~ ~ ~ 0E550H C5 0E551H 35 ➊ data → A When G-flag is 1, then RAM address is defined by 16-bit address which is composed of 8-bit RAM paging register (RPR) and 8-bit immediate data. 24 FEB. 2000 Ver 1.00 HYUNDAI MicroElectronics GMS82512/16/24 (4) Absolute Addressing → !abs ADC, AND, CMP, EOR, LDA, OR, SBC, STA, XMA Absolute addressing sets corresponding memory data to Data, i.e. second byte (Operand I) of command becomes lower level address and third byte (Operand II) becomes upper level address. With 3 bytes command, it is possible to access to whole memory area. Example; X=15H, G=1 D4 LDA 115H ADC, AND, CMP, CMPX, CMPY, EOR, LDA, LDX, LDY, OR, SBC, STA, STX, STY {X} ;ACC←RAM[X]. data ➋ ~ ~ ~ ~ Example; 0735F0 ADC ;A ←ROM[0F035H] !0F035H data 0F035H ~ ~ ➋ ~ ~ 0F100H A+data+C → A ➊ 07 0F101H 35 0F102H F0 address: 0F035 data → A ➊ D4 0E550H X indexed direct page, auto increment→ → {X}+ In this mode, a address is specified within direct page by the X register and the content of X is increased by 1. LDA, STA Example; G=0, X=35H DB LDA {X}+ The operation within data memory (RAM) ASL, BIT, DEC, INC, LSR, ROL, ROR Example; Addressing accesses the address 0135H regardless of G-flag. 983501 INC ;A ←ROM[135H] !0135H 35H ➋ data ~ ~ ~ ~ data Æ A ➊ 36H Æ X DB data 135H ~ ~ ➌ ~ ~ ➋ data+1 → data 0F100H 98 ➊ 0F101H 35 address: 0135 0F102H 01 (5) Indexed Addressing X indexed direct page (no offset) → {X} X indexed direct page (8 bit offset) → dp+X This address value is the second byte (Operand) of command plus the data of -register. And it assigns the memory in Direct page. ADC, AND, CMP, EOR, LDA, LDY, OR, SBC, STA STY, XMA, ASL, DEC, INC, LSR, ROL, ROR Example; G=0, X=0F5H In this mode, a address is specified by the X register. FEB. 2000 Ver 1.00 25 GMS82512/16/24 C645 LDA HYUNDAI MicroElectronics Example; G=0 45H+X 3F35 3AH data ➌ ~ ~ ➋ ~ ~ 0E550H C6 0E551H 45 JMP [35H] 35H 0A 36H E3 data → A ~ ~ ~ ~ ➋ ➊ 0E30AH ➊ NEXT jump to address 0E30AH 45H+0F5H=13AH ~ ~ ~ ~ 0FA00H 3F 35 Y indexed direct page (8 bit offset) → dp+Y This address value is the second byte (Operand) of command plus the data of Y-register, which assigns Memory in Direct page. This is same with above (2). Use Y register instead of X. Y indexed absolute → !abs+Y Sets the value of 16-bit absolute address plus Y-register data as Memory.This addressing mode can specify memory in whole area. X indexed indirect → [dp+X] Processes memory data as Data, assigned by 16-bit pair memory which is determined by pair data [dp+X+1][dp+X] Operand plusX-register data in Direct page. ADC, AND, CMP, EOR, LDA, OR, SBC, STA Example; G=0, X=10H 1625 ADC [25H+X] Example; Y=55H D500FA LDA !0FA00H+Y 35H 05 36H E0 0E005H ~ ~ ➋ ~ ~ 0F100H D5 0F101H 00 0F102H FA ~ ~ ➊ 0E005H 0FA00H+55H=0FA55H ~ ~ ➋ ~ ~ 0FA00H ➊ 25 + X(10) = 35H data ~ ~ 16 25 0FA55H data ➌ data → A ➌ A + data + C → A Y indexed indirect → [dp]+Y (6) Indirect Addressing Direct page indirect → [dp] Assigns data address to use for accomplishing command which sets memory data (or pair memory) by Operand. Also index can be used with Index register X,Y. Processes memory data as Data, assigned by the data [dp+1][dp] of 16-bit pair memory paired by Operand in Direct pageplus Y-register data. ADC, AND, CMP, EOR, LDA, OR, SBC, STA Example; G=0, Y=10H JMP, CALL 26 FEB. 2000 Ver 1.00 HYUNDAI MicroElectronics 1725 ADC GMS82512/16/24 Example; G=0 [25H]+Y 1F25E0 25H 05 26H E0 ~ ~ 0E015H ~ ~ 0FA00H ➊ 0E005H + Y(10) = 0E015H 0E025H 25 0E026H E7 ~ ~ ~ ~ 17 25 [!0C025H] PROGRAM MEMORY ➋ data ~ ~ JMP ➊ 0E725H ➌ NEXT ~ ~ A + data + C → A 0FA00H Absolute indirect → [!abs] ~ ~ ➋ jump to address 0E30AH ~ ~ 1F 25 E0 The program jumps to address specified by 16-bit absolute address. JMP FEB. 2000 Ver 1.00 27 GMS82512/16/24 HYUNDAI MicroElectronics 9. I/O PORTS The GMS825xx has six ports (R0, R2, R3, R4, R5, and R6).These ports pins may be multiplexed with an alternate function for the peripheral features on the device. All pins have data direction registers which can define these ports as output or input. A “1” in the port direction register configure the corresponding port pin as output. Conversely, write “0” to the corresponding bit to specify it as input pin. For example, to use the even numbered bit of R0 as output ports and the odd numbered bits as input ports, write “55H” to address 0C1H (R0 port direction register) during initial setting as shown in Figure 9-1. All the port direction registers in the GMS825xx have 0 written to them by reset function. On the other hand, its initial status is input. R2 and R2DD register: R2 is an 8-bit CMOS bidirectional I/O port (address 0C4H). Each I/O pin can independently used as an input or an output through the R2DD register (address 0C5H). R2 Data Register R2 R27 R26 R25 R24 R23 R22 R21 R20 Input / Output data R2 Direction Register 0C0H R0 data R0 direction 0C2H R1 data 0C3H R1 direction 0 1 0 1 0 1 0 1 7 6 5 4 3 2 1 0 BIT I O I O I O I O PORT 7 6 5 4 3 2 1 0 I: INPUT PORT O: OUTPUT PORT Port Direction 0: Input 1: Output R3 and R3DD register: R3 is an 8-bit CMOS bidirectional I/O port (address 0C6H). Each I/O pin can independently used as an input or an output through the R3DD register (address 0C7H). R3 Data Register R3 R0 Data Register R0 ADDRESS: 0C0H RESET VALUE: Undefined ADDRESS: 0C6H RESET VALUE: Undefined R37 R36 R35 R34 R33 R32 R31 R30 Figure 9-1 Example of port I/O assignment R0 and R0DD register: R0 is an 8-bit CMOS bidirectional I/O port (address 0C0H). Each I/O pin can independently used as an input or an output through the R0DD register (address 0C1H). ADDRESS: 0C5H RESET VALUE: 00H R2DD WRITE “55H” TO PORT R0 DIRECTION REGISTER 0C1H ADDRESS: 0C4H RESET VALUE: Undefined Input / Output data R3 Direction Register ADDRESS: 0C7H RESET VALUE: 00H R3DD Port Direction 0: Input 1: Output R07 R06 R05 R04 R03 R02 R01 R00 Input / Output data R0 Direction Register ADDRESS: 0C1H RESET VALUE: 00H R0DD Port Direction 0: Input 1: Output 28 FEB. 2000 Ver 1.00 HYUNDAI MicroElectronics GMS82512/16/24 R4 and R4DD register: R4 is an 5-bit CMOS bidirectional I/O port (address 0C8H). Each I/O pin can independently used as an input or an output through the R4DD register (address 0C9H). ADDRESS: 0C8H RESET VALUE: Undefined R4 Data Register R4 - - - R44 R43 R42 R41 R40 Port Pin Input / Output data ADDRESS: 0C9H RESET VALUE: 00H R4 Direction Register - R4DD - - - - 4 INT0 (External Interrupt 0) INT1 (External Interrupt 1) INT2 (External Interrupt 2) INT3 (External Interrupt 3) EC0 (External count input to Timer/ Counter 0) ADDRESS: 0D0H RESET VALUE: 00H R4 Port Mode Register - R40 R41 R42 R43 R44 Alternate Function Regardless of the direction register R4DD, PMR4 is selected to use as alternate functions, port pin can be used as a corresponding alternate features. Port Direction 0: Input 1: Output PMR4 In addition, Port R4 is multiplexed with various special features. The control register PMR4 (address 0D0H) controls the selection of alternate function. After reset, this value is “0”, port may be used as normal I/O port. To use alternate function such as external interrupt or external counter input, write “1” in the corresponding bit of PMR4. 3 2 1 0 0: R40 1: INT0 0: R41 1: INT1 0: R42 1: INT2 0: R43 1: INT3 0: R44 1: EC0 ADDRESS: 0F8H RESET VALUE: 00H Edge Selection Register IEDS 7 6 INT3 5 4 INT2 3 2 1 INT1 0 INT0 External Interrupt Edge Select 00: Reserved 01: Falling (1-to-0 transition) 10: Rising (0-to-1 transition) 11: Both (Rising & Falling) FEB. 2000 Ver 1.00 29 GMS82512/16/24 HYUNDAI MicroElectronics R5 and R5DD register: R5 is an 2-bit CMOS bidirectional I/O port (address 0CAH). Each I/O pin can independently used as an input or an output through the R5DD register (address 0CBH). ADDRESS: 0CAH RESET VALUE: Undefined R5 Data Register R5 - - R55 R54 - - - - R6 and R6DD register: R6 is an 4-bit CMOS bidirectional I/O port (address 0CCH). Each I/O pin can independently used as an input or an output through the R6DD register (address 0CDH). ADDRESS: 0CCH RESET VALUE: Undefined R6 Data Register R6 R67 R66 R65 R64 - R5DD - - - - - R6DD PMR5 - - ADDRESS: 0D1H RESET VALUE: --00----B BUZ W DTO - - - - - - - Port Direction 0: Input 1: Output Port Direction 0: Input 1: Output R5 Port Mode Register - ADDRESS: 0CDH RESET VALUE: 0000----B R6 Direction Register R5 Direction Register - Input / Output data Input / Output data ADDRESS: 0CBH RESET VALUE: 00H - - R54/WDTO Selection 0: R54 1: WDTO (Output) R55/BUZ Selection 0: R55 1: BUZ (Output) R6DD (address CDH) controls the direction of the R6 pins, even when they are being used as analog inputs. The user must make sure to keep the pins configured as inputs when using them as analog inputs. Port Pin R64 R65 R66 R67 Alternate Function AN4 (ADC input 4) AN5 (ADC input 5) AN6 (ADC input 6) AN7 (ADC input 7) The control register PMR5 (address D1H) controls the selection alternate function. After reset, this value is “0”, port may be used as general I/O ports. To use buzzer function, write “1” to the PMR5 and the pin R55 must be defined as output mode (the bit 5 of R5DD=1) Port Pin R54 R55 30 Alternate Function WDTO (Watchdog timer output) BUZ (Square-wave output for buzzer) FEB. 2000 Ver 1.00 HYUNDAI MicroElectronics GMS82512/16/24 10. BASIC INTERVAL TIMER The GMS825xx has one 8-bit Basic Interval Timer that is free-run and can not stop. Block diagram is shown in Figure 10-1. In addition, the Basic Interval Timer generates the time base for watchdog timer counting. It also provides a Basic interval timer interrupt (BITIF). As the count overflow from FFH to 00H, this overflow causes the interrupt to be generated. The Basic Interval Timer is controlled by the clock control register (CKCTLR) shown in Figure 10-2. Source clock can be selected by lower 3 bits of CKCTLR. BITR and CKCTLR are located at same address, and address 0D3H is read as a BITR, and written to CKCTLR. ÷16 ÷32 XIN PIN Prescaler ÷64 ÷128 ÷256 MUX 8-bit up-counter source clock overflow BITR BITIF Basic Interval Timer Interrupt ÷512 [0F9H] ÷1024 ÷2048 To Watchdog timer (WDTCK) clear Select Input clock 3 BTS[2:0] BTCL CKCTLR [0D3H] Read Basic Interval Timer clock control register Internal bus line Figure 10-1 Block Diagram of Basic Interval Timer CKCTLR [2:0] 000 001 010 011 100 101 110 111 Source clock fXIN÷16 fXIN÷32 fXIN÷64 fXIN÷128 fXIN÷256 fXIN÷512 fXIN÷1024 fXIN÷ 2048 Interrupt (overflow) Period (ms) @ fXIN = 8MHz 0.512 1.024 2.048 4.096 8.192 16.384 32.768 65.536 Table 10-1 Basic Interval Timer Interrupt Time FEB. 2000 Ver 1.00 31 GMS82512/16/24 CKCTLR HYUNDAI MicroElectronics 7 - 6 - 5 4 WDTON ENPCK 3 2 1 0 BTCL BTCL BTS2 BTS1 BTS0 ADDRESS: 0D3H INITIAL VALUE: --01 0111B Basic Interval Timer source clock select 000: fXIN ÷ 16 001: fXIN ÷ 32 010: fXIN ÷ 64 011: fXIN ÷ 128 100: fXIN ÷ 256 101: fXIN ÷ 512 110: fXIN ÷ 1024 111: fXIN ÷ 2048 Caution: Both register are in same address, when write, to be a CKCTLR, when read, to be a BITR. Clear bit 0: Normal operation (free-run) 1: Clear 8-bit counter (BITR) to “0”. This bit becomes 0 automatically after one machine cycle, and starts counting. Enable Peripheral clock If this bit is 0, all peripherals are disabled such as Timer, ADC, PWM, etc. 0: Operate as a 6-bit general timer 1: Enable Watchdog Timer operation See the section “Watchdog Timer”. 7 6 5 BITR 4 3 BTCL 2 1 0 ADDRESS: 0D3H INITIAL VALUE: Undefined 8-BIT FREE-RUN BINARY COUNTER Figure 10-2 BITR: Basic Interval Timer Mode Register Example 1: Interrupt request flag is generated every 8.192ms at 4MHz. : LDM SET1 EI : CKCTLR,#1BH BITE Example 2: Interrupt request flag is generated every 8.192ms at 8MHz. : LDM SET1 EI : 32 CKCTLR,#1CH BITE FEB. 2000 Ver 1.00 HYUNDAI MicroElectronics GMS82512/16/24 11. TIMER/EVENT COUNTER The GMS825xx has four Timer/Counter registers. Each module can generate an interrupt to indicate that an event has occurred (i.e. timer match). Timer 0 and Timer 1 are can be used either two 8-bit Timer/Counter or one 16-bit Timer/Counter with combine them. And Timer 2 and Timer 3 are can be used either two 8-bit Timer or one 16-bit Timer with combine them. In the “timer” function, the register is increased every internal clock input. Thus, one can think of it as counting internal clock input. Since a least clock consists of 4 and most clock consists of 64 oscillator periods, the count rate is 1/4 to 1/64 of the oscillator frequency. In the “counter” function, the register is incremented in response to a 1-to-0 (falling edge) transition at its corre- sponding external input pin, EC0 . In addition the “capture” function, the register is incremented in response external or internal clock sources same with timer or counter function. When external clock edge input, the count register is captured into Timer data register correspondingly. It has four operating modes: “8-bit timer/counter”, “16-bit timer/counter”, “8-bit capture”, “16-bit capture” which are selected by bit in Timer mode register TM0 and TM2 as shown in Table 11-1. In operation of Timer 2, Timer 3, their operations are same with Timer 0, Timer 1, respectively as shown in Table 112. TM0 CAP 0 T1ST 0 X T1SL [1:0] TIMER 0 T0ST T0CN 01 or 10 or 11 X X 01 or 10 or 11 8-bit Timer 8-bit Timer X X 00 8-bit Event counter 8-bit Timer X X 01 or 10 or 11 8-bit Capture (internal clock) 8-bit Timer 8-bit Capture (external clock) 8-bit Timer 0 X 1 X 1 X X X 00 0 X X X 01 or 10 or 11 0 X X X 00 1 X X X 01 or 10 or 11 16-bit Capture (internal clock) 1 X X X 00 16-bit Capture (external clock) 00 TIMER 1 T0SL[1:0] 16-bit Timer 16-bit Event counter Table 11-1 TM0 Timer Mode Register TM2 CAP 2 T3ST 0 X T3SL [1:0] TIMER 2 T2ST T2CN 01 or 10 or 11 X X 01 or 10 or 11 8-bit Timer 8-bit Timer X X 00 reserved 8-bit Timer X X 01 or 10 or 11 8-bit Capture (internal clock) 8-bit Timer 8-bit Capture (external clock) 8-bit Timer 0 X 1 X 1 X X X 00 0 X X X 01 or 10 or 11 0 X X X 00 1 X X X 01 or 10 or 11 16-bit Capture (internal clock) 1 X X X 00 16-bit Capture (external clock) 00 TIMER 3 T2SL[1:0] 16-bit Timer 16-bit Event counter Table 11-2 TM2 Timer Mode Register FEB. 2000 Ver 1.00 33 GMS82512/16/24 TM0 TIMER 1 TIMER 0 R/W 7 R/W 6 CAP0 T1S T R/W 5 R/W 4 R/W 3 T1 S L1 T1S L0 BT0S TC TL R/W 2 R/W 1 R/W 0 T 0C N T0S L 1 T0S L0 Bit Position Description CAP0 TM0.7 0: Timer/Counter mode 1: Capture mode selection flag T1ST TM0.6 0: When cleared, stop the counting. 1: When set, Timer 1 count register is cleared and start again. T1SL1 T1SL0 TM0.5 TM0.4 00: 16-bit mode (Clock source is selected by T0SL1, T0SL0) 01: 8-bit mode, Clock source is fXIN ÷ 4 10: 8-bit mode, Clock source is fXIN ÷ 16 11: 8-bit mode, Clock source is fXIN ÷ 64 T0ST TM0.3 0: When cleared, stop the counting. 1: When set, Timer 0 Count Register is cleared and start again. T0CN TM0.2 0: Stop the timer 1: A logic 1 starts the timer. T0SL1 T0SL0 TM0.1 TM0.0 00: EC0 (External clock) 01: 8-bit Timer, Clock source is fXIN ÷ 4 10: 8-bit Timer, Clock source is fXIN ÷ 16 11: 8-bit Timer, Clock source is fXIN ÷ 64 R/W 6 R/W 5 R/W 4 R/W 3 R/W 2 R/W 1 R/W 0 CAP2 T3ST T3SL1 T3SL0 BTCL T2ST T2CN T2SL1 T2SL0 TIMER 3 A D D R E S S : 0E 2 H IN ITIA L V A LU E : 00 H Bit Name R/W 7 TM2 HYUNDAI MicroElectronics ADDRESS: 0E3H INITIAL VALUE: 00H Bit Name Bit Position CAP2 TM2.7 0: Timer/Counter mode 1: Capture mode selection flag T3ST TM2.6 0: When cleared, stop the counting. 1: When set, Timer 3 count register is cleared and start again. T3SL1 T3SL0 TM2.5 TM2.4 00: 16-bit mode (Clock source is selected by T2SL1, T2SL0) 01: 8-bit mode, Clock source is fXIN ÷ 4 10: 8-bit mode, Clock source is fXIN ÷ 16 11: 8-bit mode, Clock source is fXIN ÷ 64 T2ST TM2.3 0: When cleared, stop the counting. 1: When set, Timer 2 Count Register is cleared and start again. T2CN TM2.2 0: Stop the timer 1: A logic 1 starts the timer. T2SL1 T2SL0 TM2.1 TM2.0 00: Reserved 01: 8-bit Timer, Clock source is fXIN ÷ 4 10: 8-bit Timer, Clock source is fXIN ÷ 16 11: 8-bit Timer, Clock source is fXIN ÷ 64 TIMER 2 Description R/W R/W R/W R/W R/W R/W R/W R/W 7 6 5 4 3 2 1 0 TDR0~TDR3 ADDRESS: 0E4H ~ 0E7H INITIAL VALUE: Undefined Read: Count value read Write: Compare data write Figure 11-1 TM0, TM2 Registers 34 FEB. 2000 Ver 1.00 HYUNDAI MicroElectronics GMS82512/16/24 11.1 8-bit Timer / Counter Mode The GMS825xx has four 8-bit Timer/Counters, Timer 0, Timer 1, Timer 2, Timer 3. The Timer 0, Timer 1 are shown in Figure . T3SL1, T3SL0 of TM2 should not set to zero. These timers have each 8-bit count register and data register. The count register is increased by every internal or external clock input. The internal clock has a prescaler divide ratio option of 4, 16, 64 (selected by control bits TxSL1, TxSL0 of register TMx). The “timer” or “counter” function is selected by control registers TM0, TM2 as shown in Table 11-1 and Table 112. To use as an 8-bit timer/counter mode, bit CAP0 of TM0 is cleared to “0” and bits T1SL1, T1SL0 of TM0 or bits 7 TM0 6 5 4 3 2 1 0 CAP0 T1ST T1SL1 T1SL0 BTCL T0ST T0CN T0SL1 T0SL0 0 X X X X ADDRESS: 0E2H INITIAL VALUE: 00H X 01 or 10 or 11 X means don’t care T0SL[1:0] T0ST EC0 PIN Prescaler XIN PIN 00 ÷4 ÷ 16 ÷ 64 0: Stop 1: Clear and start 01 T0 (8-bit) clear 10 11 MUX T0CN TIMER 0 INTERRUPT T0IF Comparator TIMER 0 TDR0 (8-bit) T1SL[1:0] T1ST ÷4 ÷ 16 ÷ 64 0: Stop 1: Clear and start 01 T1 (8-bit) 10 clear 11 MUX T1IF Comparator TIMER 1 INTERRUPT TIMER 1 TDR1 (8-bit) F/F T1O PIN Figure 11-2 8-bit Timer/Counter 0, 1 Example 1: Example 2: Timer0 = 4ms 8-bit timer mode at 4MHz Timer1 = 1ms 8-bit timer mode at 4MHz Timer0 = 8-bit event counter mode Timer1 = 1ms 8-bit timer mode at 4MHz LDM LDM LDM SET1 SET1 EI TDR0,#250 TDR1,#250 TM0,#0110_1111B T0E T1E FEB. 2000 Ver 1.00 LDM LDM LDM SET1 SET1 EI TDR0,#250 TDR1,#250 TM0,#0110_1100B T0E T1E 35 GMS82512/16/24 HYUNDAI MicroElectronics As TDRx and Tx register are in same address, when reading it as a Tx, written to TDRx. Note: The contents of Timer data register TDRx should be initialized 1H~FFH, not 0H, because it is undefined after reset. In counter function, the counter is increased every 1-to-0 (falling edge) transition of EC0 pin. In order to use counter function, the bit 4 of the Port mode register PMR4 are set to “1”. The Timer 0 can be used as a counter by pin EC0 input, but Timer 1 can input by internal clock. In the Timer 0, timer register T0 increments from 00 H until it matches TDR0 and then reset to 00H. The match output of Timer 0 generates Timer 0 interrupt (latched in T0IF bit) 7 TM2 6 5 4 3 2 1 0 ADDRESS: 0E3H INITIAL VALUE: 00H CAP2 T3ST T3SL1 T3SL0 BTCL T2ST T2CN T2SL1 T2SL0 0 X X X X X 01 or 10 or 11 X means don’t care T2SL[1:0] T2ST XIN PIN Prescaler Reserved 00 ÷4 ÷ 16 ÷ 64 0: Stop 1: Clear and start 01 T2 (8-bit) clear 10 11 MUX T2CN TIMER 2 INTERRUPT T2IF Comparator TIMER 2 TDR2 (8-bit) T3SL[1:0] T3ST ÷4 ÷ 16 ÷ 64 0: Stop 1: Clear and start 01 T3 (8-bit) 10 clear 11 MUX T3IF Comparator TIMER 3 INTERRUPT TIMER 3 TDR3 (8-bit) T3O PIN F/F Figure 11-3 8-bit Timer/Counter 2, 3 Example 3: Example 4: Timer2 = 8-bit timer mode, 2ms interval at 8MHz Timer3 = 8-bit timer mode, 500us interval at 8MHz Timer2 = 8-bit event counter mode Timer3 = 500us 8-bit timer mode at 8MHz LDM LDM LDM SET1 SET1 EI 36 TDR2,#250 TDR3,#250 TM2,#0110_1111B T2E T3E LDM LDM LDM SET1 SET1 EI TDR2,#250 TDR3,#250 TM2,#0110_1100B T2E T3E FEB. 2000 Ver 1.00 HYUNDAI MicroElectronics GMS82512/16/24 8-bit Timer Mode In the timer mode, the internal clock is used for counting up. Thus, you can think of it as counting internal clock input. The contents of TDRn are compared with the contents of up-counter, Tn. If match is found, a timer 1 interrupt (T1IF) is generated and the up-counter is cleared to 0. Counting up is resumed after the up-counter is cleared. Value of TM[1:0] Clock Source 00 01 10 11 fEC1 fXIN ÷ 4 fXIN ÷ 16 fXIN ÷ 64 As the value of TDRn is changeable by software, time interval is set as you want Maximum Time Setting (At fXIN=8 M Hz) Resolution (At fXIN=8 M Hz) 1/fEC1 × 256 sec 128 us 512 us 2048 us 1/fEC1 sec 0.5 us 2 us 8 us Table 11-1 Timer Source clock Interrupt Time Start count ~ ~ Source clock ~ ~ Up-counter 0 2 1 n-2 3 n-1 n 0 2 1 3 4 ~ ~ TDR1 n ~ ~ Match Detect Counter Clear ~ ~ T1IF interrupt Figure 11-4 Timer Mode Timing Chart Example: Make 1msinterrupt using by Timer0 at 8MHz LDM LDM SET1 EI TM0,#1FH TDR0,#125 T0E ; ; ; ; divide by 64 8us x 125= 1ms Enable Timer 0 Interrupt Enable Master Interrupt When TM0 = 0001 1111B (8-bit Timer mode, Prescaler divide ratio = 64) TDR0 = 125D = 7DH fXIN = 8 MHz 1 INTERRUPT PERIOD = × 64 × 125 = 1 ms 8 × 106 Hz TDR1 MATCH (TDR0 = T0) 8 µs ~~ ~~ up -c ou nt ~~ 7B 7A 6 Count Pulse Period 7D 7C 7D 5 4 3 2 1 0 0 TIME Interrupt period = 8 µs x 125 Timer 1 (T1IF) Interrupt Occur interrupt Occur interrupt Occur interrupt Figure 11-5 Timer Count Example FEB. 2000 Ver 1.00 37 GMS82512/16/24 HYUNDAI MicroElectronics 8-bit Event Counter Mode In order to use event counter function, the bit 4 of the Port Mode Register PMR4(address 0D0H) is required to be set to “1”. In this mode, counting up is started by an external trigger. This trigger means falling edge of the EC0 pin input. Source clock is used as an internal clock selected with timer mode register TM0. The contents of timer data register TDRn (n = 0,1) are compared with the contents of the upcounter Tn. If a match is found, an timer interrupt request flag TnIF is generated, and the counter is cleared to “0”. The counter is restart and count up continuously by every falling edge of the EC0 pin input. After reset, the value of timer data register TDRn is undefined, it should be initialized to between 1H~FFHnot to "0"The interval period of Timer is calculated as below equation. 1 Period (sec) = ----------- × 2 × Divide Ratio × TDRn f XIN The maximum frequency applied to the EC0 pin is fXIN/2 [Hz]. Start count ~ ~ EC0 pin input ~ ~ 1 0 2 ~ ~ Up-counter n-1 n 1 0 2 ~ ~ n ~ ~ TDR1 ~ ~ T1IF interrupt Figure 11-6 Event Counter Mode Timing Chart TDR1 disable ~~ clear & start enable up -c ou nt stop ~~ TIME Timer 1 (T1IF) Interrupt Occur interrupt Occur interrupt T1ST Start & Stop T1ST = 1 T1ST = 0 T1CN Control count T1CN = 1 T1CN = 0 Figure 11-7 Count Operation of Timer / Event counter 38 FEB. 2000 Ver 1.00 HYUNDAI MicroElectronics GMS82512/16/24 11.2 16-bit Timer / Counter Mode Even if the Timer 0 (including the Timer 1) is used as a 16bit timer, the Timer 2 and Timer 3 can still be used as either two 8-bit timer or one 16-bit timer by setting the TM2. Reversely, even if the Timer 2 (including the Timer 3) is used as a 16-bit timer, the Timer 0 and Timer 1 can still be used as 8-bit timer independently. The Timer register is being run with all 16 bits. A 16-bit timer/counter register T0, T1 are incremented from 0000 H until it matches TDR0, TDR1 and then resets to 0000H. The match output generates Timer 0 interrupt. The clock source of the Timer 0 is selected either internal or external clock by bit T0SL1, T0SL0. 7 TM0 6 5 4 3 2 1 0 CAP0 T1ST T1SL1 T1SL0 BTCL T0ST T0CN T0SL1 T0SL0 0 X 0 0 X X X ADDRESS: 0E2H INITIAL VALUE: 00H X X means don’t care T0SL[1:0] EDGE DETECTOR EC0 PIN T0ST 0: Stop 1: Clear and start Prescaler “00” XIN PIN 0 ÷4 T1 + T0 (16-bit) “01” ÷ 16 1 clear “10” ÷ 64 “11” MUX T0CN TIMER 0 INTERRUPT T0IF Comparator (Not Timer 1 interrupt) TDR1 + TDR0 (16-bit) TIMER 0 + TIMER 1 → TIMER 0 (16-bit) Higher byte Lower byte COMPARE DATA 7 TM2 6 5 4 0 X 0 0 2 1 0 Prescaler Reserved ÷ 16 ÷ 64 X X X T2ST 0: Stop 1: Clear and start “00” ÷4 X ADDRESS: 0E3H INITIAL VALUE: 00H X means don’t care T2SL[1:0] XIN PIN 3 CAP2 T3ST T3SL1 T3SL0 BTCL T2ST T2CN T2SL1 T2SL0 0 “01” 1 T3 + T2 (16-bit) clear “10” “11” MUX T2CN T2IF Comparator TIMER 2 INTERRUPT (Not Timer 3 interrupt) TIMER 2 + TIMER 3 → TIMER 2 (16-bit) TDR3 + TDR2 (16-bit) Higher byte Lower byte COMPARE DATA Figure 11-8 16-bit Timer/Counter FEB. 2000 Ver 1.00 39 GMS82512/16/24 HYUNDAI MicroElectronics 11.3 8-bit Capture Mode The Timer 0 capture mode is set by bit CAP0 of timer mode register TM0 (bit CAP2 of timer mode register TM2 for Timer 2) as shown in Figure 21. In this mode, Timer 1 still operates as an 8-bit timer/counter. causes the current value in the Timer counter register (T0,T2), to be captured into registers CDRn (CDR0, CDR2), respectively. After captured, Timer counter register is cleared and restarts by hardware. As mentioned above, not only Timer 0 but Timer 2 can also be used as a capture mode. Note: The CDRn and TDRn are in same address.In the capture mode, reading operation is read the CDRn, not TDRn because path is opened to the CDRn. In 8-bit capture mode, Timer 1 and Timer 3 are can not be used as a capture mode. It has three transition modes: "falling edge", "rising edge", "both edge" which are selected by interrupt edge selection register IEDS. Refer to “14.4 External Interrupt” on page 51. In addition, the transition at INTn pin generate an interrupt. The Timer/Counter register is incremented in response internal or external input. This counting function is same with normal timer mode, but Timer interrupt is not generated. Timer/Counter still does the above, but with the added feature that a edge transition at external input INTn pin 7 TM0 6 5 4 3 2 1 0 CAP0 T1ST T1SL1 T1SL0 BTCL T0ST T0CN T0SL1 T0SL0 1 X X X X ADDRESS: 0E2H INITIAL VALUE: 00H X 01 or 10 or 11 X means don’t care T0SL[1:0] Edge Detector T0ST EC0 PIN Prescaler XIN PIN “00” ÷4 ÷ 16 ÷ 64 0: Stop 1: Clear and start “01” T0 (8-bit) “10” “11” T0CN MUX Capture To TIMER1 IEDS[1:0] CDR0 (8-bit) TIMER 0 “01” INT0 PIN “10” INT0IF INT0 INTERRUPT “11” This figure is a example of using the Timer0. In the Timer2, operation is same like Timer0, each registers and flags may be changed with for Timer2. Figure 11-9 8-bit Capture Mode 40 FEB. 2000 Ver 1.00 HYUNDAI MicroElectronics GMS82512/16/24 11.4 16-bit Capture Mode 16-bit capture mode is the same as 8-bit capture, except that the Timer register is being run will 16 bits. 7 TM0 6 5 4 3 2 1 0 CAP0 T1ST T1SL1 T1SL0 BTCL T0ST T0CN T0SL1 T0SL0 1 0 X 0 X X X ADDRESS: 0E2H INITIAL VALUE: 00H X X means don’t care T0SL[1:0] Edge Detector T0ST EC0 PIN Prescaler XIN PIN “00” ÷4 ÷ 16 ÷ 64 T1 + T0 (16-bit) “01” “10” “11” MUX IEDS[1:0] T0CN Capture CDR1 + CDR0 (16-bit) “01” INT0 PIN 0: Stop 1: Clear and start “10” Higher byte Lower byte CAPTURE DATA INT0IF INT0 INTERRUPT “11” TIMER 0 + TIMER 1 → TIMER 0 (16-bit) This figure is a example of using the Timer0, 1. In the Timer2, 3, operation is same like Timer0,1, each registers and flags may be changed with for Timer2,3. Figure 11-10 16-bit Capture Mode FEB. 2000 Ver 1.00 41 GMS82512/16/24 Example 1: Timer0 = 16-bit timer mode, 0.5s at 8MHz Timer2 = 2ms 8-bit timer mode at 8MHz Timer3 = 250us 8-bit timer mode at 8MHz LDM LDM LDM LDM LDM LDM SET1 SET1 SET1 EI : : TDR0,#23H TDR1,#0F4H TM0,#0FH TDR2,#249 TDR3,#124 TM2,#0110_1111B T0E T2E T3E LDM LDM SET1 LDM LDM LDM SET1 LDM LDM SET1 EI : : TDR0,#250 TM0,#0111_1111B T0E TDR2,#40H TDR3,#2AH TM2,#1111_1111B T2E IEDS,#XX11_XXXXB PMR4,#XXXX_X1XXB INT2E X: don’t care. Example 4: Timer0 = 8-bit timer mode, 2ms interval at 8MHz Timer2 = 16-bit capture mode Example 2: Timer0 = 8-bit timer mode, 2ms interval at 8MHz Timer2 = 16-bit event counter mode LDM LDM LDM LDM LDM SET1 SET1 EI : : HYUNDAI MicroElectronics TDR0,#249 TM0,#0111_1111B TDR2,#3FH TDR3,#2AH TM2,#0100_1100B T0E T2E Example 3: LDM LDM SET1 LDM LDM LDM SET1 LDM LDM SET1 EI : : TDR0,#249 TM0,#0111_1111B T0E TDR2,#40H TDR3,#2AH TM2,#1100_1111B T2E IEDS,#XX11_XXXXB PMR4,#XXXX_X1XXB INT2E X: don’t care. Timer0 = 8-bit timer mode, 2ms interval at 8MHz Timer2 = 8-bit capture mode 42 FEB. 2000 Ver 1.00 HYUNDAI MicroElectronics GMS82512/16/24 12. ANALOG DIGITAL CONVERTER The analog-to-digital converter (A/D) allows conversion of an analog input signal to a corresponding 8-bit digital value. The A/D module has eight analog inputs, which are multiplexed into one sample and hold. The output of the sample and hold is the input into the converter, which generates the result via successive approximation. The analog supply voltage is connected to AVDD of ladder resistance of A/D module. The A/D module has two registers which are the control register ADCM and A/D result register ADR. The register ADCM, shown in Figure 12-2, controls the operation of the A/D converter module. The port pins can be configured as analog inputs or digital I/O. To use analog inputs, I/O is selected input mode by R3DD or R6DD direction register. How to Use A/D Converter The processing of conversion is start when the start bit ADST is set to “1”. After one cycle, it is cleared by hardware. The register ADR contains the results of the A/D conversion. When the conversion is completed, the result is loaded into the ADR, the A/D conversion status bit ADSF is set to “1”, and the A/D interrupt flag AIF is set. The block diagram of the A/D module is shown in Figure 12-1. The A/D status bit ADSF is set automatically when A/D conversion is completed, cleared when A/D conversion is in process. The conversion time takes maximum 20 uS (at fXIN=8 MHz). “0” AVDD ADS[2:0] 000 R30/AN0 8-bit DAC ADEN LADDER RESISTOR “1” 001 R31/AN1 R32/AN2 R33/AN3 010 011 100 R64/AN4 S/H SUCCESSIVE APPROXIMATION CIRCUIT ADIF A/D INTERRUPT 101 R65/AN5 R66/AN6 R67/AN7 Sample & Hold 110 111 ADR ADDRESS: E9H RESET VALUE: Undefined A/D result register Figure 12-1 A/D Block Diagram FEB. 2000 Ver 1.00 43 GMS82512/16/24 ADCM HYUNDAI MicroElectronics 7 - 6 - R/W 5 R/W 4 R/W R/W R/W R 3 2 1 0 ADEN ADS2 BTCL ADS1 ADS0 ADST ADSF ADDRESS: 0E8H INITIAL VALUE: --00 0001B A/D status bit 0: A/D conversion is in progress 1: A/D conversion is completed A/D start bit Setting this bit starts an A/D conversion. After one cycle, bit is cleared to “0” by hardware. Analog input channel select 000: Channel 0 (AN0) 001: Channel 1 (AN1) 010: Channel 2 (AN2) 011: Channel 3 (AN3) 100: Channel 4 (AN4) 101: Channel 5 (AN5) 110: Channel 6 (AN6) 111: Channel 7 (AN7) A/D converter Enable bit 0: A/D converter module turn off and current is not flow. 1: Enable A/D converter R 7 ADR R 6 R 5 R 4 R 3 BTCL R 2 R 1 R 0 ADDRESS: 0E9H INITIAL VALUE: Undefined A/D Conversion Data Figure 12-2 A/D Converter Control Register 44 FEB. 2000 Ver 1.00 HYUNDAI MicroElectronics GMS82512/16/24 13. BUZZER FUNCTION The buzzer driver block consists of 6-bit binary counter, buzzer register, and clock source selector. It generates square-wave which has very wide range frequency (500Hz ~ 250kHz at fXIN= 8MHz) by user software. The bit 0 to 5 of BUR determines output frequency for buzzer driving. A 50% duty pulse can be output to R55/BUZ pin to use for piezo-electric buzzer drive. Pin R55 is assigned for output port f XIN f BUZ = ------------------------------------------------------------2 × DivideRatio × BUR Equation of frequency calculation is shown below. of Buzzer driver by setting the bit 5 of PMR5 (address D1H) to “1”. At this time, the pin R55 must be defined as output fBUZ: Buzzer frequency mode (the bit 5 of R5DD=1). fXIN: Oscillator frequency Example: 2.4kHz output at 8MHz. Divide Ratio: Prescaler divide ratio by BUCK[1:0] BUR: Lower 6-bit value of BUR. Buzzer period value. LDM LDM R5DD,#XX1X_XXXXB BUR,#9AH LDM PMR5,#XX1X_XXXXB The frequency of output signal is controlled by the buzzer control register BUR.The bit 0 to bit 5 of BUR determine output frequency for buzzer driving. X means don’t care R55 port data 6-bit binary Prescaler ÷16 XIN PIN 00 ÷32 6-BIT COUNTER 01 ÷64 ÷128 0 ÷2 10 R55/BUZ PIN 1 F/F 11 Comparator MUX 2 Compare data 6 PMR5 BUR Port selection [0D1H] [0ECH] Internal bus line Figure 13-1 Block Diagram of Buzzer Driver ADDRESS: 0D1H RESET VALUE: --00 ----B W PMR5 - - ADDRESS: 0ECH RESET VALUE: Undefined W W - - - - BUR W W W W W W W BUCK1 BUCK0 R54/WDTO Selection 0: R54 1: WDTO (Output) R55/BUZ Selection 0: R55 port (Turn off buzzer) 1: BUZ port (Turn on buzzer) BUR[5:0] Buzzer Period Data Source clock select 00: ÷16 01: ÷ 32 10: ÷ 64 11: ÷128 Figure 13-2 PMR5 and Buzzer Register FEB. 2000 Ver 1.00 45 GMS82512/16/24 HYUNDAI MicroElectronics Note: BUR is undefined after reset, so it must be initialized to between 1H and 3FH by software. Note that BUR is a write-only register. The 6-bit counter is cleared and starts the counting by writing signal at BUR register. It is incremental from 00H until it matches 6-bit BUR value. When main-frequency is 8MHz, buzzer frequency is shown as below table. [kHz] BUR [5:0] BUR[7:6] 00 01 10 11 BUR [5:0] BUR[7:6] 00 01 10 11 00 01 02 03 04 05 06 07 250.000 125.000 83.333 62.500 50.000 41.667 35.714 125.000 62.500 41.667 31.250 25.000 20.833 17.857 62.500 31.250 20.833 15.625 12.500 10.417 8.929 31.250 15.625 10.417 7.813 6.250 5.208 4.464 20 21 22 23 24 25 26 27 7.813 7.576 7.353 7.143 6.944 6.757 6.579 6.410 3.906 3.788 3.676 3.571 3.472 3.378 3.289 3.205 1.953 1.894 1.838 1.786 1.736 1.689 1.645 1.603 0.977 0.947 0.919 0.893 0.868 0.845 0.822 0.801 08 09 0A 0B 0C 0D 0E 0F 31.250 27.778 25.000 22.727 20.833 19.231 17.857 16.667 15.625 13.889 12.500 11.364 10.417 9.615 8.929 8.333 7.813 6.944 6.250 5.682 5.208 4.808 4.464 4.167 3.906 3.472 3.125 2.841 2.604 2.404 2.232 2.083 28 29 2A 2B 2C 2D 2E 2F 6.250 6.098 5.952 5.814 5.682 5.556 5.435 5.319 3.125 3.049 2.976 2.907 2.841 2.778 2.717 2.660 1.563 1.524 1.488 1.453 1.420 1.389 1.359 1.330 0.781 0.762 0.744 0.727 0.710 0.694 0.679 0.665 10 11 12 13 14 15 16 17 15.625 14.706 13.889 13.158 12.500 11.905 11.364 10.870 7.813 7.353 6.944 6.579 6.250 5.952 5.682 5.435 3.906 3.676 3.472 3.289 3.125 2.976 2.841 2.717 1.953 1.838 1.736 1.645 1.563 1.488 1.420 1.359 30 31 32 33 34 35 36 37 5.208 5.102 5.000 4.902 4.808 4.717 4.630 4.545 2.604 2.551 2.500 2.451 2.404 2.358 2.315 2.273 1.302 1.276 1.250 1.225 1.202 1.179 1.157 1.136 0.651 0.638 0.625 0.613 0.601 0.590 0.579 0.568 18 19 1A 1B 1C 1D 1E 1F 10.417 10.000 9.615 9.259 8.929 8.621 8.333 8.065 5.208 5.000 4.808 4.630 4.464 4.310 4.167 4.032 2.604 2.500 2.404 2.315 2.232 2.155 2.083 2.016 1.302 1.250 1.202 1.157 1.116 1.078 1.042 1.008 38 39 3A 3B 3C 3D 3E 3F 4.464 4.386 4.310 4.237 4.167 4.098 4.032 3.968 2.232 2.193 2.155 2.119 2.083 2.049 2.016 1.984 1.116 1.096 1.078 1.059 1.042 1.025 1.008 0.992 0.558 0.548 0.539 0.530 0.521 0.512 0.504 0.496 Table 13-1 Buzzer Frequency 46 FEB. 2000 Ver 1.00 HYUNDAI MicroElectronics GMS82512/16/24 14. INTERRUPTS The GMS825xx interrupt circuits consist of Interrupt enable register (IENH, IENL), Interrupt request flags of IRQH, IRQL, Priority circuit, and Master enable flag (“I” flag of PSW). Thirteen interrupt sources are provided. The configuration of interrupt circuit is shown in Figure 14-2. register (IENH, IENL), and the interrupt request flags (in IRQH and IRQL) except Power-on reset and software BRK interrupt. Below table shows the Interrupt priority. Reset/Interrupt The External Interrupts INT0 ~ INT3 each can be transition-activated (1-to-0 or 0-to-1 transition) by selection IEDS. The flags that actually generate these interrupts are bit INT0F, INT1F, INT2F and INT3F in register IRQH. When an external interrupt is generated, the flag that generated it is cleared by the hardware when the service routine is vectored to only if the interrupt was transition-activated. Hardware Reset External Interrupt 0 External Interrupt 1 External Interrupt 2 External Interrupt 3 Timer/Counter 0 Timer/Counter 1 Timer/Counter 2 Timer/Counter 3 ADC Interrupt Basic Interval Timer Watchdog Timer The Timer 0 ~ Timer 3 Interrupts are generated by TxIF which is set by a match in their respective timer/counter register. The Basic Interval Timer Interrupt is generated by BITIF which is set by an overflow in the timer register. The interrupts are controlled by the interrupt master enable flag I-flag (bit 2 of PSW on page 16), the interrupt enable R/W R/W R/W R/W INT0IF INT1IF INT2IF INT3IF Priority RESET INT0 INT1 INT2 INT3 Timer 0 Timer 1 Timer 2 Timer 3 ADC BIT WDT 1 2 3 4 5 6 7 8 9 10 11 12 Vector addresses are shown in Figure 8-6 on page 18. Interrupt enable registers are shown in Figure 14-3. These registers are composed of interrupt enable flags of each interrupt source and these flags determines whether an interrupt will be accepted or not. When enable flag is “0”, a corresponding interrupt source is prohibited. Note that PSW contains also a master enable bit, I-flag, which disables all interrupts at once. The AD converter Interrupt is generated by ADIF which is set by finishing the analog to digital conversion. The Watchdog timer Interrupt is generated by WDTIF which set by a match in Watchdog timer register. The Basic Interval Timer Interrupt is generated by BITIF which are set by a overflow in the timer counter register. IRQH Symbol R/W R/W R/W R/W T0IF T1IF T2IF T3IF MSB ADDRESS: 0F7H INITIAL VALUE: 0000 0000B LSB Timer/Counter 3 interrupt request flag Timer/Counter 2 interrupt request flag Timer/Counter 1 interrupt request flag Timer/Counter 0 interrupt request flag External interrupt 3 request flag External interrupt 3 request flag External interrupt 3 request flag External interrupt 3 request flag R/W IRQL ADIF MSB R/W R/W WDTIF BITIF - - - - ADDRESS: 0F5H INITIAL VALUE: 000- ----B LSB Basic Interval Timer interrupt request flag Watchdog timer interrupt request flag A/D Converter interrupt request flag Figure 14-1 Interrupt Request Flag FEB. 2000 Ver 1.00 47 GMS82512/16/24 HYUNDAI MicroElectronics . Internal bus line [0F6H] Interrupt Enable Register (Higher byte) IENH IRQH [0F7H] INT0IF INT1 INT1IF INT2 INT2IF INT3 INT3IF Timer 0 T0IF Timer 1 T1IF Timer 2 T2IF Timer 3 T3IF Release STOP Priority Control INT0 To CPU I-flag Interrupt Master Enable Flag IRQL [0F5H] A/D Converter I-flag is in PSW, it is cleared by “DI”, set by “EI” instruction. When it goes interrupt service, I-flag is cleared by hardware, thus any other interrupt are inhibited. When interrupt service is completed by “RETI” instruction, I-flag is set to “1” by hardware. ADIF Watchdog Timer Interrupt Vector Address Generator WDTIF BIT BITIF [0F4H] IENL Interrupt Enable Register (Lower byte) Internal bus line Figure 14-2 Block Diagram of Interrupt R/W IENH INT0E R/W R/W R/W INT1E INT2E INT3E R/W R/W R/W R/W T0E T1E T2E T3E MSB ADDRESS: 0F6H INITIAL VALUE: 0000 0000B LSB Timer/Counter 3 interrupt enable flag Timer/Counter 2 interrupt enable flag Timer/Counter 1 interrupt enable flag Timer/Counter 0 interrupt enable flag External interrupt 3 enable flag External interrupt 2 enable flag External interrupt 1 enable flag External interrupt 0 enable flag IENL R/W R/W R/W ADE WDTE BITE MSB - - - - VALUE 0: Disable 1: Enable ADDRESS: 0F4H INITIAL VALUE: 000- ----B LSB Basic Interval Timer interrupt enable flag Watchdog timer interrupt enable flag A/D Converter interrupt enable flag Figure 14-3 Interrupt Enable Flag 48 FEB. 2000 Ver 1.00 HYUNDAI MicroElectronics GMS82512/16/24 14.1 Interrupt Sequence An interrupt request is held until the interrupt is accepted or the interrupt latch is cleared to “0” by a reset or an instruction. Interrupt acceptance sequence requires 8 fXIN (2 µs at fMAIN=4.19MHz) after the completion of the current instruction execution. The interrupt service task is terminated upon execution of an interrupt return instruction [RETI]. Interrupt acceptance 1. The interrupt master enable flag (I-flag) is cleared to “0” to temporarily disable the acceptance of any following maskable interrupts. When a non-maskable interrupt is accepted, the acceptance of any following interrupts is temporarily disabled. 2. Interrupt request flag for the interrupt source accepted is cleared to “0”. 3. The contents of the program counter (return address) and the program status word are saved (pushed) onto the stack area. The stack pointer decreases 3 times. 4. The entry address of the interrupt service program is read from the vector table address and the entry address is loaded to the program counter. 5. The instruction stored at the entry address of the interrupt service program is executed. System clock Instruction Fetch SP Address Bus PC Data Bus Not used SP-1 PCH PCL SP-2 PSW V.L. V.L. ADL V.H. ADH New PC OP code Internal Read Internal Write Interrupt Processing Step Interrupt Service Task V.L. and V.H. are vector addresses. ADL and ADH are start addresses of interrupt service routine as vector contents. Figure 14-4 Timing chart of Interrupt Acceptance and Interrupt Return Instruction Basic Interval Timer Vector Table Address 0FFE6H 0FFE7H 012H 0E3H Entry Address 0E312H 0E313H When nested interrupt service is required, the I-flag should be set to “1” by “EI” instruction in the interrupt service program. In this case, acceptable interrupt sources are selectively enabled by the individual interrupt enable flags. 0EH 2EH Saving/Restoring General-purpose Register Correspondence between vector table address for BIT interrupt and the entry address of the interrupt service program. A interrupt request is not accepted until the I-flag is set to “1” even if a requested interrupt has higher priority than that of the current interrupt being serviced. FEB. 2000 Ver 1.00 During interrupt acceptance processing, the program counter and the program status word are automatically saved on the stack, but accumulator and other registers are not saved itself. These registers are saved by the software if necessary. Also, when multiple interrupt services are nested, it is necessary to avoid using the same data memory 49 GMS82512/16/24 HYUNDAI MicroElectronics area for saving registers. 14.2 BRK Interrupt The following method is used to save/restore the generalpurpose registers. Software interrupt can be invoked by BRK instruction, which has the lowest priority order. Example: Register save using push and pop instructions Interrupt vector address of BRK is shared with the vector of TCALL 0 (Refer to Program Memory Section). When BRK interrupt is generated, B-flag of PSW is set to distinguish BRK from TCALL 0. INTxx: PUSH PUSH PUSH A X Y ;SAVE ACC. ;SAVE X REG. ;SAVE Y REG. interrupt processing POP POP POP RETI Y X A Each processing step is determined by B-flag as shown in Figure 14-5. ;RESTORE Y REG. ;RESTORE X REG. ;RESTORE ACC. ;RETURN B-FLAG General-purpose register save/restore using push and pop instructions; main task acceptance of interrupt BRK or TCALL0 =0 =1 BRK INTERRUPT ROUTINE TCALL0 ROUTINE RETI RET interrupt service task saving registers restoring registers Figure 14-5 Execution of BRK/TCALL0 interrupt return 50 FEB. 2000 Ver 1.00 HYUNDAI MicroElectronics GMS82512/16/24 14.3 Multi Interrupt If two requests of different priority levels are received simultaneously, the request of higher priority level is serviced. If requests of the interrupt are received at the same time simultaneously, an internal polling sequence determines by hardware which request is serviced. Main Program service Example: During Timer1 interrupt is in progress, INT0 interrupt serviced without any suspend. TIMER 1 service enable INT0 disable other INT0 service EI Occur TIMER1 interrupt However, multiple processing through software for special features is possible. Generally when an interrupt is accepted, the I-flag is cleared to disable any further interrupt. But as user sets I-flag in interrupt routine, some further interrupt can be serviced even if certain interrupt is in progress. Occur INT0 enable INT0 enable other TIMER1: PUSH PUSH PUSH LDM LDM EI : : : : : : LDM LDM POP POP POP RETI A X Y IENH,#80H IENL,#0 ;Enable INT0 only ;Disable other ;Enable Interrupt IENH,#0FFH ;Enable all interrupts IENL,#0F0H Y X A In this example, the INT0 interrupt can be serviced without any pending, even TIMER1 is in progress. Because of re-setting the interrupt enable registers IENH,IENL and master enable “EI” in the TIMER1 routine. Figure 14-6 Execution of Multi Interrupt 14.4 External Interrupt The external interrupt on INT0, INT1, INT2 and INT3 pins are edge triggered depending on the edge selection register IEDS (address 0F8H) as shown in Figure 14-7. FEB. 2000 Ver 1.00 The edge detection of external interrupt has three transition 51 GMS82512/16/24 HYUNDAI MicroElectronics activated mode: rising edge, falling edge, and both edge. spondingly. Example: To use as an INT0 and INT2 INT0 pin INT0IF INT0 INTERRUPT INT1 pin INT1IF INT1 INTERRUPT INT2 pin INT2IF : : ;**** Set port as an input port R40,R42 LDM R4DD,#1111_1010B ; ;**** Set port as an external interrupt port LDM PMR4,#05H ; ;**** Set Falling-edge Detection LDM IEDS,#0001_0001B : : : INT2 INTERRUPT INT3 pin Response Time INT3IF INT3 INTERRUPT 2 2 IEDS 2 2 Edge selection Register [0F8H] Figure 14-7 External Interrupt Block Diagram INT0 ~ INT3 are multiplexed with general I/O ports (R40~R43). To use as an external interrupt pin, the bit of R4 port mode register PMR4 should be set to “1” corre- max. 12 fXIN Interrupt Interrupt goes latched active The INT0 ~ INT3 edge are latched into INT1IF ~ INT3IF at every machine cycle. The values are not actually polled by the circuitry until the next machine cycle. If a request is active and conditions are right for it to be acknowledged, a hardware subroutine call to the requested service routine will be the next instruction to be executed. The DIV itself takes twelve cycles. Thus, a minimum of twelve complete machine cycles elapse between activation of an external interrupt request and the beginning of execution of the first instruction of the service routine. Figure 14-8shows interrupt response timings. 8 fXIN Interrupt processing Interrupt routine Figure 14-8 Interrupt Response Timing Diagram 52 FEB. 2000 Ver 1.00 HYUNDAI MicroElectronics GMS82512/16/24 W PMR4 - - - W W W W ADDRESS: 0D0H INITIAL VALUE: 00H EC0S INT3S BTCL INT2S INT1S INT0S MSB LSB 0: R40 1: INT0 0: R41 1: INT1 0: R42 1: INT2 0: R43 1: INT3 0: R44 1: EC0 MSB W IEDS W W W W W W LSB W IED3H IED3L IED2H IED2L IED1H BTCL IED1L IED0H IED0L INT3 INT2 INT1 ADDRESS: 0F8H INITIAL VALUE: 00H INT0 Edge selection register 00: Reserved 01: Falling (1-to-0 transition) 10: Rising (0-to-1 transition) 11: Both (Rising & Falling) Figure 14-9 PMR4 and IEDS Registers FEB. 2000 Ver 1.00 53 GMS82512/16/24 HYUNDAI MicroElectronics 15. WATCHDOG TIMER The watchdog timer rapidly detects the CPU malfunction such as endless looping caused by noise or the like, and resumes the CPU to the normal state. The watchdog timer signal for detecting malfunction can be selected either a reset CPU or a interrupt request. When the watchdog timer is not being used for malfunction detection, it can be used as a timer to generate an interrupt at fixed intervals. clear BASIC INTERVAL TIMER OVERFLOW Watchdog Counter (8-bit) Count source clear “0” to reset CPU “1” enable comparator WDTON in CKCTLR [0D3H] 6-bit compare data WDTCL WDTIF 6 Watchdog Timer interrupt Watchdog Timer Register WDTR [0E0H] Internal bus line Figure 15-1 Block Diagram of Watchdog Timer Watchdog Timer Control er output will become active at the rising overflow from the binary counters unless the binary counter is cleared. At this time, when WDTON=1, a reset is generated, which drives the RESET pin to low to reset the internal hardware. When WDTON=0, a watchdog timer interrupt (WDTIF) is generated. Figure 15-2 shows the watchdog timer control register. The watchdog timer is automatically disabled after reset. The CPU malfunction is detected during setting of the detection time, selecting of output, and clearing of the binary counter. Clearing the binary counter is repeated within the detection time. The watchdog timer temporarily stops counting in the STOP mode, and when the STOP mode is released, it automatically restarts (continues counting). If the malfunction occurs for any cause, the watchdog timW 7 WDTR - W 6 W 5 W 4 W 3 W 2 W 1 W 0 W DTCL ADDRESS: 0E0H INITIAL VALUE: -011_1111B 6-bit compare data Clear count flag 0: Free-run count 1: When the WDTCL is set to “1”, binary counter is cleared to “0”. And the WDTCL becomes “0” automatically after one machine cycle. Counter count up again. NOTE: The WDTON bit is in register CKCTLR. Figure 15-2 WDTR: Watchdog Timer Data Register 54 FEB. 2000 Ver 1.00 HYUNDAI MicroElectronics GMS82512/16/24 Example: Sets the watchdog timer detection time to 0.5 sec at 4.19MHz Within WDT detection time Within WDT detection time LDM LDM CKCTLR,#3FH WDTR,#04FH ;Select 1/2048 clock source, WDTON ← 1, Clear Counter LDM : : : : LDM : : : : LDM WDTR,#04FH ;Clear counter WDTR,#04FH ;Clear counter WDTR,#04FH ;Clear counter Enable and Disable Watchdog Watchdog Timer Interrupt Watchdog timer is enabled by setting WDTON (bit 5 in CKCTLR) to “1”. WDTON is initialized to “0” during reset and it should be set to “1” to operate after reset is released. The watchdog timer can be also used as a simple 6-bit timer by clearing bit5 of CKCTLR to “0”. The interval of watchdog timer interrupt is decided by Basic Interval Timer. Interval equation is shown as below. Example: Enables watchdog timer for Reset : LDM : : T = WDTR × Interval of BIT CKCTLR,#xx1x_xxxxB;WDTON ← 1 The stack pointer (SP) should be initialized before using the watchdog timer output as an interrupt source. Example: 6-bit timer interrupt set up. The watchdog timer is disabled by clearing bit 5 (WDTON) of CKCTLR. The watchdog timer is halted in STOP mode and restarts automatically after STOP mode is released. LDM LDM CKCTLR,#xx0xxxxxB;WDTON ←0 WDTR,#7FH ;WDTCL ←1 : Source clock BIT overflow Binary-counter 2 1 3 0 1 2 3 0 Counter Clear WDTR 3 n Match Detect WDTIF interrupt WDTR ← “0100_0011B” WDT reset reset Figure 15-3 Watchdog timer Timing If the watchdog timer output becomes active, a reset is generated, which drives the RESET pin low to reset the internal hardware. FEB. 2000 Ver 1.00 The main clock oscillator also turns on when a watchdog timer reset is generated in sub clock mode. 55 GMS82512/16/24 HYUNDAI MicroElectronics 16. POWER DOWN OPERATION GMS825xx has a power-down mode. In power-down mode, power consumption is reduced considerably that in battery operation. Battery life can be extended a lot. STOP Mode is entered by STOP instruction. 16.1 STOP Mode For applications where power consumption is a critical factor, device provides reduced power of STOP. Note: Since the XIN pin is connected internally to GND to avoid current leakage due to the crystal oscillator in STOP mode, do not use STOP instruction when an external clock is used as the main system clock. Start The Stop Operation An instruction that STOP causes to be the last instruction is executed before going into the STOP mode. In the Stop mode, the on-chip main-frequency oscillator is stopped. With the clock frozen, all functions are stopped, but the onchip RAM and Control registers are held. The port pins output the values held by their respective port data register, the port direction registers. The status of peripherals during Stop mode is shown below. In the Stop mode of operation, VDD can be reduced to minimize power consumption. Be careful, however, that VDD is not reduced before the Stop mode is invoked, and that VDD is restored to its normal operating level before the Stop mode is terminated. CPU All CPU operations are disabled The reset should not be activated before VDD is restored to its normal operating level, and must be held active long enough to allow the oscillator to restart and stabilize. And after STOP instruction, at least two or more NOP instruction should be written as shown in example below. RAM Retain Example: XIN PIN Low XOUT PIN High Oscillation Stop I/O ports Retain Control Registers Retain Release method by RESET, by External interrupt Peripheral STOP Mode LDM STOP NOP NOP : The Interval Timer Register CKCTLR should be initialized (0FH or 0EH) by software in order that oscillation stabilization time should be longer than 20ms before STOP mode. ~ ~ ~ ~ ~ ~ Oscillator (XIN pin) CKCTLR,#0000_1110B ~ ~ ~ ~ Internal Clock ~ ~ STOP Instruction Executed n+1 n+2 n+3 0 1 ~ ~ ~ ~ n ~ ~ ~ ~ BIT Counter ~ ~ External Interrupt FE FF 0 1 2 Clear Normal Operation Stop Operation tST > 20ms by software Normal Operation Before executing Stop instruction, Basic Interval Timer must be set properly by software to get stabilization time which is longer than 20ms. Figure 16-1 STOP Mode Release Timing by External Interrupt 56 FEB. 2000 Ver 1.00 HYUNDAI MicroElectronics GMS82512/16/24 Release the STOP mode The exit from STOP mode is using hardware reset or external interrupt. To release STOP mode, corresponding interrupt should be enabled before STOP mode. Reset redefines all the control registers but does not change the on-chip RAM. External interrupts allow both on-chip RAM and Control registers to retain their values. Start-up is performed to acquire the time for stabilizing oscillation. During the start-up, the internal operations are all stopped. Chip function after event Event MCU Status before event PC Oscillator Circuit Don’t care Vector on STOP instruction Normal operation N +1 off External Interrupt Normal operation Vector on External Interrupt Wake up STOP, I flag = 1 STOP, I flag = 0 Vector N+1 on on RESET Table 16-1 Wake-up and Reset Function Table 16.2 Minimizing Current Consumption The Stop mode is designed to reduce power consumption. To minimize current drawn during Stop mode, the user should turn-off output drivers that are sourcing or sinking current, if it is practical. Note: In the STOP operation, the power dissipation associated with the oscillator and the internal hardware is lowered; however, the power dissipation associated with the pin interface (depending on the external circuitry and program) is not directly determined by the hardware operation of the STOP feature. This point should be little current flows when the input level is stable at the power voltage level (VDD/VSS); however, when the input level becomes higher than the power voltage level (by approximately 0.3V), a current begins to flow. Therefore, if cutting off the output transistor at an I/O port puts the pin signal into the highimpedance state, a current flow across the ports input transistor, requiring it to fix the level by pull-up or other means. FEB. 2000 Ver 1.00 It should be set properly in order that current flow through port doesn't exist. First conseider the setting to input mode. Be sure that there is no current flow after considering its relationship with external circuit. In input mode, the pin impedance viewing from external MCU is very high that the current doesn’t flow. But input voltage level should be VSS or VDD. Be careful that if unspecified voltage, i.e. if unfirmed voltage level (not VSSor VDD) is applied to input pin, there can be little current (max. 1mA at around 2V) flow. If it is not appropriate to set as an input mode, then set to output mode considering there is no current flow. Setting to High or Low is decided considering its relationship with external circuit. For example, if there is external pull-up resistor then it is set to output mode, i.e. to High, and if there 57 GMS82512/16/24 HYUNDAI MicroElectronics is external pull-down register, it is set to low. VDD INPUT PIN INPUT PIN VDD VDD internal pull-up VDD i=0 O OPEN O i i GND Very weak current flows VDD X X i=0 O OPEN Weak pull-up current flows GND O When port is configure as an input, input level should be closed to 0V or 5V to avoid power consumption. Figure 16-2 Application Example of Unused Input Port OUTPUT PIN OUTPUT PIN VDD ON OPEN OFF ON OFF O OFF VDD GND X ON i ON OFF L OFF ON i GND X O VDD L i=0 GND O In the left case, Tr. base current flows from port to GND. To avoid power consumption, there should be low output to the port. In the left case, much current flows from port to GND. Figure 16-3 Application Example of Unused Output Port 58 FEB. 2000 Ver 1.00 HYUNDAI MicroElectronics GMS82512/16/24 17. OSCILLATOR CIRCUIT The GMS825xx has two oscillation circuits internally. XIN and XOUT are input and output for frequency, respectively, inverting amplifier which can be configured for being used as an on-chip oscillator, as shown in Figure 17-1. C1 XOUT Open C2 8MHz XOUT XIN External Clock VSS XIN Recommend Crystal Oscillator External Oscillator C1,C2 = 30pF±10pF Crystal or Ceramic Oscillator Figure 17-1 Oscillation Circuit Oscillation circuit is designed to be used either with a ceramic resonator or crystal oscillator. Since each crystal and ceramic resonator have their own characteristics, the user should consult the crystal manufacturer for appropriate values of external components. Oscillation circuit is designed to be used either with a ceramic resonator or crystal oscillator. Since each crystal and ceramic resonator have their own characteristics, the user should consult the crystal manufacturer for appropriate values of external components. XOUT XIN In addition, see Figure 17-2 for the layout of the crystal. Note: Minimize the wiring length. Do not allow the wiring to intersect with other signal conductors. Do not allow the wiring to come near changing high current. Set the potential of the grounding position of the oscillator capacitor to that of VSS. Do not ground it to any ground pattern where high current is present. Do not fetch signals from the oscillator. FEB. 2000 Ver 1.00 Figure 17-2 Layout of Oscillator PCB circuit 59 GMS82512/16/24 HYUNDAI MicroElectronics 18. RESET The GMS825xx have two types of reset generation procedures; one is an external reset input, the other is a watchOn-chip Hardware Program counter G-flag Initial Value (PC) dog timer reset. Table 18-1 shows on-chip hardware initialization by reset action. On-chip Hardware Initial Value (FFFFH) - (FFFEH) Watchdog timer Disable 0 Control registers Refer to Table 8-1 on page 22 (G) Peripheral clock Off Power fail detector Disable Table 18-1 Initializing Internal Status by Reset Action 18.1 External Reset Input The reset input is the RESET pin, which is the input to a Schmitt Trigger. A reset in accomplished by holding the RESET pin low for at least 8 oscillator periods, within the operating voltage range and oscillation stable, it is applied, and the internal state is initialized. After reset, 64ms (at 4 MHz) add with 7 oscillator periods are required to start execution as shown in Figure 18-2. A connection for simple power-on-reset is shown in Figure 18-1. VCC 10kΩ Internal RAM is not affected by reset. When VDD is turned on, the RAM content is indeterminate. Therefore, this RAM should be initialized before read or tested it. + 10uF When the RESET pin input goes to high, the reset operation is released and the program execution starts at the vector address stored at addresses FFFEH - FFFFH. Figure 18-1 Simple Power-on-Reset Circuit 1 3 ? ? 4 5 6 7 ~ ~ RESET ~ ~ ? ? FFFE FFFF Start ~ ~ ~ ~ ? ? ? ? FE ADL ADH OP ~ ~ DATA BUS 2 ~ ~ Oscillator (XIN pin) ADDRESS BUS to the RESET pin 7036P Stabilization Time tST = 62.5mS at 4.19MHz RESET Process Step tST = 1 fMAIN ÷1024 MAIN PROGRAM x 256 Figure 18-2 Timing Diagram after RESET 18.2 Watchdog Timer Reset Refer to “15. WATCHDOG TIMER” on page 54. 60 FEB. 2000 Ver 1.00 HYUNDAI MicroElectronics GMS82512/16/24 19. POWER FAIL PROCESSOR The GMS825xx has an on-chip power fail detection circuitry to immunize against power noise. A configuration register, PFDR, can enable or disable the power fail detect circuitry. Whenever VDD falls close to or below power fail voltage for 100ns, the power fail situation may reset or freeze MCU according to PFR bit of PFDR. Refer to “7.4 DC Electrical Characteristics” on page 11. Note: If power fail voltage is selected to 3.0V on 3V operation, MCU is freezed at all the times. Power FailFunction OTP MASK Enable/Disable by PFD flag by PFD flag Level Selection by PFV flag by mask option In the in-circuit emulator, power fail function is not implemented and user can not experiment with it. Therefore, after final development of user program, this function may be experimented or evaluated. Table 19-1 Power fail processor Note: User can select power fail voltage level according to PFV bit of PFDR at the OTP(GMS82524T) but must select the power fail voltage level to define PFD option of “Mask Order & Verification Sheet” at the mask chip(GMS825xx). Because the power fail voltage level of mask chip (GMS825xx) is determined according to mask option regardless of PFV bit of PFDR 7 PFDR 6 5 4 R/W 3 PFV R/W 2 R/W 1 R/W 0 PFD PFR PFS ADDRESS: 0F9H INITIAL VALUE: ---- 1100B Power Fail Status 0: Normal operate 1: Set to “1” if power fail is detected Operation Mode 0: Normal operation regardless of power fail 1: MCU will be reset by power fail detection Disable Flag 0: Power fail detection enable 1: Power fail detection disable Power Fail Voltage Selection Flag 0: 2.4V 1: 3.0V Figure 19-1 Power Fail Voltage Detector Register FEB. 2000 Ver 1.00 61 GMS82512/16/24 HYUNDAI MicroElectronics RESET VECTOR YES PFS =1 NO RAM CLEAR INITIALIZE RAM DATA PFS = 0 Skip the initial routine INITIALIZE ALL PORTS INITIALIZE REGISTERS FUNTION EXECUTION Figure 19-2 Example S/W of RESET flow by Power fail VDD VPFDMAX VPFDMIN 64mS Internal RESET VDD When PFR = 1 Internal RESET 64mS t <64mS VDD Internal RESET VPFDMAX VPFDMIN 64mS VPFDMAX VPFDMIN Figure 19-3 Power Fail Processor Situations 62 FEB. 2000 Ver 1.00 HYUNDAI MicroElectronics GMS82512/16/24 20. OTP PROGRAMMING The GMS82524T is OTP (One Time Programmable) microcontroller. Its internal user memory is constructed with EPROM (Electrically Programmable Read Only Memory). The OTP micorcontroller is generally used for chip evaluation, first production, small amount production, fast mass production, etc. Programming Procedure 1. Select device GMS82524T. 2. Load the *.OTP file to the programmer. The file is composed of Motorola-S1 format. 3. Set the programming address range as below table. GMS82524T Blank OTP’s internal EPROM is filled by 00H, not FFH. Note: In any case, you have to use *.OTP file, not *.HEX file. After assemble, both OTP and HEX file are generated by automatically. The HEX file is used during porgram emulation on emulator. 20.1 How to Program Address Set Value Bufferstart address 2000H Buffer end address 7FFFH Device start address A000H 4. Mount the socket adapter on the programmer. 5. Start program/verify. To program the OTP devices, user can use HME own programmer or third party universal programmer shown as listed below. 20.2 Pin Function HME own programmer list VPP (Program Voltage) VPP is the input for the program voltage for programming the EPROM. Manufacturer: Hyundai MicroElectronics Programmer: Choice-Dr Writer Choice-Sigma, Choice-Gang4 The Choice-Dr Writer is single writer and physically addon adapter board type, it should be used with Choice-Dr emulator. However, the Choice-Sigma is stand alone HME universal single programmer for any HME OTP devices, also the Choice-Gang4 can program four OTPs at once. Ask to HME sales part which is listed on appendix of this manual. Third party programmer list CE (Chip Enable) CE is the input for programming and verifying internal EPROM. OE (Output Enable) OE is the input of data output control signal for verify. A0~A15 (Address Bus) A0~A15 are address input pins for internal EPROM. D0~D7 (EPROM Data Bus) These are data bus for internal EPROM. N.C. (No Connection) Manufacturer: Hi-Lo Systems Programmer: ALL-11, ALL-07 Website : http: //www.hilosystems.com.tw Socket adapters are supported by third party programmer’s manufacturer. The other third party will be registered and being under development. FEB. 2000 Ver 1.00 63 GMS82512/16/24 HYUNDAI MicroElectronics 42SDIP (Top View) CE OE N.C.* A15 A14 A1 A2 A3 A4 A5 A6 A7 D0 D1 D2 D3 D4 D5 D6 D7 A8 A9 A10 A11 A12 A13 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 GMS82524T 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 A0 VDD VPP GND 33 32 31 30 29 28 27 26 25 24 23 A7 D0 D1 D2 D3 D4 D5 D6 D7 N.C. A8 44QFP (Top View) 34 35 36 37 38 39 40 41 42 43 44 22 21 20 19 18 17 16 15 14 13 12 GMS82524T A9 A10 A11 A12 A13 A14 A15 N.C.* OE CE VDD N.C.* 1 2 3 4 5 6 7 8 9 10 11 A6 A5 A4 A3 A2 A1 A0 VDD VPP N.C.*: No Connection 64 FEB. 2000 Ver 1.00 HYUNDAI MicroElectronics GMS82512/16/24 20.3 Programming Specification DEVICE OPERATION MODE (TA = 25°C ± 5°C) Mode CE OE A0~A15 VPP VDD O0~O7 X1 VDD2 5.0V DOUT Read Mode X1 Output Disable Mode VIH VIH X1 VDD2 5.0V Hi-Z Programming Mode VIL VIH X1 VPP2 VDD2 DIN Program Verify X1 X1 VPP2 VDD2 DOUT 1. X = Either VIL or VIH. 2. See DC Characteristics Table for VDD and VPP voltage during programming. DEVICE CHARACTERISTICS (VSS=0V, TA = 25°C ± 5°C) Symbol Item Min Typ Max Unit VPP Quick Pulse Programming 11.50 11.75 12.0 V VDD1 Quick Pulse Programming 5.75 6.0 6.25 V IPP2 VPP supply current 50 mA IDD2 VDD supply current 30 mA VIH Input high voltage VIL Input low voltage VOH Output high voltage VOL Output low voltage IIL Input leakage current 0.8VDD Test condition CE=VIL V 0.2VDD VDD-0.1 V V IOH= -2.5mA 0.4 V IOL= 2.1mA 5 µA 1. VDD must be applied simultaneously or before VPP and removed simultaneously or after VPP. 2. The maximum current value is with outputs O0 to O7 unloaded. FEB. 2000 Ver 1.00 65 GMS82512/16/24 HYUNDAI MicroElectronics SWITCHING WAVEFORMS WAVEFORM INPUTS OUTPUTS Must be steady Will be steady May change from H to L Will be changing from H to L May change from L to H Will be changing from L to H Do not care any change permitted Changing state unknown Does not apply Center line is high impedance “Off” state READING WAVEFORMS VIH Addresses Addresses Valid VIL See note (2) VIH OE VIL tAS tOE tDH VIH High-Z Output Valid Output VIL 1. The input timing reference level is 1.0V for a VIL and 4.0V for a VIH at VDD=5.0V. 2. To read the output data, transition requires on the OE form the high to the low after address setup time tAS. 66 FEB. 2000 Ver 1.00 HYUNDAI MicroElectronics GMS82512/16/24 PROGRAMMING ALGORITHM WAVEFORMS Program Verify Program VIH Addresses Addresses Valid VIL tAS tAH VIH Data In/Out High-Z Data in Stable Data out valid VIL tDH tDS tDFP 12.75V VPP VDD tVPS 6.25V VDD 5.0V tVDS VIH CE VIL tPW tOES tOE VIH OE VIL 1. The input timing reference level is 1.0V for a VIL and 4.0V for a VIH at VDD=5.0V. FEB. 2000 Ver 1.00 67 GMS82512/16/24 HYUNDAI MicroElectronics AC READING CHARACTERISTICS (VSS=0V, TA = 25°C ± 5°C) Symbol Item tAS Address setup time tOE Quick Pulse Programming tDH VPP supply current Min Typ Max Unit Test condition µs 2 0 200 ns 50 ns Note: VDD must be applied simultaneously or before VPP and removed simultaneously or after VPP. AC PROGRAMMING CHARACTERISTICS (VSS=0V, TA = 25°C ± 5°C) Symbol Item Min Typ Max Unit Address setup time 2 µs tOES OE setup time 2 µs tDS Data setup time 2 µs tAH Address hold time 0 µs tDH Data hold time 2 µs tDFP Output delay disable time 0 tVPS VPP setup time 2 µs tVDS VDD setup time 2 µs tPW Program pulse width 95 tOE Data output delay time tAS 130 100 Test condition* ns 105 µs 150 ns * AC CONDITION OF TEST Input Rise and Fall Times (10% to 90%) ........................... 20ns Input Pulse Levels ............................................................. 0.45V to 4.55V Input Timing Reference Level............................................ 1.0V to 4.0V Output Timing Reference Level ......................................... 1.0V to 4.0V VDD must be applied simultaneously or before VPP and removed simultaneously or after VPP. 68 FEB. 2000 Ver 1.00 HYUNDAI MicroElectronics GMS82512/16/24 START ADDRESS=FIRST LOCATION 5V 5V VCC=6.0V VPP=11.75 X=0 PROGRAM ONE 100µs PULSE INCREMENT X X=25? YES NO FAIL VERIFY BYTE VERIFY ONE BYTE FAIL PASS PASS INCREMENT ADDRESS NO LAST ADDRESS? YES VCC=VPP=5.0V COMPARE ALL BYTES TO ORIGINAL DATA FAIL PASS DEVICE PASSED DEVICE FAILED Table 20-1 Programming Algorithm FEB. 2000 Ver 1.00 69 APPENDIX GMS82512/16/24 HYUNDAI MicroElectronics A. CONTROL REGISTER LIST Address Register Name Symbol R/W Initial Value Page 7 6 5 4 3 2 1 0 00C0 R0 port data register R0 R/W Undefined page 28 00C1 R0 port I/O direction register R0DD W 00000000 page 28 00C4 R2 port data register R2 R/W Undefined page 28 00C5 R2 port I/O direction register R2DD W 00000000 page 28 00C6 R3 port data register R3 R/W Undefined page 28 00C7 R3 port I/O direction register R3DD W 00000000 page 28 00C8 R4 port data register R4 R/W Undefined page 29 00C9 R4 port I/O direction register R4DD W - - - 00000 page 29 00CA R5 port data register R5 R/W Undefined page 30 00CB R5 port I/O direction register R5DD W - - 00 - - - - page 30 00CC R6 port data register R6 R/W Undefined page 30 00CD R6 port I/O direction register R6DD W 0000 - - - - page 30 00D0 R4 port mode register PMR4 W - - - 0 0 0 0 0 page 29, page 53 00D1 R5 port mode register PMR5 W - - 0 0 - - - - page 30, page 45 Basic interval timer mode register BITR R Undefined page 32 CKCTLR W - - 010111 page 32 WDTR W - 0111111 page 54 00D3 00E0 Watchdog Timer Register 00E2 Timer mode register 0 TM0 R/W 00000000 page 34 00E3 Timer mode register 2 TM2 R/W 00000000 page 34 Timer 0 data register TDR0 W Undefined page 34 T0 R Undefined page 34 TDR1 W Undefined page 34 T1 R Undefined page 34 TDR2 W Undefined page 34 T2 R Undefined page 34 TDR3 W Undefined page 34 T3 R Undefined page 34 00E4 00E5 00E6 00E7 i Clock control register Timer 0 counter register Timer 1 data register Timer 1 counter register Timer 2 data register Timer 2 counter register Timer 3 data register Timer 3 counter register 00E8 A/D converter mode register ADCM R/W - - 000001 page 44 00E9 A/D converter data register ADR R Undefined page 44 00EC Buzzer driver register BUR W Undefined page 45 00F4 Interrupt enable register low IENL R/W 000 - - - - - page 48 00F5 Interrupt request flag register low IRQL R/W 000 - - - - - page 47 00F6 Interrupt enable register high IENH R/W 00000000 page 48 00F7 Interrupt request flag register high IRQH R/W 00000000 page 47 00F8 External interrupt edge selection register IEDS W 00000000 page 53 00F9 Power fail detection register PFDR R/W - - - - 1100 page 61 FEB. 2000 Ver 1.00 HYUNDAI MicroElectronics GMS82512/16/24 B. SOFTWARE EXAMPLE B.1 7-segment LED display 5V VDD TEST 330Ω × 7 5V UP/DOWN S/W R20/INT0 CLEAR S/W R21/INT1 R00 R01 R02 R03 R04 R05 R06 LED Display a b c d e f g 4.7kΩ R23 2N2222 4.7kΩ GND R22 2N2222 VSS GND GMS82512/16/24 ;***************************************************************************** ; Title: GMS82516 (GMS800 Series) Demonstration Program * ; Company: HYUNDAI Micro Electronics * ; Contents: Decimal Up/Down Counter * ; Programmer: HME MCU application team * ;***************************************************************************** ; ;******** DEFINE I/O PORT & FUNCTION REGISTER ADDRESS ********* ; R0 EQU 0C0H ;port R0 register R0DD EQU 0C1H ;port R0 data I/O direction register ; R2 EQU 0C4H ;port R2 register R2DD EQU 0C5H ;port R2 data I/O direction register ; R3 EQU 0C6H ;port R3 register R3DD EQU 0C7H ;port R3 data I/O direction register ; R4 EQU 0C8H ;port R4 register R4DD EQU 0C9H ;port R4 data I/O direction register ; R5 EQU 0CAH ;port R5 register R5DD EQU 0CBH ;port R5 data I/O direction register ; R6 EQU 0CCH ;port R6 register R6DD EQU 0CDH ;port R6 data I/O direction register ; PMR4 EQU 0D0H ;port R4 mode register EC0S EQU 4,0D0H ;event counter 0 selection INT3S EQU 3,0D0H ;external int.3 selection INT2S EQU 2,0D0H ;external int.2 selection INT1S EQU 1,0D0H ;external int.1 selection FEB. 2000 Ver 1.00 ii GMS82512/16/24 INT0S EQU ; PMR5 EQU BUZS EQU WDTS EQU ; CKCTLR EQU BITR EQU ; WDTR EQU ; TM0 EQU TM2 EQU ; TDR0 EQU TDR1 EQU TDR2 EQU TDR3 EQU ; ADCM EQU ADR EQU ; BUR EQU ; IENL EQU AE EQU WDTE EQU BITE EQU ; IRQL EQU AR EQU WDTRF EQU BITRF EQU ; IENH EQU INT0E EQU INT1E EQU INT2E EQU INT3E EQU T0E EQU T1E EQU T2E EQU T3E EQU ; IRQH EQU INT0R EQU INT1R EQU INT2R EQU INT3R EQU T0R EQU T1R EQU T2R EQU T3R EQU ; IEDS EQU PFDR EQU ; ;*********** MACRO ; REG_SAVE MACRO PUSH PUSH PUSH ENDM ; REG_RESTORE MACRO POP POP POP ENDM HYUNDAI MicroElectronics 0,0D0H ;external int.0 selection 0D1H 5,0D1H 4,0D1H ;port R5 mode register ;buzzer selection ;watch dog timer selection 0D3H 0D3H ;clock control register ;basic interval timer register 0E0H ;watch dog timer register 0E2H 0E3H ;timer0 mode register ;timer2 mode register 0E4H 0E5H 0E6H 0E7H ;tomer0 ;tomer1 ;tomer2 ;tomer3 0E8H 0E9H ;A/D Converter mode register ;A/D con. register 0ECH ;buzzer data register 0F4H 7,0F4H 6,0F4H 5,0F4H ;int. enable register low ;A/D con. int. enable ;W.D.T. int. enable ;B.I.T. int. enable 0F5H 7,0F5H 6,0F5H 5,0F5H ;int. request flag register low ;A/D con. int. request flag ;W.D.T. int. request flag ;B.I.T. int. request flag 0F6H 7,0F6H 6,0F6H 5,0F6H 4,0F6H 3,0F6H 2,0F6H 1,0F6H 0,0F6H ;int. enable register high ;external int.0 enable ;external int.1 enable ;external int.2 enable ;external int.3 enable ;timer0 int. enable ;timer1 int. enable ;timer2 int. enable ;timer3 int. enable 0F7H 7,0F7H 6,0F7H 5,0F7H 4,0F7H 3,0F7H 2,0F7H 1,0F7H 0,0F7H ;int. request flag register high ;external int.0 request flag ;external int.1 request flag ;external int.2 request flag ;external int.3 request flag ;timer0 int. request flag ;timer1 int. request flag ;timer2 int. request flag ;timer3 int. request flag 0F8H 0F9H ;external int. edge selection ;power fail detection register data data data data register register register register DEFINITION ************ ;Save Registers to Stacks A X Y ;Restore Register from Stacks Y X A ; ;*********** CONSTANT DEFINITION *********** ; SEG_PORT EQU R0 ;7-Segment Output Port STROBE_PORT EQU R2 ;Strobe Signal Port ; ;************************************************************************** ; RAM ALLOCATION * ;************************************************************************** iii FEB. 2000 Ver 1.00 HYUNDAI MicroElectronics GMS82512/16/24 DIGIT10 DS 1 ;DIG10 Display Data DIGIT1 DS 1 ;Seg1 Display Data STROBE DS 1 ;Strobe Signal Data TMR_500mS DS 1 ;500ms Time Counter FLAGS DS 1 ;Function Flags UP_F EQU 0,FLAGS ;1=Down,0=Up F_500ms EQU 1,FLAGS ; ; ;************************************************************************** ; INTERRUPT VECTOR TABLE * ;************************************************************************** ; ORG0FFE4H DW NOT_USED ; Serial I/O DW NOT_USED ; Basic Interval Timer DW NOT_USED ; Watch Dog Timer DW NOT_USED ; A/D CON. DW NOT_USED ; Timer-3 DW NOT_USED ; Timer-2 DW NOT_USED ; Timer-1 DW TMR0_INT ; Timer-0 DW NOT_USED ; Int.3 DW NOT_USED ; Int.2 DW INT_1 ; Int.1 DW INT_0 ; Int.0 DW NOT_USED ; DW RESET ; Reset ; ;************************************************************************** ; MAIN PROGRAM * ;************************************************************************** ; ORG 0C000H ;Program Start Address ; RESET: DI ;Disable All Interrupts LDX #0 RAM_CLR: LDA #0 ;RAM Clear(!0000H->!00BFH) STA {X}+ ;M(X) <- A, then X <- X+1 CMPX #0C0H ;X = #0C0H ? BNE RAM_CLR ; LDX #0FEH ;Stack Pointer Initial TXSP ;SP. <- #0FEH Loop: LDM LDM R0,#0 R2,#0 ;I/O Port Data Clear LDM LDM R0DD,#0FFH R2DD,#00FH ;7-Seg. Data Output Mode ;7-Seg. Strobe Output Mode LDM STROBE,#0000_1011B LDM TDR0,#250 LDM TM0,#0001_1111B LDM IRQH,#0 LDM IRQL,#0 LDM IENH,#1100_1000B LDM IENL,#00H LDM IEDS,#0101_0101B LDM PMR4,#03H SET1 UP_F EI ; nop IF F_500ms == 1 clr1 F_500ms call INC_DEC ENDIF jmp Loop ;8us x 250 = 2000us ;Timer0(8bit),8us,Start Count-up ;Clear All Interrupts Requeat Flags ;EnableT0,Int0,Int1,Interrupt ;External Int. Falling edge select ;General port OR Int? ;Enable Interrupts ; ;*********************************************** ; Subject: Inc. or Dec. two digits * ;*********************************************** ; Entry: UP_F * ; Return: UP_F=1, Increment two digits * ; UP_F=0, Decrement two digits * ;*********************************************** ; INC_DEC: BBC UP_F,DOWN ;Check Down mode or Up mode ; FEB. 2000 Ver 1.00 iv GMS82512/16/24 DOWN: ;************************** ;* Up Count * ;************************** ; SETC LDA #0 ADC DIGIT1 IF A == #0AH setc lda #0 ENDIF STA DIGIT1 ; LDA #0 ADC DIGIT10 IF A == #10 lda #0 ENDIF STA DIGIT10 RET ; ;************************** ;* Down Count * ;************************** ; clrc lda DIGIT1 sbc #0 IF A == #0FFH lda #9 clrc ELSE setc ENDIF sta DIGIT1 ; lda DIGIT10 sbc #0 IF A == #0FFH lda #9 ENDIF STA DIGIT10 RET HYUNDAI MicroElectronics ; DIGIT1 <- DIGIT1 + 1 ; Store result into DIGIT1 ; When Overflow is set, ; DIGIT10 <- DIGIT10 + 1 ; DIGIT1 <- DIGIT1 - 1 ; Store result into DIGIT1 ; When Overflow is set, ; DIGIT10 <- DIGIT10 - 1 ; ;************************************************************************** ; TIMER0,INTERRUPT ROUTINE(2ms)& INT0,INT1 * ;************************************************************************** ; TMR0_INT: REG_SAVE ;Save Registers to Stacks CALL DSPLY ;Segments Data Port Output CALL Make_500msFalg ;250ms mesurement REG_RESTORE ;Restore Registers from Stacks RETI ; ;************************************************************************** ; EXTERNAL INTERRUPT 0 (UP/DOWN KEY) * ;************************************************************************** ; INT_0: NOT1 UP_F ;INT0 Service routine RETI ;Toggle the Up/Down mode ; ;************************************************************************** ; EXTERNAL INTERRUPT 1 (CLEAR KEY) * ;************************************************************************** ; INT_1: LDM DIGIT1,#0 ;INT1 Service routine LDM DIGIT10,#0 LDM TMR_500MS,#0 ;0.5Sec Restart RETI ; ;*********************************************************************** ; Subject: Seven Segment Display (DSPLY) * ;*********************************************************************** ; Entry: DIGIT10 or DIGIT1 * ; Return: Output SEG_PORT (R00~R07), * ; Strobe_port (R22,R23) * ; Scratch: STROBE * ;*********************************************************************** ; Description: After read internal RAM data, output data to the port * v FEB. 2000 Ver 1.00 HYUNDAI MicroElectronics GMS82512/16/24 ;*********************************************************************** ; DSPLY: LDM STROBE_PORT,#03H ;Segment All Turn Off NOT1 STROBE.2 ;Toggle strobe0 NOT1 STROBE.3 ;Toggle strobe1 IF ldy ELSE ldy ENDIF STROBE.3 = 1 DIGIT1 LDA STA LDA STA RET ;Test if R23 is high. DIGIT10 !FONT+Y SEG_PORT STROBE STROBE_PORT ;Segment Data output ;Current Digit Turn On ;Quit ; ;*********************************************** ; Subject: Set falg at every 500ms * ;*********************************************** ; Entry: None * ; Return: 500ms flag (F_500ms) * ;*********************************************** ; Make_500msFalg: INC TMR_500MS ;count up every 2ms LDA TMR_500MS IF A == #250 ;Compare 0.5S ldm TMR_500MS,#0 ;clear 0.5sec. counter set1 F_500ms ;set 0.5sec. flag ENDIF RET ; ;************************************************************************** ; 7-SEGMENT PATTERN DATA * ; _a_ * ; f | g |b * ; |---| * ; e |___|c * ; d .h * ;************************************************************************** ; FONT Segment: DB DB DB DB DB DB DB DB DB DB hgfe dcba 0011_1111B 0000_0110B 0101_1011B 0100_1111B 0110_0110B 0110_1101B 0111_1100B 0000_0111B 0111_1111B 0110_0111B To be displayed Digit Number ; ; ; ; ; ; ; ; ; ; 0 1 2 3 4 5 6 7 8 9 ; ;************************************************************************** ; NOT_USED: nop ;Discard Unexpected Interrupts reti ; END ;Notice Program End FEB. 2000 Ver 1.00 vi GMS82512/16/24 HYUNDAI MicroElectronics C. INSTRUCTION C.1 Terminology List Terminology A X Y PSW C V N I Z H B G PC SP #imm dp !abs [ ] { } { }+ .bit A.bit dp.bit M.bit rel upage n x y H,h B,b + x = ⊕ vii Description A - Register X - Register Y - Register Program Status Word Carry Flag of PSW Overflow Flag of PSW Negative Flag of PSW Master Interrupt Enable Flag of PSW Zero Flag of PSW Half Carry Flag of PSW Break Flag of PSW (software interrupt) G flag of PSW(Direct Page) Program Counter Stack Pointer 8-Bit Immediate Data Direct Page Offset Address Absolute Address Indirect Address Register Indirect Address Register Indirect Address, Register Auto-Increment Bit Position Bit Position of A-Register Bit Position of Direct Page Memory Bit Position of Memory (000H ~ 0FFFH) Relative Addressing Data U - Page(0FF00H ~ 0FFFFH) Offset Address Table CALL Number (0 ~ 15) Indicate Upper Nibble of OP code 0 Bit Position 1 Bit Position Indicate Upper Nibble of OP code Assignment / Transfer / Shift Left Shift Right Exchange Hexadecimal Binary Addition Multiplication Equal Logical AND Exclusive OR D,d ( ) / v (overline) Decimal Contents of Subtraction Division Not Equal Logical OR Logical NOT FEB. 2000 Ver 1.00 HYUNDAI MicroElectronics GMS82512/16/24 C.2 Instruction Map LOW 00000 00 00001 01 00010 02 00011 03 00100 04 00101 05 00110 06 00111 07 01000 08 01001 09 01010 0A 01011 0B 01100 0C 01101 0D 01110 0E 000 - SET1 dp.bit BBS A.bit,rel BBS dp.bit,rel 001 CLRC // // // 010 CLRG // // // 011 DI // // // CLRV // // // 101 SETC // // // SETG // // // 111 EI // // // ADC dp+X SBC dp+X CMP dp+X OR dp+X AND dp+X EOR dp+X LDA dp+X STA dp+X ADC !abs SBC !abs CMP !abs OR !abs AND !abs EOR !abs LDA !abs STA !abs ASL A ROL A LSR A ROR A INC A DEC A 110 ADC dp SBC dp CMP dp OR dp AND dp EOR dp LDA dp STA dp ASL dp ROL dp LSR dp ROR dp INC dp DEC dp LDY dp STY dp TCALL 0 TCALL 2 TCALL 4 TCALL 6 TCALL 8 TCALL 10 TCALL 12 TCALL 14 SETA1 .bit CLRA1 .bit NOT1 M.bit OR1 OR1B AND1 AND1B EOR1 EOR1B LDC LDCB STC M.bit BIT dp COM dp TST dp CMPX dp CMPY dp DBNE dp LDX dp STX dp POP A POP X POP Y POP PSW CBNE dp+X XMA dp+X LDX dp+Y STX dp+Y PUSH A PUSH X PUSH Y PUSH PSW 100 ADC #imm SBC #imm CMP #imm OR #imm AND #imm EOR #imm LDA #imm LDM dp,#imm 10000 10 10001 11 10010 12 10011 13 10100 14 10101 15 10110 16 10111 17 11000 18 11001 19 11010 1A 11011 1B 11100 1C 11101 1D 11110 1E BPL rel BVC rel BCC rel BNE rel BMI rel BVS rel BCS rel BEQ rel CLR1 dp.bit BBC A.bit,rel BBC dp.bit,rel // // // // // // // // // // // // // // // // ASL dp+X ROL dp+X LSR dp+X ROR dp+X INC dp+X DEC dp+X LDY dp+X STY dp+X TCALL 1 TCALL 3 TCALL 5 TCALL 7 TCALL 9 TCALL 11 TCALL 13 TCALL 15 BIT !abs TEST !abs TCLR1 !abs CMPX !abs CMPY !abs XMA dp LDX !abs STX !abs ADDW dp SUBW dp CMPW dp LDYA dp INCW dp DECW dp STYA dp CBNE dp DAA // ASL !abs ROL !abs LSR !abs ROR !abs INC !abs DEC !abs LDY !abs STY !abs XAY // ADC [dp]+Y SBC [dp]+Y CMP [dp]+Y OR [dp]+Y AND [dp]+Y EOR [dp]+Y LDA [dp]+Y STA [dp]+Y LDX #imm LDY #imm CMPX #imm CMPY #imm INC Y DEC Y // ADC [dp+X] SBC [dp+X] CMP [dp+X] OR [dp+X] AND [dp+X] EOR [dp+X] LDA [dp+X] STA [dp+X] JMP [!abs] JMP [dp] CALL [dp] // ADC !abs+Y SBC !abs+Y CMP !abs+Y OR !abs+Y AND !abs+Y EOR !abs+Y LDA !abs+Y STA !abs+Y JMP !abs CALL !abs // ADC {X} SBC {X} CMP {X} OR {X} AND {X} EOR {X} LDA {X} STA {X} XYX NOP HIGH LOW HIGH 000 001 010 011 100 101 110 111 FEB. 2000 Ver 1.00 TXA TAX MUL DBNE Y DIV XMA {X} LDA {X}+ STA {X}+ TXSP TSPX 01111 0F BRK BRA rel PCALL Upage RET INC X DEC X XCN DAS XAS STOP 11111 1F RETI TAY TYA viii GMS82512/16/24 HYUNDAI MicroElectronics C.3 Alphabetic order table of instruction OP CODE 04 05 06 07 15 16 17 14 1D 84 85 86 87 95 96 97 94 8B 8B 08 09 19 18 y2 y3 x2 x3 BYTE NO. 2 2 2 3 3 2 2 1 2 2 2 2 3 3 2 2 1 3 3 1 2 2 3 2 3 2 3 CYCLE NO 2 3 4 4 5 6 6 3 5 2 3 4 4 5 6 6 3 4 4 2 4 5 5 4/6 5/7 4/6 5/7 BCC rel 50 2 2/4 29 30 31 32 BCS rel BEQ rel BIT dp BIT !abs D0 F0 0C 1C 2 2 2 3 2/4 2/4 4 5 33 34 35 36 37 BMI BNE BPL BRA BRK 90 70 10 2F 0F 2 2 2 2 1 2/4 2/4 2/4 4 8 NO. MNENONIC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 ADC #imm ADC dp ADC dp + X ADC !abs ADC !abs+Y ADC [dp+X] ADC [dp]+Y ADC {X} ADDW dp AND #imm AND dp AND dp + X AND !abs AND !abs+Y AND [dp+X] AND [dp] + Y AND {X} AND1 M.bit AND1B M.bit ASL A ASL dp ASL dp + X ASL !abs BBC A.bit,rel BBC dp.bit,rel BBS A.bit,rel BBS dp.bit,rel 28 rel rel rel rel FLAG NVGBHIZC OPERATION Add with carry. A A + (M) + C NV - - H - ZC 16-bits add without carry : YA YA + (dp+1)(dp) Logical AND A A (M) N-----Z- Bit AND C-flag : C C (M.bit) Bit AND C-flag and NOT : C C (M.bit) Arithmetic shift left C -------C -------C 7 6 5 4 3 2 1 0 N - - - - - ZC "0" Branch if bit clear : if(bit) = 0, then PC PC + rel Branch if bit clear : if(bit) = 1, then PC PC + rel Branch if carry bit clear : if(C) = 0, then PC PC + rel Branch if carry bit set : If (C) =1, then PC PC + rel Branch if equal : if (Z) = 1, then PC PC + rel Bit test A with memory : Z A M, N (M7), V (M6) Branch if munus : if (N) = 1, then PC PC + rel Branch if not equal : if (Z) = 0, then PC PC + rel Branch if not minus : if (N) = 0, then PC PC + rel Branch always : PC PC + rel Software interrupt: B “1”, M(SP) (PCH), SP SP - 1, M(s) (PCL), SP S - 1, M(SP) PSW, 38 BVC rel 30 2 2/4 39 BVS rel B0 2 2/4 ix NV - - H - ZC SP SP - 1, PCL (0FFDEH), PCH (0FFDFH) Branch if overflow bit clear : If (V) = 0, then PC PC + rel Branch if overflow bit set : If (V) = 1, then PC PC + rel --------------MM - - - - Z --------------MM - - - - Z ----------------------------- ---1-0-- --------------- FEB. 2000 Ver 1.00 HYUNDAI MicroElectronics NO. MNENONIC GMS82512/16/24 OP CODE 3B 5F BYTE NO. 3 2 CYCLE NO 8 8 Subroutine call M(SP)(PCH), SPSP-1, M(SP)(PCL), SPSP-1 OPERATION FLAG NVGBHIZC 40 41 CALL !abs CALL [dp] 42 FD 3 5/7 if !abs, PC abs ; if [dp], PCL (dp), PCH (dp+1) Compare and branch if not equal ; 8D 3 6/8 If A ≠ (M), then PC PC + rel. -------- 44 45 46 47 48 49 50 51 52 53 54 55 56 57 CBNE dp,rel CBNE dp + X, rel CLR1 dp.bit CLR1A A.bit CLRC CLRG CLRV CMP #imm CMP dp CMP dp + X CMP !abs CMP !abs + Y CMP [dp + X] CMP [dp] + Y CMP {X} CMPW dp y1 2B 20 40 80 44 45 46 47 55 56 57 54 5D 2 2 1 1 1 2 2 2 3 3 2 2 1 2 4 2 2 2 2 2 3 4 4 5 6 6 3 4 Clear bit : (M.bit) “0” Clear A.bit : (A.bit) “0” Clear C-flag : C “0” Clear G-flag : G “0” Clear V-flag : V “0” Compare accumulator contents with memory contents A - (M) ---------------------0 --0-----0--0--- 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 CMPX #imm CMPX dp CMPX !abs CMPY #imm CMPY dp CMPY !abs COM dp DAA DAS DBNE dp,rel DBNE Y,rel DEC A DEC dp DEC dp + X DEC !abs DEC X DEC Y DECW dp DI DIV EI 5E 6C 7C 7E 8C 9C 2C DF CF AC 7B A8 A9 B9 B8 AF BE BD 60 9B E0 2 2 3 2 2 3 2 1 1 3 2 1 2 2 3 1 1 2 1 1 1 2 3 4 2 3 4 4 3 3 5/7 4/6 2 4 5 5 2 2 6 3 12 3 43 FEB. 2000 Ver 1.00 -------- N - - - - - ZC Compare YA contents with memory pair contents : YA - (dp+1)(dp) Compare X contents with memory contents X - (M) Compare Y contents with memory contents Y - (M) 1’s complement : (dp) (dp) Decimal adjust for addition Decimal adjust for substraction Decrement and branch if not equal : if (M) ≠ 0, then PC PC + rel. Decrement MM-1 N - - - - - ZC N - - - - - ZC N - - - - - ZC N-----ZN - - - - - ZC N - - - - - ZC -------- N-----Z- Decrement memory pair : (dp+1)(dp) {(dp+1)(dp)} - 1 Disable interrupts : I “0” Divide : YA A Q:A, R:Y Enable interrupts : I “1” N-----Z-----0-NV - - H - Z -----1-- x GMS82512/16/24 NO. MNENONIC 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 EOR #imm EOR dp EOR dp + X EOR !abs EOR !abs + Y EOR [ dp + X] EOR [dp] + Y EOR {X} EOR1 M.bit EOR1B M.bit INC A INC dp INC dp + X INC !abs INC X INC Y INCW dp JMP !abs JMP [!abs] JMP [dp] LDA #imm LDA dp LDA dp + X LDA !abs LDA !abs + Y LDA [dp + X] LDA [dp]+Y LDA {X} LDA {X}+ LDC M.bit LDCB M.bit LDM dp,#imm LDX #imm LDX dp LDX dp + Y LDX !abs LDY #imm LDY dp LDY dp + Y LDY !abs LDYA dp LSR A LSR dp LSR dp + X LSR !abs MUL NOP NOT1 M.bit xi HYUNDAI MicroElectronics OP CODE A4 A5 A6 A7 B5 96 97 94 AB AB 88 89 99 98 8F 9E 9D 1B 1F 3F C4 C5 C6 C7 D5 D6 D7 D4 DB CB CB E4 1E CC CD DC 3E C9 D9 D8 7D 48 49 59 58 5B FF 4B BYTE NO. 2 2 2 3 3 2 2 1 3 3 1 2 2 3 1 1 2 3 3 2 2 2 2 3 3 2 2 1 1 3 3 3 2 2 2 3 2 2 2 3 2 1 2 2 3 1 1 3 CYCLE NO 2 3 4 4 5 6 6 3 5 5 2 4 5 5 2 2 6 3 5 4 2 3 4 4 5 6 6 3 4 4 4 5 2 3 4 4 2 3 4 4 5 2 4 5 5 9 2 5 FLAG NVGBHIZC OPERATION Exclusive OR A A ⊕ (M) N-----Z- Bit exclusive-OR C-flag : C C ⊕ (M.bit) Bit exclusive-OR C-flag and NOT : C C ⊕ (M.bit) Increment (M) (M) + 1 -------C -------C N - - - - - ZC N-----Z- Increment memory pair : (dp+1)(dp) {(dp+1)(dp)} + 1 N - - - - - Z Unconditional jump -------PC jump address Load accumulator A (M) N-----Z- X-register auto-increment : A (M), X X + 1 Load C-flag : C (M.bit) Load C-flag with NOT : C (M.bit) Load memory with immediate data : (M) imm Load X-register X (M) N-----Z- Load X-register Y (M) N-----Z- Load YA : YA (dp+1)(dp) Logical shift right 7 6 5 4 3 2 1 0 C "0" Multiply : YA Y x A No operation Bit complement : (M.bit) (M.bit) -------C -------C -------- N-----ZN - - - - - ZC N-----Z--------------- FEB. 2000 Ver 1.00 HYUNDAI MicroElectronics NO. MNENONIC 127 128 129 130 131 132 133 134 135 136 OR #imm OR dp OR dp + X OR !abs OR !abs + Y OR [dp +X} OR [dp] + Y OR {X} OR1 M.bit OR1B M.bit 137 PCALL GMS82512/16/24 OP CODE 64 65 66 67 75 76 77 74 6B 6B BYTE NO. 2 2 2 3 3 2 2 1 3 3 CYCLE NO 2 3 4 4 5 6 6 3 5 5 4F 2 6 138 139 140 141 142 143 144 145 146 POP A POP X POP Y POP PSW PUSH A PUSH X PUSH Y PUSH PSW RET 0D 2D 4D 6D 0E 2E 4E 6E 6F 1 1 1 1 1 1 1 1 1 4 4 4 4 4 4 4 4 5 147 RETI 7F 1 6 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 ROL A ROL dp ROL dp + X ROL !abs ROR A ROR dp ROR dp + X ROR !abs SBC #imm SBC dp SBC dp + X SBC !abs SBC !abs + Y SBC [dp + X] SBC [dp] + Y SBC {X} SET1 dp.bit SETA1 A.bit SETC SETG FEB. 2000 Ver 1.00 28 29 39 38 68 69 79 78 24 25 26 27 35 36 37 34 x1 0B A0 C0 1 2 2 3 1 2 2 3 2 2 2 3 3 2 2 1 2 2 1 1 2 4 5 5 2 4 5 5 2 3 4 4 5 6 6 3 4 2 2 2 OPERATION FLAG NVGBHIZC Logical OR A A V (M) N-----Z- Bit OR C-flag : C C V (M.bit) Bit OR C-flag and NOT : C C V (M.bit) U-page call : M(SP) (PCH), SP SP -1, -------C -------C M(SP) (PCL), SP SP -1, -------- PCL (upage), PCH "OFFH" Pop from stack SP SP + 1, Reg. M(SP) -------(restored) Push to stack M(SP) Reg. SP SP - 1 Return from subroutine : SP SP+1, PCL M(SP), SP SP+1, PCH M(SP) Return from interrupt : SP SP+1, PSW M(SP), SP SP+1,PCL M(SP), -------- -------- (restored) SP SP+1, PCH M(SP) Rotate left through carry C 7 6 5 4 3 2 1 0 N - - - - - ZC Rotate right through carry 7 6 5 4 3 2 1 0 C N - - - - - ZC Substract with carry A A - (M) - (C) NV - - HZC Set bit : (M.bit) “1” Set A.bit : (A.bit) “1” Set C-flag : C “1” Set G-flag : G “1” ---------------------1 --1----- xii GMS82512/16/24 HYUNDAI MicroElectronics STA dp STA dp + X STA !abs STA !abs + Y STA [dp + X] STA [dp] + Y STA {X} STA {X}+ STC M.bit STOP STX dp STX dp + Y STX !abs STY dp STY dp + X STY !abs STYA dp SUBW dp TAX TAY TCALL n OP CODE E5 E6 E7 F5 F6 F7 F4 FB EB 00 EC ED FC E9 F9 F8 DD 3D E8 9F nA BYTE NO. 2 2 3 3 2 2 1 1 3 1 2 2 3 2 2 3 2 2 1 1 1 CYCLE NO 3 4 4 5 6 6 3 4 6 3 4 5 5 4 5 5 5 5 2 2 8 189 190 191 TCLR1 !abs TSET1 !abs TSPX 5C 3C AE 3 3 1 6 6 2 192 TST dp 4C 2 3 193 194 195 TXA TXSP TYA C8 8E BF 1 1 1 2 2 2 196 XAX EE 1 4 197 198 XAY XCN DE CE 1 1 4 5 199 200 201 202 XMA dp XMA dp + X XMA {X} XYX BC AD BB FE 2 2 1 1 5 6 5 4 NO. MNENONIC 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 FLAG NVGBHIZC OPERATION Store accumulator contents in memory (M) A -------- X-register auto-increment : (M) A, X X + 1 Store C-flag : (M.bit) C Stop mode (halt CPU, stop oscillator) Store X-register contents in memory (M) X Store Y-register contents in memory (M) Y ---------------------- -------- -------Store YA : (dp+1)(dp) YA 16-bits substract without carry : YA YA - (dp+1)(dp) NV - - H - ZC N-----ZTransfer accumulator contents to X-register : X A N-----ZTransfer accumulator contents to Y-register : Y A Table call : M(SP) (PCH), SP SP -1, -------M(SP) (PCL), SP SP -1 PCL (Table vector L), PCH (Table vector H) xiii Test and clear bits with A :A - (M), (M) (M) (A) Test and set bits with A :A - (M), (M) (M) V (A) Transfer stack-pointer contents to X-register : X SP Test memory contents for negative or zero : (dp) 00H N-----ZN-----ZN-----Z- Transfer X-register contents to accumulator : A X Transfer X-register contents to stack-pointer : SP X Transfer Y-register contents to accumulator : A Y Exchange X-register contents with accumulator : X A Exchange Y-register contents with accumulator : YA Exchange nibbles within the accumulator: A7 ~ A4 A3 ~ A0 Exchange memory contents with accumulator (M) A N-----ZN-----ZN-----Z- Exchange X-register contents with Y-register : X Y N-----Z- --------------N-----Z- N-----Z-------- FEB. 2000 Ver 1.00 HYUNDAI MicroElectronics GMS82512/16/24 C.4 Instruction Table by Function Arithmetic/Logic Operation NO. MNENONIC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 ADC #imm ADC dp ADC dp + X ADC !abs ADC !abs+Y ADC [dp+X] ADC [dp]+Y ADC {X} AND #imm AND dp AND dp + X AND !abs AND !abs+Y AND [dp+X] AND [dp] + Y AND {X} ASL A ASL dp ASL dp + X ASL !abs CMP #imm CMP dp CMP dp + X CMP !abs CMP !abs + Y CMP [dp + X] CMP [dp] + Y CMP {X} CMPX #imm CMPX dp CMPX !abs CMPY #imm CMPY dp CMPY !abs COM dp DAA DAS DEC A DEC dp DEC dp + X DEC !abs DEC X DEC Y DIV FEB. 2000 Ver 1.00 OP CODE 04 05 06 07 15 16 17 14 84 85 86 87 95 96 97 94 08 09 19 18 44 45 46 47 55 56 57 54 5E 6C 7C 7E 8C 9C 2C DF CF A8 A9 B9 B8 AF BE 9B BYTE NO. 2 2 2 3 3 2 2 1 2 2 2 3 3 2 2 1 1 2 2 3 2 2 2 3 3 2 2 1 2 2 3 2 2 3 2 1 1 1 2 2 3 1 1 1 CYCLE NO 2 3 4 4 5 6 6 3 2 3 4 4 5 6 6 3 2 4 5 5 2 3 4 4 5 6 6 3 2 3 4 2 3 4 4 3 3 2 4 5 5 2 2 12 OPERATION FLAG NVGBHIZC Add with carry. A A + (M) + C NV - - H - ZC Logical AND A A (M) N-----Z- Arithmetic shift left C 7 6 5 4 3 2 1 0 "0" N - - - - - ZC Compare accumulator contents with memory contents A - (M) N - - - - - ZC Compare X contents with memory contents X - (M) N - - - - - ZC Compare Y contents with memory contents Y - (M) N - - - - - ZC 1’s complement : (dp) (dp) Decimal adjust for addition Decimal adjust for substraction Decrement MM-1 N-----ZN - - - - - ZC N - - - - - ZC N-----Z- Divide : YA A Q:A, R:Y NV - - H - Z - xiv GMS82512/16/24 OP CODE A4 A5 A6 A7 B5 96 97 94 88 89 99 98 8F 9E 48 49 59 58 5B 64 65 66 67 75 76 77 74 28 29 39 38 68 69 79 78 24 25 26 27 35 36 37 34 BYTE NO. 2 2 2 3 3 2 2 1 1 2 2 3 1 1 1 2 2 3 1 2 2 2 3 3 2 2 1 1 2 2 3 1 2 2 3 2 2 2 3 3 2 2 1 CYCLE NO 2 3 4 4 5 6 6 3 2 4 5 5 2 2 2 4 5 5 9 2 3 4 4 5 6 6 3 2 4 5 5 2 4 5 5 2 3 4 4 5 6 6 3 TST dp 4C 2 3 XCN CE 1 5 NO. MNENONIC 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 EOR #imm EOR dp EOR dp + X EOR !abs EOR !abs + Y EOR [ dp + X] EOR [dp] + Y EOR {X} INC A INC dp INC dp + X INC !abs INC X INC Y LSR A LSR dp LSR dp + X LSR !abs MUL OR #imm OR dp OR dp + X OR !abs OR !abs + Y OR [dp +X} OR [dp] + Y OR {X} ROL A ROL dp ROL dp + X ROL !abs ROR A ROR dp ROR dp + X ROR !abs SBC #imm SBC dp SBC dp + X SBC !abs SBC !abs + Y SBC [dp + X] SBC [dp] + Y SBC {X} 88 89 xv HYUNDAI MicroElectronics FLAG NVGBHIZC OPERATION Exclusive OR A A ⊕ (M) N-----Z- Increment (M) (M) + 1 N - - - - - ZC N-----Z- Logical shift right 7 6 5 4 3 2 1 0 C "0" N - - - - - ZC Multiply : YA Y x A Logical OR A A V (M) N-----Z- N-----Z- Rotate left through carry C N - - - - - ZC 7 6 5 4 3 2 1 0 Rotate right through carry N - - - - - ZC 7 6 5 4 3 2 1 0 C Substract with carry A A - (M) - (C) NV - - HZC Test memory contents for negative or zero : (dp) 00H Exchange nibbles within the accumulator: A7 ~ A4 A3 ~ A0 N-----ZN-----Z- FEB. 2000 Ver 1.00 HYUNDAI MicroElectronics GMS82512/16/24 Register / Memory Operation OP CODE C4 C5 C6 C7 D5 D6 D7 D4 DB E4 1E CC CD DC 3E C9 D9 D8 E5 E6 E7 F5 F6 F7 F4 FB EC ED FC E9 F9 F8 E8 9F AE C8 8E BF BYTE NO. 2 2 2 3 3 2 2 1 1 3 2 2 2 3 2 2 2 3 2 2 3 3 2 2 1 1 2 2 3 2 2 3 1 1 1 1 1 1 CYCLE NO 2 3 4 4 5 6 6 3 4 5 2 3 4 4 2 3 4 4 3 4 4 5 6 6 3 4 4 5 5 4 5 5 2 2 2 2 2 2 XAX EE 1 4 XAY XMA dp XMA dp + X XMA {X} XYX DE BC AD BB FE 1 2 2 1 1 4 5 6 5 4 NO. MNENONIC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 LDA #imm LDA dp LDA dp + X LDA !abs LDA !abs + Y LDA [dp + X] LDA [dp]+Y LDA {X} LDA {X}+ LDM dp,#imm LDX #imm LDX dp LDX dp + Y LDX !abs LDY #imm LDY dp LDY dp + Y LDY !abs STA dp STA dp + X STA !abs STA !abs + Y STA [dp + X] STA [dp] + Y STA {X} STA {X}+ STX dp STX dp + Y STX !abs STY dp STY dp + X STY !abs TAX TAY TSPX TXA TXSP TYA 39 40 41 42 43 44 FEB. 2000 Ver 1.00 OPERATION FLAG NVGBHIZC Load accumulator A (M) N-----Z- X-register auto-increment : A (M), X X + 1 Load memory with immediate data : (M) imm Load X-register X (M) N-----Z- Load X-register Y (M) N-----Z- -------- Store accumulator contents in memory (M) A -------- X-register auto-increment : (M) A, X X + 1 Store X-register contents in memory (M) X -------- Store Y-register contents in memory (M) Y -------- Transfer accumulator contents to X-register : X A Transfer accumulator contents to Y-register : Y A Transfer stack-pointer contents to X-register : X SP Transfer X-register contents to accumulator : A X Transfer X-register contents to stack-pointer : SP X Transfer Y-register contents to accumulator : A Y Exchange X-register contents with accumulator : X A Exchange Y-register contents with accumulator : YA Exchange memory contents with accumulator (M) A Exchange X-register contents with Y-register : X Y N-----ZN-----ZN-----ZN-----ZN-----ZN-----Z--------------N-----Z-------- xvi GMS82512/16/24 HYUNDAI MicroElectronics 16-Bit Operation NO. MNENONIC OP CODE BYTE NO. CYCLE NO 1 2 ADDW dp CMPW dp 1D 5D 2 2 5 4 3 4 5 6 7 DECW INCW LDYA STYA SUBW BD 9D 7D DD 3D 2 2 2 2 2 6 6 5 5 5 dp dp dp dp dp FLAG NVGBHIZC OPERATION 16-bits add without carry : YA YA + (dp+1)(dp) Compare YA contents with memory pair contents : YA - (dp+1)(dp) Decrement memory pair : (dp+1)(dp) {(dp+1)(dp)} - 1 Increment memory pair : (dp+1)(dp) {(dp+1)(dp)} + 1 Load YA : YA (dp+1)(dp) Store YA : (dp+1)(dp) YA 16-bits substract without carry : YA YA - (dp+1)(dp) NV - - H - ZC N - - - - - ZC N-----ZN-----ZN-----Z-------NV - - H - ZC Bit Manipulation NO. MNENONIC OP CODE BYTE NO. CYCLE NO 1 2 3 4 AND1 M.bit AND1B M.bit BIT dp BIT !abs 8B 8B 0C 1C 3 3 2 3 4 4 4 5 Bit AND C-flag : C C (M.bit) Bit AND C-flag and NOT : C C (M.bit) Bit test A with memory : Z A M, N (M7), V (M6) 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 CLR1 dp.bit CLR1A A.bit CLRC CLRG CLRV EOR1 M.bit EOR1B M.bit LDC M.bit LDCB M.bit NOT1 M.bit OR1 M.bit OR1B M.bit SET1 dp.bit SETA1 A.bit SETC SETG STC M.bit TCLR1 !abs TSET1 !abs y1 2B 20 40 80 AB AB CB CB 4B 6B 6B x1 0B A0 C0 EB 5C 3C 2 2 1 1 1 3 3 3 3 3 3 3 2 2 1 1 3 3 3 4 2 2 2 2 5 5 4 4 5 5 5 4 2 2 2 6 6 6 Clear bit : (M.bit) “0” Clear A.bit : (A.bit) “0” Clear C-flag : C “0” Clear G-flag : G “0” Clear V-flag : V “0” Bit exclusive-OR C-flag : C C ⊕ (M.bit) Bit exclusive-OR C-flag and NOT : C C ⊕ (M.bit) Load C-flag : C (M.bit) Load C-flag with NOT : C (M.bit) Bit complement : (M.bit) (M.bit) Bit OR C-flag : C C V (M.bit) Bit OR C-flag and NOT : C C V (M.bit) Set bit : (M.bit) “1” Set A.bit : (A.bit) “1” Set C-flag : C “1” Set G-flag : G “1” Store C-flag : (M.bit) C Test and clear bits with A :A - (M), (M) (M) (A) Test and set bits with A :A - (M), (M) (M) V (A) xvii FLAG NVGBHIZC OPERATION -------C -------C MM - - - - Z ---------------------0 --0-----0--0---------C -------C -------C -------C --------------C -------C ---------------------1 --1-----------N-----ZN-----Z- FEB. 2000 Ver 1.00 HYUNDAI MicroElectronics GMS82512/16/24 Branch / Jump Operation NO. MNENONIC BYTE NO. 2 3 2 3 CYCLE NO 4/6 5/7 4/6 5/7 1 2 3 4 BBC BBC BBS BBS 5 BCC rel 50 2 2/4 6 7 8 9 10 11 12 BCS BEQ BMI BNE BPL BRA BVC rel rel rel rel rel rel rel D0 F0 90 70 10 2F 30 2 2 2 2 2 2 2 2/4 2/4 2/4 2/4 2/4 4 2/4 13 BVS rel B0 2 2/4 14 15 CALL !abs CALL [dp] 3B 5F 3 2 8 8 16 CBNE dp,rel CBNE dp + X, rel DBNE dp,rel DBNE Y,rel JMP !abs JMP [!abs] JMP [dp] PCALL FD 3 5/7 8D 3 6/8 AC 7B 1B 1F 3F 4F 3 2 3 3 2 2 5/7 4/6 3 5 4 6 17 18 19 20 21 22 23 A.bit,rel dp.bit,rel A.bit,rel dp.bit,rel OP CODE y2 y3 x2 x3 OPERATION Branch if bit clear : -------if(bit) = 0, then PC PC + rel Branch if bit clear : -------if(bit) = 1, then PC PC + rel Branch if carry bit clear : MM - - - - Z if(C) = 0, then PC PC + rel -------Branch if carry bit set : If (C) =1, then PC PC + rel -------Branch if equal : if (Z) = 1, then PC PC + rel -------Branch if munus : if (N) = 1, then PC PC + rel -------Branch if not equal : if (Z) = 0, then PC PC + rel -------Branch if not minus : if (N) = 0, then PC PC + rel -------Branch always : PC PC + rel Branch if overflow bit clear : -------If (V) = 0, then PC PC + rel Branch if overflow bit set : -------If (V) = 1, then PC PC + rel Subroutine call M(SP)(PCH), SPSP-1, M(SP)(PCL), SPSP-1 - - - - - - - if !abs, PC abs ; if [dp], PCL (dp), PCH (dp+1) Compare and branch if not equal ; -------If A ≠ (M), then PC PC + rel. Decrement and branch if not equal : if (M) ≠ 0, then PC PC + rel. Unconditional jump PC jump address TCALL n nA 1 8 -------- -------- U-page call : M(SP) (PCH), SP SP -1, M(SP) (PCL), SP SP -1, 24 FLAG NVGBHIZC PCL (upage), PCH "OFFH" Table call : M(SP) (PCH), SP SP -1, M(SP) (PCL), SP SP -1 -------- -------- PCL (Table vector L), PCH (Table vector H) Control Operation & etc. NO. 1 MNENONIC BRK OP CODE 0F BYTE NO. 1 CYCLE NO 8 OPERATION Software interrupt: B “1”, M(SP) (PCH), SP SP - 1, M(s) (PCL), SP S - 1, M(SP) PSW, 2 3 4 DI EI NOP FEB. 2000 Ver 1.00 60 E0 FF 1 1 1 3 3 2 SP SP - 1, PCL (0FFDEH), PCH (0FFDFH) Disable interrupts : I “0” Enable interrupts : I “1” No operation FLAG NVGBHIZC ---1-0-- -----0------1--------- xviii GMS82512/16/24 NO. MNENONIC 5 6 7 8 9 10 11 12 13 POP A POP X POP Y POP PSW PUSH A PUSH X PUSH Y PUSH PSW RET 14 RETI 15 xix STOP HYUNDAI MicroElectronics OP CODE 0D 2D 4D 6D 0E 2E 4E 6E 6F BYTE NO. 1 1 1 1 1 1 1 1 1 CYCLE NO 4 4 4 4 4 4 4 4 5 7F 1 6 00 1 3 FLAG NVGBHIZC OPERATION Pop from stack SP SP + 1, Reg. M(SP) -------(restored) Push to stack M(SP) Reg. SP SP - 1 -------- Return from subroutine : SP SP+1, PCL M(SP), SP SP+1, PCH M(SP) Return from interrupt : SP SP+1, PSW M(SP), SP SP+1,PCL M(SP), SP SP+1, PCH M(SP) Stop mode (halt CPU, stop oscillator) -------- (restored) -------- FEB. 2000 Ver 1.00 D. MASK ORDER SHEET MASK ORDER & VERIFICATION SHEET GMS82512 GMS82516 GMS82524 -HH Customer should write inside thick line box. 2. Device Information 1. Customer Information Company Name Package YYYY Order Date Tel: MM Mask Data Application DD Fax: 42SDIP 44MQFP Internet Hitel ( File Name ROM Size (bytes) Check Sum PFD Option 16K ( 24K ) (2 4K ) 20 00 H (1 6K ) 40 00 H (1 2K ) 50 00 H 3.0V .O TP file data 2.4V S et “F F H” in blanke d area Not use 7F F F H (Please check mark√ into 3. Marking Specification 08 or 16 or 24 HME GMS825XX-HH YYWW ) .OTP 12K E-mail address: Name & Signature: Chollian Customer’s logo GMS825XX-HH YYWW KOREA KOREA Customer logo is not required. If the customer logo must be used in the special mark, please submit a clean original of the logo. Customer’s part number 4. Delivery Schedule Date Customer sample Risk order Quantity YYYY MM DD YYYY MM DD HME Confirmation pcs pcs 5. ROM Code Verification Please confirm out verification data. YYYY Verification date: Check sum: Tel: E-mail address: Name & Signature: FEB., 03. 2000 MM DD YYYY Approval date: MM DD I agree with your verification data and confirm you to make mask set. Fax: Tel: Fax: E-mail address: Name & Signature: Semiconductor Group of Hyundai Electronics Industries Co., Ltd. )