HM17CM256 Preliminary Specification(0.3) 128XRGBX82 OUTPUT LCD DRIVER IC with built-in RAM ■ INSTRUCTION HM17CM256 is a dot-Matrix LCD drive IC with 82 commons (80 + 2 icons) and 384 segments (128 X RGB) drive ports for 256 colors driving. This IC stores the serial or parallel BIT data transferred by the microcomputer on the built-in RAM (81,920 bits for graphic + 2048 bits for icons) and generates the signals to drive LCD panel. Color graphic display is achieved by selecting 8 gray (256 color) levels out of 32 gray palettes independently. This IC is suitable for battery-operated system, hand-carrying information equipment by ensuring low power consumption, low power supply (1.7V ~ ) and a wide range of operating voltage. And 164 x 128 display (maximum) is possible with master and slave application. EXTERNAL SHAPE HM17CM256 ■ FEATURES 256 color bitmap LCD driver LCD drive outputs 128×RGB segments, 80 commons for graphic and 2 commons for icons Display RAM capacity 81,920bits (for graphic usage) 2,048bits (for icon usage) Gradation display 8 gradations can be selected from 32 gradations by PWM control Black/White display 82 × (128 × 3) bits display is possible 8 bit BUS interface directly connectable with 68 / 80 series CPU RAM data length 8 BIT / 16 BIT selectable Serial interface available Programmable duty / bias ratio with command Various instruction set display data read/write, display ON/OFF, positive/negative display, page address set display start line address set, partial display, bias select, column address set, all display ON/OFF, boosting selection, n line inversion mode read modified write, power save … Built-in voltage booster (programmable) : 7 × boosting Built-in voltage regulator Controllable contrast with built-in electric volume (128 steps) Low current consumption Logic supply 1.7V ~ 3.3V LCD drive supply 5.0V ~ 18.0V C-MOS silicon process Package bumped chip / bare chip 01/02/09 -1- HM17CM256 PAD LAYOUT SEGA125 SEGB125 SEGC125 SEGA126 SEGB126 SEGC126 SEGA127 SEGB127 SEGC127 DMY5(L) DMY5(R) DMY6(L) DMY6(R) SEGSA2 SEGSC3 COM40 COM66 DMY7(L) DMY7(R) 1 CLK FR FLM CL VSS(R) VSS(C) VSS(L) D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4/SPOL D3/SMODE D2/EXCS D1/SDA D0/SCL VDD(R) VDD(C) VDD(L) RD WR VSSA(R) VSSA(C) VSSA(L) SEL68 P/S VDDA M/S VSS(R) VSS(C) VSS(L) RS CSB RES VDD(R) VDD(C) VDD(L) TEST VSSA(R) VSSA(C) VSSA(L) COMI1 COM79 COM67 DMY0(R) DMY0(L) note 1) The (L) (R) (C) mark after port name is internally shorted. note 2) DMYport is opened electrically. chip center chip size : : chip thickness bump size bump pitch bump height bump material : : : : : X= 0µ µm, Y= 0µ µm with scribe lane : 19.84mm x 2.48mm , main chip : 19.74mm x 2.38mm µm ± 25µ µm 625µ µm x 32µ µm, 100µ µm x 80µ µm 100µ µm(Min) 50µ µm 18 ± 3µ Au align mark appearance and size a d µm a : 30µ µm b : 6µ µm c : 120µ µm d : 27µ d b a coordinates of align marks µm, Y= -1052µ µm) (X= - 9732µ µm, Y= -1052µ µm) (X= 9732µ b c -2- c HM17CM256 DMY4(L) DMY4(R) SEGA0 SEGB0 SEGC0 SEGA1 SEGB1 SEGC1 SEGA2 SEGB2 SEGC2 DMY3(R) DMY3(L) SEGSC1 Y SEGSA0 COMI0 COM0 X COM25 DMY2(R) DMY2(L) µm unit DMY1(R) DMY1(L) COM26 COM39 VOUT(R) VOUT(L) VLCD(R) VLCD(L) C6-(R) C6-(L) C6+(R) C6+(L) C5-(R) C5-(L) C5+(R) C5+(L) C4-(R) C4-(L) C4+(R) C4+(L) C3-(R) C3-(L) C3+(R) C3+(L) C2-(R) C2-(L) C2+(R) C2+(L) C1-(R) C1-(L) C1+(R) C1+(L) VSSH(R) VSSH(C) VSSH(L) VEE(R) VEE(C) VEE(L) VREF VBA(R) VBA(L) VREG(R) VREG(L) V4(R) V4(L) V3(R) V3(L) V2(R) V2(L) V1(R) V1(L) VLCD(R) VLCD(L) VSSH(R) VSSH(C) VSSH(L) OSC2 OSC1 All sorts of PAD open 1. open size (e, f)=(66, 86) 17~118 2. open size (e, f)=(18, 86) 1~16, 119~596 Original point mark of left picture is presented at the table of pad coordinates. -3- HM17CM256 ■ PAD coordinates 1 PAD No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 -4- Pin name X(µm) Y(µm) DMY0(L) DMY0(R) COM67 COM68 COM69 COM70 COM71 COM72 COM73 COM74 COM75 COM76 COM77 COM78 COM79 COMI1 VSSA(L) VSSA(C) VSSA(R) TEST VDD(L) VDD(C) VDD(R) RES CS RS VSS(L) VSS(C) VSS(R) M/S VDDA P/S SEL68 VSSA(L) VSSA(C) VSSA(R) WR RD VDD(L) VDD(C) VDD(R) D0/SCL D1/SDA D2/EXCS D3/SMODE D4/SPOL D5 D6 D7 D8 D9 -9625 -9575 -9525 -9475 -9425 -9375 -9325 -9275 -9225 -9175 -9125 -9075 -9025 -8975 -8925 -8875 -8670 -8500 -8330 -8171 -7990 -7820 -7650 -7480 -7310 -7140 -6970 -6800 -6630 -6448 -6290 -6120 -5950 -5780 -5610 -5440 -5270 -5111 -4930 -4760 -4590 -4420 -4250 -3995 -3740 -3570 -3400 -3230 -3060 -2890 -2720 -1068 -1068 -1068 -1068 -1068 -1068 -1068 -1068 -1068 -1068 -1068 -1068 -1068 -1068 -1068 -1068 -1068 -1068 -1068 -1068 -1068 -1068 -1068 -1068 -1068 -1068 -1068 -1068 -1068 -1068 -1068 -1068 -1068 -1068 -1068 -1068 -1068 -1068 -1068 -1068 -1068 -1068 -1068 -1068 -1068 -1068 -1068 -1068 -1068 -1068 -1068 PAD No. 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 chip size 19840µm x 2480µm ( chip center : 0µm x 0µm ) Pin name X (µm) Y (µm) PAD Pin name X (µm) Y (µm) No. D10 -2550 -1068 103 C4+(L) 6120 -1068 D11 -2380 -1068 104 C4+(R) 6290 -1068 D12 -2210 -1068 105 C4-(L) 6460 -1068 D13 -2040 -1068 106 C4-(R) 6630 -1068 D14 -1870 -1068 107 C5+(L) 6800 -1068 D15 -1700 -1068 108 C5+(R) 6970 -1068 VSS(L) -1472 -1068 109 C5-(L) 7140 -1068 VSS(C) -1340 -1068 110 C5-(R) 7310 -1068 VSS(R) -1190 -1068 111 C6+(L) 7480 -1068 CL -1020 -1068 112 C6+(R) 7650 -1068 FLM -850 -1068 113 C6-(L) 7820 -1068 FR -680 -1068 114 C6-(R) 7990 -1068 CLK -510 -1068 115 VLCD(L) 8160 -1068 OSC1 -340 -1068 116 VLCD(R) 8330 -1068 OSC2 -107 -1068 117 VOUT(L) 8500 -1068 VSSH(L) 74 -1068 118 VOUT(R) 8670 -1068 VSSH(C) 196 -1068 119 COM39 8875 -1068 VSSH(R) 318 -1068 120 COM38 8925 -1068 VLCD(L) 510 -1068 121 COM37 8975 -1068 VLCD(R) 680 -1068 122 COM36 9025 -1068 V1(L) 850 -1068 123 COM35 9075 -1068 V1(R) 1020 -1068 124 COM34 9125 -1068 V2(L) 1190 -1068 125 COM33 9175 -1068 V2(R) 1360 -1068 126 COM32 9225 -1068 V3(L) 1530 -1068 127 COM31 9275 -1068 V3(R) 1700 -1068 128 COM30 9325 -1068 V4(L) 1870 -1068 129 COM29 9375 -1068 V4(R) 2040 -1068 130 COM28 9425 -1068 VREG(L) 2210 -1068 131 COM27 9475 -1068 VREG(R) 2380 -1068 132 COM26 9525 -1068 VBA(L) 2550 -1068 133 DMY1(L) 9575 -1068 VBA(R) 2693 -1068 134 DMY1(R) 9625 -1068 VREF 2879 -1068 135 DMY2(L) 9726 -900 VEE(L) 3060 -1068 136 DMY2(R) 9726 -850 VEE(C) 3230 -1068 137 COM25 9726 -800 VEE(R) 3400 -1068 138 COM24 9726 -750 VSSH(L) 3570 -1068 139 COM23 9726 -700 VSSH(C) 3740 -1068 140 COM22 9726 -650 VSSH(R) 3910 -1068 141 COM21 9726 -600 C1+(L) 4102 -1068 142 COM20 9726 -550 C1+(R) 4250 -1068 143 COM19 9726 -500 C1-(L) 4420 -1068 144 COM18 9726 -450 C1-(R) 4590 -1068 145 COM17 9726 -400 C2+(L) 4760 -1068 146 COM16 9726 -350 C2+(R) 4930 -1068 147 COM15 9726 -300 C2-(L) 5100 -1068 148 COM14 9726 -250 C2-(R) 5270 -1068 149 COM13 9726 -200 C3+(L) 5440 -1068 150 COM12 9726 -150 C3+(R) 5610 -1068 151 COM11 9726 -100 C3-(L) 5780 -1068 152 COM10 9726 -50 C3-(R) 5950 -1068 153 COM9 9726 0 HM17CM256 ■ PAD coordiantes 2 PAD No. 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 Pin name X(µm) Y(µm) COM8 COM7 COM6 COM5 COM4 COM3 COM2 COM1 COM0 COMI0 SEGSA0 SEGSB0 SEGSC0 SEGSA1 SEGSB1 SEGSC1 DMY3(L) DMY3(R) DMY4(L) DMY4(R) SEGA0 SEGB0 SEGC0 SEGA1 SEGB1 SEGC1 SEGA2 SEGB2 SEGC2 SEGA3 SEGB3 SEGC3 SEGA4 SEGB4 SEGC4 SEGA5 SEGB5 SEGC5 SEGA6 SEGB6 SEGC6 SEGA7 SEGB7 SEGC7 SEGA8 SEGB8 SEGC8 SEGA9 SEGB9 SEGC9 SEGA10 9726 9726 9726 9726 9726 9726 9726 9726 9726 9726 9726 9726 9726 9726 9726 9726 9726 9726 9675 9625 9575 9525 9475 9425 9375 9325 9275 9225 9175 9125 9075 9025 8975 8925 8875 8825 8775 8725 8675 8625 8575 8525 8475 8425 8375 8325 8275 8225 8175 8125 8075 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 PAD No. 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 chip size 19840µm x 2480µm ( chip center : 0µm x 0µm ) Pin name X (µm) Y (µm) PAD Pin name X (µm) Y (µm) No. SEGB10 8025 1068 256 SEGB27 5475 1068 SEGC10 7975 1068 257 SEGC27 5425 1068 SEGA11 7925 1068 258 SEGA28 5375 1068 SEGB11 7875 1068 259 SEGB28 5325 1068 SEGC11 7825 1068 260 SEGC28 5275 1068 SEGA12 7775 1068 261 SEGA29 5225 1068 SEGB12 7725 1068 262 SEGB29 5175 1068 SEGC12 7675 1068 263 SEGC29 5125 1068 SEGA13 7625 1068 264 SEGA30 5075 1068 SEGB13 7575 1068 265 SEGB30 5025 1068 SEGC13 7525 1068 266 SEGC30 4975 1068 SEGA14 7475 1068 267 SEGA31 4925 1068 SEGB14 7425 1068 268 SEGB31 4875 1068 SEGC14 7375 1068 269 SEGC31 4825 1068 SEGA15 7325 1068 270 SEGA32 4775 1068 SEGB15 7275 1068 271 SEGB32 4725 1068 SEGC15 7225 1068 272 SEGC32 4675 1068 SEGA16 7175 1068 273 SEGA33 4625 1068 SEGB16 7125 1068 274 SEGB33 4575 1068 SEGC16 7075 1068 275 SEGC33 4525 1068 SEGA17 7025 1068 276 SEGA34 4475 1068 SEGB17 6975 1068 277 SEGB34 4425 1068 SEGC17 6925 1068 278 SEGC34 4375 1068 SEGA18 6875 1068 279 SEGA35 4325 1068 SEGB18 6825 1068 280 SEGB35 4275 1068 SEGC18 6775 1068 281 SEGC35 4225 1068 SEGA19 6725 1068 282 SEGA36 4175 1068 SEGB19 6675 1068 283 SEGB36 4125 1068 SEGC19 6625 1068 284 SEGC36 4075 1068 SEGA20 6575 1068 285 SEGA37 4025 1068 SEGB20 6525 1068 286 SEGB37 3975 1068 SEGC20 6475 1068 287 SEGC37 3925 1068 SEGA21 6425 1068 288 SEGA38 3875 1068 SEGB21 6375 1068 289 SEGB38 3825 1068 SEGC21 6325 1068 290 SEGC38 3775 1068 SEGA22 6275 1068 291 SEGA39 3725 1068 SEGB22 6225 1068 292 SEGB39 3675 1068 SEGC22 6175 1068 293 SEGC39 3625 1068 SEGA23 6125 1068 294 SEGA40 3575 1068 SEGB23 6075 1068 295 SEGB40 3525 1068 SEGC23 6025 1068 296 SEGC40 3475 1068 SEGA24 5975 1068 297 SEGA41 3425 1068 SEGB24 5925 1068 298 SEGB41 3375 1068 SEGC24 5875 1068 299 SEGC41 3325 1068 SEGA25 5825 1068 300 SEGA42 3275 1068 SEGB25 5775 1068 301 SEGB42 3225 1068 SEGC25 5725 1068 302 SEGC42 3175 1068 SEGA26 5675 1068 303 SEGA43 3125 1068 SEGB26 5625 1068 304 SEGB43 3075 1068 SEGC26 5575 1068 305 SEGC43 3025 1068 SEGA27 5525 1068 306 SEGA44 2975 1068 -5- HM17CM256 PAD coordinates 3 PAD No. 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 -6- Pin name X(µm) Y(µm) SEGB44 SEGC44 SEGA45 SEGB45 SEGC45 SEGA46 SEGB46 SEGC46 SEGA47 SEGB47 SEGC47 SEGA48 SEGB48 SEGC 48 SEGA49 SEGB49 SEGC49 SEGA50 SEGB50 SEGC50 SEGA51 SEGB51 SEGC51 SEGA52 SEGB52 SEGC52 SEGA53 SEGB53 SEGC53 SEGA54 SEGB54 SEGC54 SEGA55 SEGB55 SEGC55 SEGA56 SEGB56 SEGC56 SEGA57 SEGB57 SEGC57 SEGA58 SEGB58 SEGC58 SEGA59 SEGB59 SEGC59 SEGA60 SEGB60 SEGC60 SEGA61 2925 2875 2825 2775 2725 2675 2625 2575 2525 2475 2425 2375 2325 2275 2225 2175 2125 2075 2025 1975 1925 1875 1825 1775 1725 1675 1625 1575 1525 1475 1425 1375 1325 1275 1225 1175 1125 1075 1025 975 925 875 825 775 725 675 625 575 525 475 425 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 PAD No. 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 chip size 19840µm x 2480µm (chip center : 0µm x 0µm ) Pin name X (µm) Y (µm) PAD Pin name X (µm) Y (µm) No. SEGB61 375 1068 409 SEGB78 -2175 1068 SEGC61 325 1068 410 SEGC78 -2225 1068 SEGA62 275 1068 411 SEGA79 -2275 1068 SEGB62 225 1068 412 SEGB79 -2325 1068 SEGC62 175 1068 413 SEGC79 -2375 1068 SEGA63 125 1068 414 SEGA80 -2425 1068 SEGB63 75 1068 415 SEGB80 -2475 1068 SEGC63 25 1068 416 SEGC80 -2525 1068 SEGA64 -25 1068 417 SEGA81 -2575 1068 SEGB64 -75 1068 418 SEGB81 -2625 1068 SEGC64 -125 1068 419 SEGC81 -2675 1068 SEGA65 -175 1068 420 SEGA82 -2725 1068 SEGB65 -225 1068 421 SEGB82 -2775 1068 SEGC65 -275 1068 422 SEGC82 -2825 1068 SEGA66 -325 1068 423 SEGA83 -2875 1068 SEGB66 -375 1068 424 SEGB83 -2925 1068 SEGC66 -425 1068 425 SEGC83 -2975 1068 SEGA67 -475 1068 426 SEGA84 -3025 1068 SEGB67 -525 1068 427 SEGB84 -3075 1068 SEGC67 -575 1068 428 SEGC84 -3125 1068 SEGA68 -625 1068 429 SEGA85 -3175 1068 SEGB68 -675 1068 430 SEGB85 -3225 1068 SEGC68 -725 1068 431 SEGC85 -3275 1068 SEGA69 -775 1068 432 SEGA86 -3325 1068 SEGB69 -825 1068 433 SEGB86 -3375 1068 SEGC69 -875 1068 434 SEGC86 -3425 1068 SEGA70 -925 1068 435 SEGA87 -3475 1068 SEGB70 -975 1068 436 SEGB87 -3525 1068 SEGC70 -1025 1068 437 SEGC87 -3575 1068 SEGA71 -1075 1068 438 SEGA88 -3625 1068 SEGB71 -1125 1068 439 SEGB88 -3675 1068 SEGC71 -1175 1068 440 SEGC88 -3725 1068 SEGA72 -1225 1068 441 SEGA89 -3775 1068 SEGB72 -1275 1068 442 SEGB89 -3825 1068 SEGC72 -1325 1068 443 SEGC89 -3875 1068 SEGA73 -1375 1068 444 SEGA90 -3925 1068 SEGB73 -1425 1068 445 SEGB90 -3975 1068 SEGC73 -1475 1068 446 SEGC90 -4025 1068 SEGA74 -1525 1068 447 SEGA91 -4075 1068 SEGB74 -1575 1068 448 SEGB91 -4125 1068 SEGC74 -1625 1068 449 SEGC91 -4175 1068 SEGA75 -1675 1068 450 SEGA92 -4225 1068 SEGB75 -1725 1068 451 SEGB92 -4275 1068 SEGC75 -1775 1068 452 SEGC92 -4325 1068 SEGA76 -1825 1068 453 SEGA93 -4375 1068 SEGB76 -1875 1068 454 SEGB93 -4425 1068 SEGC76 -1925 1068 455 SEGC93 -4475 1068 SEGA77 -1975 1068 456 SEGA94 -4525 1068 SEGB77 -2025 1068 457 SEGB94 -4575 1068 SEGC77 -2075 1068 458 SEGC94 -4625 1068 SEGA78 -2125 1068 459 SEGA95 -4675 1068 HM17CM256 ■ PAD coordinates 4 PAD No. 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 Pin name X(µm) Y(µm) SEGB95 SEGC95 SEGA96 SEGB96 SEGC96 SEGA97 SEGB97 SEGC97 SEGA98 SEGB98 SEGC98 SEGA99 SEGB99 SEGC99 SEGA100 SEGB100 SEGC100 SEGA101 SEGB101 SEGC101 SEGA102 SEGB102 SEGC102 SEGA103 SEGB103 SEGC103 SEGA104 SEGB104 SEGC104 SEGA105 SEGB105 SEGC105 SEGA106 SEGB106 SEGC106 SEGA107 SEGB107 SEGC107 SEGA108 SEGB108 SEGC108 SEGA109 SEGB109 SEGC109 SEGA110 SEGB110 SEGC110 SEGA111 SEGB111 SEGC111 SEGA112 -4725 -4775 -4825 -4875 -4925 -4975 -5025 -5075 -5125 -5175 -5225 -5275 -5325 -5375 -5425 -5475 -5525 -5575 -5625 -5675 -5725 -5775 -5825 -5875 -5925 -5975 -6025 -6075 -6125 -6175 -6225 -6275 -6325 -6375 -6425 -6475 -6525 -6575 -6625 -6675 -6725 -6775 -6825 -6875 -6925 -6975 -7025 -7075 -7125 -7175 -7225 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 PAD No. 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 Pin name SEGB112 SEGC112 SEGA113 SEGB113 SEGC113 SEGA114 SEGB114 SEGC114 SEGA115 SEGB115 SEGC115 SEGA116 SEGB116 SEGC116 SEGA117 SEGB117 SEGC117 SEGA118 SEGB118 SEGC118 SEGA119 SEGB119 SEGC119 SEGA120 SEGB120 SEGC120 SEGA121 SEGB121 SEGC121 SEGA122 SEGB122 SEGC122 SEGA123 SEGB123 SEGC123 SEGA124 SEGB124 SEGC124 SEGA125 SEGB125 SEGC125 SEGA126 SEGB126 SEGC126 SEGA127 SEGB127 SEGC127 DMY5(L) DMY5(R) DMY6(L) DMY6(R) chip size 19840µm x 2480µm (chip center : 0µm x 0µm ) X (µm) Y (µm) PAD Pin name X (µm) Y (µm) No. -7275 1068 562 SEGSA2 -9726 800 -7325 1068 563 SEGSB2 -9726 750 -7375 1068 564 SEGSC2 -9726 700 -7425 1068 565 SEGSA3 -9726 650 -7475 1068 566 SEGSB3 -9726 600 -7525 1068 567 SEGSC3 -9726 550 -7575 1068 568 COM40 -9726 500 -7625 1068 569 COM41 -9726 450 -7675 1068 570 COM42 -9726 400 -7725 1068 571 COM43 -9726 350 -7775 1068 572 COM44 -9726 300 -7825 1068 573 COM45 -9726 250 -7875 1068 574 COM46 -9726 200 -7925 1068 575 COM47 -9726 150 -7975 1068 576 COM48 -9726 100 -8025 1068 577 COM49 -9726 50 -8075 1068 578 COM50 -9726 0 -8125 1068 579 COM51 -9726 -50 -8175 1068 580 COM52 -9726 -100 -8225 1068 581 COM53 -9726 -150 -8275 1068 582 COM54 -9726 -200 -8325 1068 583 COM55 -9726 -250 -8375 1068 584 COM56 -9726 -300 -8425 1068 585 COM57 -9726 -350 -8475 1068 586 COM58 -9726 -400 -8525 1068 587 COM59 -9726 -450 -8575 1068 588 COM60 -9726 -500 -8625 1068 589 COM61 -9726 -550 -8675 1068 590 COM62 -9726 -600 -8725 1068 591 COM63 -9726 -650 -8775 1068 592 COM64 -9726 -700 -8825 1068 593 COM65 -9726 -750 -8875 1068 594 COM66 -9726 -800 -8925 1068 595 DMY7(L) -9726 -850 -8975 1068 596 DMY7(R) -9726 -900 -9025 1068 -9075 1068 -9125 1068 -9175 1068 -9225 1068 -9275 1068 -9325 1068 -9375 1068 -9425 1068 -9475 1068 -9525 1068 -9575 1068 -9625 1068 -9675 1068 -9726 900 -9726 850 -7- HM17CM256 COM79 COMI1 COMI0 COM0 SEGSA2 SEGSB2 SEGSC2 SEGSA3 SEGSB3 SEGSC3 VDDA SEGA127 SEGB127 SEGC127 VSSA SEGA0 SEGB0 SEGC0 SEGSA0 SEGSB0 SEGSC0 SEGSA1 SEGSB1 SEGSC1 BLOCK DIAGRAM VSSH VSS VDD VLCD, V1 ~V4 D D 5 C1+ C1C2+ C2C3+ C3C4+ C4C5+ C5C6+ C6VOUT VEE VREF VBA VREG R ) *E !" , - . / 0 1 2 , 1 3 1 4 1 5 + + + (F & 6 , , 4 1 5 7 () D () !" () () * ) ) ) ) " " 6 8 9 : ; : < = > = > 7 ; ? - 3 9 & " ( " ' ' ' ' #$% ' * * * * !" !& * * " " ) * - @ A B , 1 3 1 4 1 5 * " " ) ' #$ % " 6 / C 4 1 5 7 #$ G ' & !& ' #$ " ) " " * " 6 8 9 : ; 9 = > = > 7 ; ? - 3 9 ) G & " * ' ' ' ' ' D15 D14 D13 R FR D12 D11 FLM CL D10 $ D9 % CLK D8 S " OSC2 T T D7 ' OSC1 D6 D5 D4/SPOL D3/SMODE D2/EXCS INTERNAL BUS D1/SDA D0/SCL H CS -8- RS M/S I J RD K L M N WR O P Q H N P/S SEL68 RES TEST HM17CM256 ■ POWER CIRCUIT BLOCK DIAGRAM W R VLCD V W V D VBA V1 W VREG V VREF U V2 W V V W V E.V.R. V3 W V W V V4 W V D C1+ C1C2+ C2C3+ C3C4+ C4C5+ C5C6+ C6VEE D D VOUT -9- HM17CM256 ■ PIN DESCRIPTION 1 No. 21,22,23, 39,40,41 27,28,29, 58,59,60 67,68,69, 88,89,90 31 NAME VDD I/O supply VSS supply VSSH supply VDDA supply 17,18,19, 34,35,36 VSSA supply 70,71,115,116 72,73 74,75 76,77 78,79 VLCD V1 V2 V3 V4 supply/O 91,92 93,94 95,96 97,98 99,100 101,102 103,104 105,106 107,108 109,110 111,112 113,114 82,83 84 85,86,87 C1+ C1C2+ C2C3+ C3C4+ C4C5+ C5C6+ C6VBA VREF VEE O This pin is internally connected to VDD pin. This pin is used when the voltage of each input pin is fixed to VDD level. caution) Do not use to main power pin. This pin is internally connected to VSS pin. This pin is used when the voltage of each input pin is fixed to VSS level. caution) Do not use to main power pin. LCD driver supply voltage • LCD driver power supply port when external power supply is used. When external power is used, voltages should have following relations. VSS<V4<V3<V2<V1<VLCD • VLCD, V1~V4 voltages are generated by voltage booster at master mode operation under power circuit ON. • When internal power supply is used, capacitors must be connected between VLCD, V1~V4 and VSS. Capacitor connection pin for voltage converter O Capacitor connection pin for voltage converter O Capacitor connection pin for voltage converter O Capacitor connection pin for voltage converter O Capacitor connection pin for voltage converter O Capacitor connection pin for voltage converter 117,118 80,81 24 VOUT VREG - 10 - RES O I supply supply/O O I FUNCTION Power pin for logic GND pin for logic High voltage GND pin Reference voltage output pin for voltage regulating. Reference voltage input pin for voltage regulating. Voltage supply pin for boosted voltage generation. VDD level at normal status. Internal DC/DC converter output pin. Voltage regulator output pin. Reset pin Reset when RES= “L” HM17CM256 ■ PIN DESCRIPTION 2 No. 42 NAME D0/SCL I/O I/O 43 D1/SDA I/O 44 D2/EXCS I/O 45 D3/SMODE I/O 46 D4/SPOL I/O 47,48,49 D5,D6,D7 I/O 50,51,52,53 54,55,56,57 D8,D9,D10,D11, D12,D13,D14,D15 I/O 25 26 CS RS I I FUNCTION When parallel interface is selected (P/S=”H”), data line is connected to MPU data bus with 8bit bi-directional bus • When serial interface is selected (P/S=”L”), D0 and D1(SCL, SDA) are used as serial interface pins and various sets are taken by serial interface use mode of D2, D3, D4. SDA : serial data input pin SCL : data transfer clock EXCS : extension chip selection I/O pin SMODE : serial transfer mode setting input pin SPOL : RS polarity selection pin when 3 line serial interface is selected. SDA data is shifted at the rising edge of SCL Internal serial/parallel conversion into 8-bit data occurs at the th rising edge of 8 clock of SCL. Set to “L” after data transfer or during non-access time • Connect to data bus to MPU with 8bit bi-directional bus. Used as MSB 8bit data bus in the 16bit data RAM transfer mode Set to “L” or “H” when not used. Chip selection pin. Data in-out is possible when CS = “L”. Input data selection pin. Distinguish bus data from CPU whether instruction or display data. RS class 38 37 RD (E) WR (R/W) I I H instruction L display data <80 series CPU interface (P/S=”H”,SEL68=”L”)> RD signal connection port of 80 series CPU. Data bus goes to output state at RD = “L”. <68 series CPU interface (P/S=”H”,SEL68=”H”)> Enable signal connection port of 68 series CPU. Active status when this signal is at “H”. <80 series CPU interface (P/S=”H”,SEL68=”L”)> WR signal connection port of 80 series CPU. Active at “L” and data bus signal is taken at the rising edge of WR. <68 series CPU interface (P/S=”H”,SEL68=”H”)> Read write control signal , R/W connection port of 68series MPU. R/W status H read L write - 11 - HM17CM256 ■ PIN DESCRIPTION 3 No. 33 NAME SEL68 I/O I 32 P/S I FUNCTION CPU interface selection port SEL68 H L status 68 series 80 series Serial / parallel interface selection port P/S chip select data/ command data read/ write serial clock H CS RS D0~D7 RD, WR - L CS RS SDA(D1) write only SCL (D0) X P/S = “L” :serial interface selection ,D15~D5 goes to Hi-Z - 12 - state. Fix RD, WR to “H” or “L”. Test port. Fix to ”L”. Latching signal pin of display data. Display line counter is counted up at the rising edge and LCD driving signal is generated at the falling edge M/S status CL H master output L slave input 20 TEST I 61 CL I/O 62 FLM I/O LCD synchronous signal (first line marker) I/O pin. Display start address is loaded in the display line counter at FLM = “H”. M/S status FLM H master output L slave input 63 FR I/O Alternated display signal of LCD driver output I/O pin. M/S status FR H master output L slave input 30 M/S I Master / slave mode selection pin M/S mode oscillator Power supply H master enable enable L slave disable disable Fix to “H” or “L” according to operating mode. HM17CM256 PIN DESCRIPTION 4 No. 174~557 NAME SEGA0~SEGA127, SEGB0~SEGB127, SEGC0~SEGC127 I/O O FUNCTION Segment drive port Segment output from display RAM data mode Non-lighted lighted Normal 0 1 Reverse 1 0 The output level is selected among VLCD, V2, V3, VSS by the combination of FR signal and RAM data (B/W mode) FR signal display RAM data 164~169, 562~567 162~137, 132~119, 568~594, 3~15 SEGSA0~SEGSA3, SEGSB0~SEGSB3, SEGSC0~SEGSC3 COM0~COM79 O O Normal mode V2 VLCD V3 VSS Reverse mode VLCD V2 VSS V3 Dummy segment driver output Located at both side of segment drivers, used for edge display. Common driver output The output level is selected among VLCD, V1, V4 and VSS by the combination of FR and scan data. data H L H L 163 16 65, 66 COMI0 COMI1 OSC1, OSC2 O O I O 64 CLK I/O FR H H L L Output level VSS V1 VLCD V4 Common drive output for icon display Common drive output for icon display External reference clock input pin Open when using internal oscillator clock or used as slave device. In this case, OSC1 goes to VSS level. Connect external oscillating source to OSC1 port or connect resistor between OSC1 and OSC2 when using external oscillator. Input / output pin for display timing clock Output clock from master device is applied to slave chip through CLK pin when used as master / slave mode. M/S H L mode master slave CLK output input* *input from master chip’s CLK output (port No. 1,2,133,134,135,136,170,171,172,173,558,559,560,561,595,596 is dummy port.) - 13 - HM17CM256 ■ FUNCTION DESCRIPTION (1) CPU interface (1-1) Selection of interface type HM17CM256 receives data through 8 bit parallel I/O(D0~D7) 16 bit parallel I/O(D0~D15) or divided into serial data input (SDA, SCL). Parallel or serial selection is decided by P/S pin setting. Parallel or serial selection is possible as following table. Reading out from internal register or RAM is not possible at serial interface mode. Y TABLE P/S Type CS RS RD WR SEL68 H Parallel input CS RS RD WR SEL68 L Serial input - - RS CS caution 1) “-” mark item : Fix to ”H” or ”L” SDA SCL data D0~D7 (D0~D15) SDA SCL - (1-2) Parallel input In the parallel interface mode selected by P/S port, parallel data is transferred from the 8bit/16bit MPU through data bus. SEL68 port setting makes 80-series or 68-series interface selection TABLE SEL68 CPU type CS RS RD WR data H 68 series CPU CS RS E R/W D0~D7 (D0~D15) L 80 series CPU CS RS RD WR D0~D7 (D0~D15) (1-3) Data identification Combinations of RS, RD, and WR signals identify contents of 8bit data bus. TABLE 68 series RS 1 1 0 0 R/W 1 0 1 0 80 series FUNCTION RD 0 1 0 1 WR 1 0 1 0 Read out from internal register Write in to internal register Read display data Write display data (1-4) Serial interface 2 types of serial interface (3 line type mode, 4 line type mode) are available by selecting SMODE pin. TABEL SMODE H L - 14 - Serial interface mode 3 line type 4 line type HM17CM256 (1-5) 4 line type serial interface 4 line serial interface by SDA and SCL is possible at chip selection state (CS=”L”) When chip is not selected, internal shift register and counter are reset to initial value. Serial input data from SDA are latched at the rising edge of serial clock (SCL) in the sequence of D7, , D1, D0 and converted into 8-bit parallel data at the rising edge of 8th serial clock. Serial data (SDA) are identified to display data or command by RS input. Z TABLE RS H L Data contents command Display data Make serial clock (SCL) “L” at the non-access period and after 8bit data transfer. SDA and SCL signals are sensitive to external noise. To prevent mal-function, chip selector state should be released (CS = “H”) after 8bit data transfer as shown in the following figure. CS VALID RS SDA D7 D6 D5 D4 D3 D2 D1 D0 1 2 3 4 5 6 7 8 SCL 4 line serial interface (1-6) 3 line type serial interface 3-line serial interface by SDA and SCL is possible at chip selection state (CS=”L”) When chip is not selected, internal shift register and counter are reset to initial value. Input data from SDA are latched at the rising edge of serial clock (SCL) in the sequence of RS, D7 , ,D1, D0, and converted to 8bit parallel data and handled at the rising edge of 9th serial clock. Serial data (SDA) are identified to display data or command by RS bit data at the rising of first serial clock (SCL) and state of command data bit polarity shift pin (SPOL). [ TABLE RS L H SPOL=L Data identify Display data command RS L H SPOL=H Data identify command Display data - 15 - HM17CM256 Serial clock (SCL) should go to “L” at the non-access period and after 9bit data transfer. SDA and SCL signals are sensitive to external noise. To prevent miss operation chip selector state should be released (CS = “H”) after 9bit data transfer as shown in the following figure. CS SDA RS D7 D6 D5 D4 1 2 3 4 5 D3 D2 D1 D0 SCL 6 7 8 9 3line serial interface (1-7) One systematization of CS when serial interface is selected In the multi-chip operation (master/slave) mode with serial I/F connection, one CS signal controls two chips to reduce control signal. Connect extended chip selection port (EXCS) of master chip to EXCS port ( input at slave device and output at master device mode ) of slave chip. When EXCS is “L”, master chip cannot accept command except for EXCS control; at this point, only slave chip can be controlled. Slave device control is possible when CS = “L” period within EXCS = “L” state. RS SCL SDA CS CS SDA SCL RS M/S P/S SMODE SPOL EXCS CS SDA SCL RS M/S P/S SMODE SPOL EXCS - 16 - EXCS: expand CS signal ( input port ) Master device : output port Slave device : input port (MASTER) P/S: parallel . serial selection port (input port) P/S=0: serial I/F P/S=1: parallel I/F M/S: master . slave selection port (input port) M/S=0: slave operation M/S=1: master operation (SLAVE) SMODE: serial I/Fmode selection port (input port) SMODE=0: 4 line serial I/F SMODE=1: 3 line serial I/F SPOL:command data bit polarity selection port (input port) At 3 line serial I/F mode Access display RAM at SPOL=0:RS=0 Access display RAM at SPOL=1:RS=1 HM17CM256 (2) DDRAM and internal register access DDRAM and internal register are accessed by data bus D0~D7(D0~D15), chip select pin (CS), DDRAM / register select pin (RS), read / write control pin (RD) or WR pin. When CS=“H”, it is in non-selective state and DDRAM and internal register access is impossible. During access, Set CS=“L”. Access selection to DDRAM or internal register is controlled by RS input. TABLE RS L H Data contents Display RAM data Internal command register Write process starts after address setting and then the data on the 8bit data bus D0~D7 or 16bit data bus D0~D15 will be written in by CPU. The data is written at the rising edge of WR (80 series) or falling edge of E (68 series). Internally, bus holder data is processed to data bus and data are written to bus holder from CPU until next cycle. After address setting, data of assigned address are read at the 1st and 3rd clock, which means it needs dummy read at the 2nd clock. There are rules at reading data out of display RAM, after address setting, the data of assigned address is shown directly after the end of the read command, so pay attention that assigned data is available at 2nd timing step. In other words, 1 cycle dummy read is needed after address setting and write cycle. DATA WRITE IN OPERATION D0~D15 n n+1 n+2 n+3 n+4 WR \]^ n BUS HOLDER _` n+1 n+2 n+3 n+4 b ]a WR DATA READ OUT OPERATION WR D0~D7(D0~D15) n address set n dummy read n n+1 data read n address data read n+1 address n+2 data read n+2 address RD caution) When 16 bit mode, do write in and read out by 16 bit not only RAM access but also command setting. - 17 - HM17CM256 (3) Read out of internal register Read out is possible not only from DDRAM, but also from the internal register. read (0~FH) are allocated in each register. Read out is executed after writing read-out register address to internal register. Addresses for WR D0~D7 M m N n Address set for register read Internal register read Address set for register read Internal register read RD Internal register read out sequence RE register set:100 Internal register read address set set RE of register to be read out Internal register read When register is read out, upper 4 bit data are “1111”. Non-used bits of active registers are “0”. When non-used registers are read out, upper 4 bits are “1111” and lower 4 bits are “0000”. (4) 16 bit data access to DDRAM It is possible to write in DDRAM by 16-bits access with the data of 16 bits data bus D0~D15. 16 bits data access mode is possible by setting the value of WLS register to “1”. TABEL WLS L H Acess mode 8 bit 16 bit Each command should be set to 8-bits(D0~D7) as well as to 16-bit access mode. 16-bit access is available at display RAM access. (5) Display start line register When displaying the DDRAM data, it is the contents of Y address register that is corresponding to display start line. The data of Y address is displayed on the display start line depending on the value of the shift command register and the display start line register. The data of this register are preset to the display line counter per FLM signal transition. Line counter is counted up in synchronization with CL input and generates line address that read out 384bit data from DDRAM to LCD driver circuit. - 18 - HM17CM256 (6) DDRAM addressing This IC includes display memory Bit mapped that is composed of 1024 bit of X direction (8bit×128) and 82bit of Y direction. In gray mode, neighboring 3-bit data or 2-bit data are displayed by segment driver with 8 grays or 4 grays, respectively. 3 outputs of segment driver compose 1 pixel of RGB and 128×82 pixels are displayed with 256 color (8gray×8gray×4gray). Address area of X direction is varied according to accessed data length. The area of X direction is 0H~7FH at 8bit access mode and 0H~3FH at 16bit access mode. • 8BIT access X-address 0H 0H 8bit 1H 8bit 7EH 8bit 7FH 8bit 51H 8bit 8bit 8bit 8bit Y-address • 16 BIT access X-address 0H 0H 16bit 3FH 16bit 51H 16bit 16bit Y-address In the Black & white mode, the MSBs of 3 bit and 2 bit corresponding with RGB are used to display data. And so, 128x82 dot gray display or 384 x 82 B/W mode display is possible. Display RAM is accessed with X address and Y address from CPU by 8 bit or 16 bit unit. X address and Y address can be increased automatically by setting status of control register. The address is increased per every read and write of display RAM by CPU. ( Please see detail description at command function.) X direction is selected by X address and Y direction is selected by Y address. Please do not set the address on non-effective area and it is forbidden to set address on outside area in each case. 384bit display data of Y direction are read out to display latch at rising edge of CL signal per 1 line cycle and this data comes out from display latch at falling edge of CL signal. Display start line address register is preset to line counter at “H” state of FLM signal which changes per one frame cycle and the address is counted up with synchronized CL input. Display line address counter is synchronized by timing signals of LCD driver, and it operates independently with X, Y address counters. - 19 - HM17CM256 (7) Window address assign of display RAM This IC can be accessed to display RAM by window area designation in addition to access to display RAM designated by X and Y address. Through address space of all display address, specific area of RAM can be accessed by designated two points. The start point of two point addresses is assigned by normal X address and Y address register and the end point of them is done by X end address and Y end address register value. Designated inner addresses depend on WLS bit. Read modified write action can be taken by AIM=“1”. In case of using window area accessing mode, you must set start point X address, Y address in sequence and end point X address, Y address in sequence after executing Win command (WIN=“1”, auto increase mode AXI=“1”, AYI=“1”) and then access to Display RAM. And set start point and end point not to be designated to access the outside of available address area. Address set value should be taken to set AX ≤ EX ( end point of X address ) and AY≤EY ( end point of Y address ). X direction Y direction (X, Y) address designation Window display area end address designation (X, Y) All display RAM area (8) display RAM data and LCD Display RAM data related with one dot of LCD is dependent on REV register. reverse display by REV register are set up as follows. TABLE REV (9) Display L normal H reverse Normal display and RAM data 0 1 0 1 Segment display output order/reverse set up The order of display outputs, SEGA0, SEGB0, SEGC0 to SEGA127, SEGB127, and can be reversed by reversing access to display RAM from MPU by using REF register, lessen the limitation in placing IC when assembling an LCD panel module. - 20 - palette C palette B palette A SEGB1 SEGC1 d d d d palette A d SEGC127 e D2 D1 D0 e e D3 X address / bit / segment assign X=01H X=7EH X=7EH X=01H e SEGB127 d palette B d SEGC127 SEGB127 palette C palette B palette A d SEGA127 d palette C D4 D5 D6 D7 d SEGA127 e D7 D0 D1 D2 D3 e e D7 D6 D5 D4 X address / bit / segment assign X=01H X=7EH X=7EH X=01H e palette C SEGC127 SEGB127 palette C SEGA127 palette A palette B palette A SEGC126 d SEGC126 d palette A d SEGC126 d SEGB126 d D2 D1 D0 e SEGB126 e e palette B e palette C palette A SEGC126 SEGA127 SEGC127 palette C palette B palette B SEGB126 SEGB127 palette A SEGA126 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 d palette B D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D13 D14 D15 d palette C palette C SEGC1 D12 d SEGA126 palette B SEGB1 d SEGB126 D0 D1 D2 D3 D4 D5 D6 SEGC1 D2 D1 D0 D3 palette A SEGA1 d palette A palette A SEGB1 palette C SEGC0 d SEGA126 palette B SEGA1 palette B SEGB0 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 c D4 D3 palette C SEGC1 D5 D6 D7 D4 palette C SEGC0 D10 D9 D8 D7 D6 D5 D4 palette A SEGA0 c c palette B D7 D6 D5 palette B SEGB1 palette A SEGB0 D12 D11 X=00H X=3FH c palette C palette A SEGA1 palette B D15 D14 D13 X=00H X=3FH SEGA126 X=00H X=7FH D2 D1 D0 palette C SEGC0 X=00H X=7FH D3 1 0 SEGA1 SWAP 0 1 SEGC0 REF palette A 0 1 SEGB0 0 1 palette B SWAP SEGB0 REF palette C 1 0 SEGA0 SWAP 0 1 palette B D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 REF palette A 0 1 SEGA0 0 1 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 SWAP palette C REF SEGA0 HM17CM256 (10) Relation between Display RAM and address • RAM address and bitmap COLOR / 16 BIT MODE X address / bit / segment assign X=3FH X=00H X address / bit / segment assign X=3FH X=00H d COLOR / 8 BIT MODE X=7FH X=00H d X=7FH X=00H d - 21 - - 22 f f f g g g g X address / bit / segment assign X=01H X=7EH X=7EH X=01H f f f f g g g g SEGC127 f SEGC127 X address / bit / segment assign X=01H X=7EH X=7EH X=01H SEGB127 g SEGB127 g SEGA127 g SEGA127 g SEGC127 SEGB127 SEGA127 SEGC126 D0 f SEGC126 f f SEGC126 f SEGC127 SEGB127 SEGA127 SEGC126 SEGB126 D15 D13 D14 D11 D12 D6 D7 D8 D9 D10 D3 D4 D5 D2 D1 g SEGB126 D0 g SEGA126 g D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 g SEGA126 D15 SEGC1 f SEGB126 D15 D0 SEGB1 D9 D10 D11 D12 D13 D14 SEGA1 f f SEGA126 SEGC1 D2 D1 D3 SEGC0 D8 D5 D6 D7 f SEGB126 SEGC1 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D5 D6 D7 SEGB1 X=00H X=3FH D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 X=00H X=7FH D4 D7 D6 D5 D4 D4 D3 D1 D2 D0 SEGB0 SEGA0 X=00H X=3FH SEGA126 1 0 SEGC1 SWAP 0 1 D2 D1 D0 REF X=00H X=7FH SEGB1 0 1 D3 0 1 SEGB1 SWAP SEGA1 REF SEGA1 1 0 SEGC0 SWAP 0 1 SEGC0 D15 D14 D13 D12 D11 D10 D9 D8 REF SEGB0 SEGA0 0 1 SEGA1 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 0 1 SEGB0 SEGA0 SWAP SEGC0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 REF SEGB0 SEGA0 HM17CM256 BLACK & WHITE / 16 BIT MODE X address / bit / segment assign X=3FH X=00H X address / bit / segment assign X=3FH X=00H BLACK & WHITE / 8 BIT MODE X=7FH X=00H X=7FH X=00H HM17CM256 • WRITE IN / READ IN BITMAP ( 16 BIT MODE ) REF=0, SWAP=0 WRITE IN DATA SEGMENT DATA READ IN DATA D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 SEG0 SEG1 SEG2 SEG3 SEG4 SEG5 SEG6 SEG7 SEG8 SEG9 SEG10 SEG11 SEG12 SEG13 SEG14 SEG15 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 REF=0, SWAP=1 WRITE IN DATA SEGMENT DATA READ IN DATA D0 D1 SEG0 SEG1 SEG2 SEG3 SEG4 SEG5 SEG6 SEG7 SEG8 SEG9 SEG10 SEG11 SEG12 SEG13 SEG14 SEG15 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 REF=1, SWAP=0 WRITE IN DATA SEGMENT DATA READ IN DATA D0 D1 SEG0 SEG1 SEG2 SEG3 SEG4 SEG5 SEG6 SEG7 SEG8 SEG9 SEG10 SEG11 SEG12 SEG13 SEG14 SEG15 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 REF=1, SWAP=1 WRITE IN DATA SEGMENT DATA READ IN DATA D0 D1 SEG0 SEG1 SEG2 SEG3 SEG4 SEG5 SEG6 SEG7 SEG8 SEG9 SEG10 SEG11 SEG12 SEG13 SEG14 SEG15 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 - 23 - HM17CM256 • READ OUT AFTER WROTE IN DATA ( 16 BIT MODE ) REF=0, SWAP=0 WRITE IN DATA D15 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 D0 0 (E4F2H) READ IN DATA D15 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 D0 0 (E4F2H) REF=0, SWAP=1 WRITE IN DATA D15 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 D0 0 (E4F2H) READ IN DATA D15 0 1 0 0 1 1 1 1 0 0 1 0 0 1 1 D0 1 (4F27H) REF=1, SWAP=0 WRITE IN DATA D15 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 D0 0 (E4F2H) READ IN DATA D15 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 D0 0 (E4F2H) REF=1, SWAP=1 WRITE IN DATA D15 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 D0 0 (E4F2H) READ IN DATA D15 0 1 0 0 1 1 1 1 0 0 1 0 0 1 1 D0 1 (4F27H) - 24 - HM17CM256 • WRITE IN / READ IN BITMAP ( 8 BIT MODE ) REF=0, SWAP=0 WRITE IN DATA SEGMENT DATA READ IN DATA D0 D1 D2 D3 D4 D5 D6 D7 SEG0 SEG1 SEG2 SEG3 SEG4 SEG5 SEG6 SEG7 D0 D1 D2 D3 D4 D5 D6 D7 D2 D3 D4 D5 D6 D7 REF=0, SWAP=1 WRITE IN DATA SEGMENT DATA READ IN DATA D0 D1 SEG0 SEG1 SEG2 SEG3 SEG4 SEG5 SEG6 SEG7 D0 D1 D2 D3 D4 D5 D6 D7 D2 D3 D4 D5 D6 D7 REF=1, SWAP=0 WRITE IN DATA SEGMENT DATA READ IN DATA D0 D1 SEG0 SEG1 SEG2 SEG3 SEG4 SEG5 SEG6 SEG7 D0 D1 D2 D3 D4 D5 D6 D7 D2 D3 D4 D5 D6 D7 REF=1, SWAP=1 WRITE IN DATA SEGMENT DATA READ IN DATA D0 D1 SEG0 SEG1 SEG2 SEG3 SEG4 SEG5 SEG6 SEG7 D0 D1 D2 D3 D4 D5 D6 D7 - 25 - HM17CM256 • READ OUT AFTER WROTE IN DATA ( 8 BIT MODE ) REF=0, SWAP=0 WRITE IN DATA D15 1 1 1 0 0 1 0 D0 0 (E4H) READ IN DATA D15 1 1 1 0 0 1 0 D0 0 (E4H) REF=0, SWAP=1 WRITE IN DATA D15 1 1 1 0 0 1 0 D0 0 (E4H) READ IN DATA D15 0 0 1 0 0 1 1 D0 1 (27H) REF=1, SWAP=0 WRITE IN DATA D15 1 1 1 0 0 1 0 D0 0 (E4H) READ IN DATA D15 1 1 1 0 0 1 0 D0 0 (E4H) REF=1, SWAP=1 WRITE IN DATA D15 1 1 1 0 0 1 0 D0 0 (E4H) READ IN DATA D15 0 0 1 0 0 1 1 D0 1 (27H) - 26 - Palette C Palette B Palette A Palette C Palette B Palette A Palette C Palette B Palette A SEGSA1 SEGSB1 SEGSC1 SEGSA2 SEGSB2 SEGSC2 SEGSA3 SEGSB3 SEGSC3 X=00H X=03H X address / bit segment assign X=01H X=02H X=02H X=01H Palette C Palette A SEGSC2 SEGSA3 Palette C Palette B SEGSB2 X address / bit segment assign X=01H X=02H X=02H X=01H SEGSC3 Palette A SEGSA2 Palette B Palette A Palette C SEGSB2 SEGSC2 SEGSA3 SEGSC3 SEGSB3 Palette C SEGSA2 Palette A Palette B Palette A SEGSC1 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 X=00H X=01H Palette B Palette C SEGSC1 SEGSA1 SEGSB1 Palette C SEGSC0 Palette B Palette A SEGSB0 Palette C Palette B SEGSA0 Palette B Palette C Palette A SEGSB2 SEGSC2 SEGSA3 SEGSC3 Palette C Palette B Palette A SEGSA2 SEGSB3 Palette C Palette A SEGSA1 SEGSC1 Palette C SEGSC0 Palette B Palette B SEGSB0 SEGSB1 Palette A SEGSA0 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 X=00H X=01H SEGSB3 Palette B Palette A SEGSA1 X=00H X=03H SEGSB1 Palette C SEGSC0 SWAP 1 0 Palette A REF 0 1 SEGSC0 SWAP 0 1 SEGSB0 REF 0 1 Palette B D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 SWAP 1 0 SEGSB0 Palette A REF 0 1 Palette B SEGSA0 SWAP 0 1 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 REF 0 1 Palette C • SEGSA0 HM17CM256 DUMMY SEGMENT REGISTER ADDRESS AND BITMAP COLOR / 16 BIT MODE X address / bit segment assign X=01H X=00H X address / bit segment assign X=01H X=00H COLOR / 8 BIT MODE X=03H X=00H X=03H X=00H - 27 - - 28 SEGSC3 X address / bit segment assign X=01H X=02H X=02H X=01H SEGSC3 SEGSB3 X address / bit segment assign X=01H X=02H X=02H X=01H SEGSB3 SEGSA3 SEGSC2 SEGSB2 SEGSA2 SEGSC1 SEGSC3 SEGSB3 SEGSA3 SEGSC2 SEGSB2 SEGSA2 SEGSC1 SEGSB1 X=00H X=01H SEGSA3 X=00H X=03H SEGSB1 SEGSA1 SEGSA1 SEGSC0 SEGSA0 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 SEGSC3 SEGSB3 SEGSA3 SEGSC2 SEGSB2 SEGSA2 SEGSC1 SEGSB1 SEGSA1 SEGSC0 SEGSB0 X=00H X=01H SEGSC2 SWAP 1 0 SEGSB2 REF 0 1 X=00H X=03H SEGSA2 SWAP 0 1 SEGSC1 REF 0 1 SEGSC0 • SEGSB0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 SWAP 1 0 SEGSB0 SEGSA0 REF 0 1 SEGSB1 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 SWAP 0 1 SEGSA1 SEGSA0 REF 0 1 SEGSC0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 • SEGSB0 SEGSA0 HM17CM256 BLACK 7 WHITE / 16 BIT MODE X address / bit segment assign X=01H X=00H X address / bit segment assign X=01H X=00H BLACK & WHITE / 8 BIT MODE X=03H X=00H X=03H X=00H HM17CM256 (11) display data structure and gradation control For the purpose of gradation control, information per pixel requires multiple bits. This IC has 3 bit or 2 bit data per output to achieve the gradation display. This IC is connected to an STN color LCD panel by three segment port units and one pixel consists of three outputs of segment driver, and so 256 color ( 3 bits x 3 bits x 2 bits ) display on 128 x 82 pixels is realized. Since one pixel data can be processed by one time access to memory, the data can be rewritten fast and naturally. The weight of each data bit is dependent on the status of SWAP register bit and REF register when data is written to the display RAM. • ACCESS when (REF, SWAP)=(0, 0) or (1, 1) SEGBi SEGAi h Palette AjAj i j SEGCi Palette Bj k i=0~127 Gradation palette j=0~7 Palette Cj Gradation control circuit. 0 GLSB circuit 0 0 1 0 MSB LSB 0 0 1 D0 D1 D2 0 1 1 MSB LSB 0 0 1 1 1 D3 D4 D5 D6 D7 Display RAM data 1 MSB CPU access data X address :nH notice) internal access X address :nH~7FH (access when REF=”0”) :7FH~nH (access when REF=”1”) • ACCESS when (REF, SWAP)=(0, 1) or (1, 0) SEGAi Gradation palette j=0~7 Palette Cj SEGBi SEGCi Palette Bj Palette Aj i=0~127 Gradation control circuit 0 Display RAM data 1 1 MSB CPU access data X address :nH 1 0 0 LSB MSB 1 0 0 LSB MSB GLSB circuit 0 0 1 0 0 1 1 1 D0 D1 D2 D3 D4 D5 D6 D7 notice) internal access X address :nH~7FH (access when REF=”0”) :7FH~nH (access when REF=”1”) - 29 - HM17CM256 When display RAM is accessed by 16 bit data width, the weight of each data bit is dependent on the status of SWAP register and REF register, the same method as 8 bit access • ACCESS when (REF, SWAP)=(0, 0) or (1, 1) SEGAi SEGBi SEGCi SEGAi+1 Palette Aj Palette Bj Palette Cj Palette Aj SEGBi+1 SEGCi+1 Palette Bj i=0~126 Gradation palette j=0~7 Palette Cj Gradation control ciruit 0 GLSB circuit 0 0 1 0 0 MSB LSB 0 0 1 1 1 MSB LSB 1 0 0 0 MSB 1 1 0 1 0 0 MSB LSB 1 0 0 1 1 1 MSB LSB 0 0 Display RAM data 1 MSB 1 1 CPU access data X address :nH 1 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 notice) internal access X address :nH~3FH (access when REF=”0”) :3FH~nH (access when REF=”1”) • ACCESS when (REF, SWAP)=(0, 1) or (1, 0) SEGAi Gradation palette Palette Cj SEGBi SEGCi Palette Bj Palette Aj SEGAi+1 SEGBi+1 SEGCi+1 i=0~126 Palette Bj Palette Aj j=0~7 Palette Cj Graydation control ciruit 0 Display RAM data 1 1 MSB CPU access data X address :nH 1 0 0 LSB MSB 0 0 1 D0 D1 D2 0 1 0 0 LSB MSB 1 1 MSB 0 1 1 1 0 D3 D4 D5 D6 D7 D8 0 0 LSB MSB 0 1 0 1 0 0 LSB MSB 0 1 1 1 D9 D10 D11 D12 D13 D14 D15 notice) internal access X address :nH~3FH (access when REF=”0”) :3FH~nH (access when REF=”1”) - 30 - 1 GLSB circuit HM17CM256 DISPLAY RAM BITMAP AT BLACK & WHITE MODE (MON=”1”) The MSBs of display RAM data ( 3 bit, 2 bit ) is used as display data at black and white mode. l example) • 8 bit width access ( the same method as 16 bit width access) ACCESS when (REF, SWAP)=(0, 0) or (1, 1) SEGAi m n o SEGBi SEGCi i=0~127 Palette Bj Palette Cj Gradation palette j=0~7 p Palette AjAj Gradation control circuit. 0 GLSB circuit 0 0 1 MSB LSB 0 0 1 D0 D1 D2 0 0 1 1 1 MSB LSB 0 0 1 1 1 D3 D4 D5 D6 D7 Display RAM data MSB CPU access data X address :nH notice) internal access X address :nH (access when REF=”0”) :7FnH~nH (access when REF=”1”) • ACCESS when (REF, SWAP)=(0, 1) or (1, 0) Gradation palette j=0~7 SEGAi SEGBi SEGCi Palette Aj Palette Bj Palette Cj i=0~127 Gradation control circuit 0 Display RAM data 1 1 MSB CPU access data X address :nH 1 0 0 LSB MSB 1 0 0 GLSB circuit LSB MSB 0 0 1 0 0 1 1 1 D0 D1 D2 D3 D4 D5 D6 D7 notice) internal access X address :nH (access when REF=”0”) :7FnH~nH (access when REF=”1”) - 31 - HM17CM256 gradation level table (MON=”1”, Black & white mode) (MSB)RAM data (LSB) 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 Gradation level 0 0 0 0 1 1 1 1 RAM data GLSB 0 0 * 0 1 * 1 0 * 1 1 * * : Don’t Care Gradation level 0 0 1 1 (12) GRADATION LSB CONTROL At 256 colors input mode, this IC provides segment driver output for 8-gradation display using successive 3 bits of data and that for 4-gradation display using successive 2 bits of data. The segment driver output for the 4-gradation display uses 2 bits written to the corresponding RAM area and 1 bit supplemented by the gradation LSB circuit, and then selects 4 gradations from 8gradations. At fixed gradation mode, the segment driver output for the 4-gradation display result in a gradation level of 0 regardless of gradation LSB register, when 2 bits of data on the display RAM are “00”. When 2 bits of data on the display RAM is “11”, a gradation level of 7/7 is selected regardless of gradation LSB register. The other gradation levels are selected depending on 2 bits of data on the display RAM and the gradation LSB register. One bit of data is supplemented by setting the gradation LSB register (GLSB). For this register, the bit information specified for only one time setting is used as the LSB of the RAM for all the 4-gradation segment drivers. Gradation LSB = “0”: Set 0 as the LSB of the RAM for 4-gradation segment drivers. Gradation LSB = “1”: Set 1 as the LSB of the RAM for 4-gradation segment drivers. (13) GRADATION PALETTE This IC has two gradation display modes, the fixed gradation display mode and the variable gradation display mode. Select mode by setting the gradation display mode register (PWM command) to the purpose. PWM=”0” : variable gradation mode among 32-level gradations. PWM=”1” : fixed 8 gradation mode To select the best gradation level suited to LCD panel at variable gradation display mode, use the gradation palette register among 32-level gradation palettes. Segment driver outputs are set by selected 8-level gradation palette. The gradation palette register provides three registers ( palette Aj, Bj, and Cj : j=0∼7 ) for the segment driver outputs, SEGAi(0∼127), SEGBi(0∼127), and SEGCi(0∼127) . Each register consists of a 5-bit register, selecting 8 gradations from the 32 gradation pattern. Segment driver selects 4 gradations among 8 gradation by 2 bits wrote-in RAM and 1bit calibrated by GLSB. - 32 - HM17CM256 GRADATION PALETTE INITIAL VALUE ( palette Aj, palette Bj, palette Cj (j=0~7) ) (MSB)RAM data (LSB) 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 Register name Gradation palette 0 Gradation palette 1 Gradation palette 2 Gradation palette 3 Gradation palette 4 Gradation palette 5 Gradation palette 6 Gradation palette 7 Initial value 00000 00101 01010 01110 10001 10101 11010 11111 GRADATION PALETTE TABLE (PWM=”0”, variable mode) ( palette Aj, palette Bj, palette Cj (j=0~7) ) Palette 00000 00001 00010 00011 00100 00101 00110 00111 01000 01001 01010 01011 01100 01101 01110 01111 Gradation 0 1/31 2/31 3/31 4/31 5/31 6/31 7/31 8/31 9/31 10/31 11/31 12/31 13/31 14/31 15/31 remark Palette 0 initial value Palette 1 initial value Palette 2 initial value Palette 3 initial value Palette 10000 10001 10010 10011 10100 10101 10110 10111 11000 11001 11010 11011 11100 11101 11110 11111 gradation 16/31 17/31 18/31 19/31 20/31 21/31 22/31 23/31 24/31 25/31 26/31 27/31 28/31 29/31 30/31 31/31 remark Palette 4 initial value Palette 5 initial value Palette 6 initial value Palette 7 initial value GRADATION PALETTE TABLE (PWM=”1”, fixed mode) (MSB)RAM data(LSB) 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 gradation 0 1/7 2/7 3/7 4/7 5/7 6/7 7/7 RAM data 0 0 0 0 0 1 0 1 1 0 1 0 1 1 1 1 GLSB 0 1 0 1 0 1 0 1 gradation 0 2/7 3/7 4/7 5/7 7/7 - 33 - HM17CM256 (14) DISPLAY TIMMING GENERATOR The display-timing generator makes a timing clock and timing pulses (CL, FLM, FR and CLK) for internal operation by inputting the original oscillating clock CK or by the oscillating circuit. By setting up Master / Slave mode (M/S), the state of timing pulse pins and the timing generator changes. Display timing pulse pins and generator status M/S port mode CL port FR port FLM port CLK port L Slave Input Input Input Input H Master Output Output Output Output Timing generator status CL, FLM, FR signal generator stop Operating status (15) SIGNAL GENERATION OF DISPLAY LINE COUNTER, DISPLAY DATA LATCH CIRCUIT. The latch signal from line counter clock to display data latch circuit is generated from display clock (CL). Synchronized with the display clock, the line addresses of Display RAM are generated and 384-bit display data are latched to display-data latching circuit and then output to the LCD drive circuit (SEG output port). Read-out of the display data to the LCD drive circuit is completely independent of MPU side and so MPU can access it with no relationship with the read-out operation of the display data. (16) GENERATION OF THE ALTERNATED SIGNAL(FR), SYNCHRONOUS SIGNAL(FLM). The alternated signal (FR) and synchronous signal (FLM) are generated from the display clock (CL). The FLM generates alternated drive waveform to the LCD drive circuit per frame at normal state ( inverse FR signal level per 1 frame ). But by setting up data (n-1) on n-line inversion register and “1” on n-line alternated command (NLIN), n-line inverse waveform can be generated. When this HM17CM256 is used in multi-chip application, the signals of CL, FLM, FR and CLK must be sent from master side to slave side. (17) DISPLAY DATA LATCH CIRCUIT This circuit latches the display data from display RAM to LCD driver circuit temporarily per every common period. Normal / reverse display, display ON/OFF, and display all on command are done by controlling data in this latch. And no data within display RAM changes. - 34 - HM17CM256 (18) EXAMPLE OF LCD DRIVING (NORMAL MODE, 1/82 DUTY, BLACK & WHITE DISPLAY MODE) COM0 82 1 2 3 4 5 82 1 2 3 4 5 82 1 COM1 SEG2 SEG1 SEG0 CL FLM FR COM0 VLCD V1 V2 V3 V4 VSS COM1 VLCD V1 V2 V3 V4 VSS SEG0 SEG1 VLCD V1 V2 V3 V4 VSS VLCD V1 V2 V3 V4 VSS - 35 - HM17CM256 (19) LCD DRIVER CIRCUIT This drive circuit generates four levels of LCD drive voltage. The circuit has 384 segment outputs and 82 common outputs and outputs combined display data and FR signal. Two of common outputs(COMI0,COMI1) are for pictograph marker display only. The common drive circuit that has shift register and outputs common scan signals sequentially. (20) DUMMY SEGMENT DRIVER CIRCUIT Segment driver circuit has 6 dummy output ( SEGSA0 ~ SEGSA3, SEGSB0 ~ SEGSB3, SEGSC0 ~ SEGSC3 ) at each edge side. Normally, the segment driver output is generated by memorized RAM data but there are no RAMs but registers for dummy segment driver. There are 8 bit registers correspond to SEGSA0, SEGSB0, SEGSC0 and drive LCD with same level to Y direction. ( SEGSA1 ~ SEGSA3, SEGSB1 ~ SEGSB3, SEGSC1 ~ SEGSC3 are the same function. ) SEGSA0 ~ SEGSA3 port is used same gradation palette with SEGA0 ~ SEGA127, SEGSB0 ~ SEGSB3 with SEGB0 ~ SEGB127 , and SEGSC0 ~ SEGSC3 with SEGC0 ~ SEGC127 This circuit is effective at display of boundary or background display. The dummy segment drivers do not depend on LREV polarity but ALLON and REV command for display There are 4-byte registers for dummy segment driver, SEGSA0 ~ SEGSA3, SEGSB0 ~ SEGSB3, SEGSC0 ~ SEGSC3, If you want to access this register, please use DMY =”1” command. 68 series RS DMY 0 0 0 0 0 0 1 1 R/W 1 0 1 0 80 series RD 0 1 0 1 WR 1 0 1 0 Function Read out display data Write in display data Read out dummy segment register Write in dummy segment register There are the same rules at read out of dummy segment register as display RAM data read out sequence. After address setting, the data of assigned address is shown directly after the end of the read command, so pay attention that assigned data is available at 2nd timing step. In other words, there needs 1 cycle dummy read after address set and write cycle. 1 cycle dummy read is necessary for after address setting and write cycle. When access with DMY=”1”, X address is an effective value at address setting. There are 4-byte and so 00H, 01H, 02H, 03H are effective at 8-bit mode and 00H, 01H are effective at 16-bit mode. The access bears no relation to Y address setting. When access with DMY=”1”, it is possible that the data is written into register by increment operation. notice) more detail information at DUMMY SEGMENT REGISTER ADDRESS AND BITMAP in (10) Relation between Display RAM and address q t - 36 - r s HM17CM256 ACCESS WITH 8 BIT BUS EXAMPLE : GRAY MODE , ACCESS UNDER (REF, SWAP)=(0, 0) SEGSA0 Palette Aj SEGSB0 SEGSC0 Palette Bj Palette Cj Gradation j=0~7 palette Gradation control circuit 0 GLSB circuit 0 0 1 0 MSB LSB 0 0 1 D0 D1 D2 0 1 1 1 MSB LSB 0 0 1 1 1 D3 D4 D5 D6 D7 Latched data MSB CPU access data X address :00H SEGSA3 Palette Aj SEGSB3 SEGSC3 Palette Bj Palette Cj Gradation palette j=0~7 Gradation control circuit 0 GLSB circuit 0 0 1 MSB LSB 0 0 1 D0 D1 D2 0 0 1 1 1 MSB LSB 0 0 1 1 1 D3 D4 D5 D6 D7 Latched data MSB CPU access data X address :03H (21) OSCILLATOR CIRCUIT HM17CM256 has the CR oscillator. The output of oscillator is used as the timing signal source of display and boosting clock to the booster. This is valid only in the master operation mode. When in the master operation mode and if external clock is used, feed the clock to OSC1 pin or connect resistor between OSC1 and OSC2. And feedback resistance with command can set the inner oscillator circuit of HM17CM256. The frame frequency can be altered by changed oscillator frequency according to feedback resistance length set value. To get optimum frame frequency, please check LCD and then set the frequency of oscillator. (22) POWER SUPPLY CIRCUIT - 37 - HM17CM256 This block generates the voltages necessary for driving LCD panel. The power supply circuit consists of voltage boosting circuit and voltage converting circuit and generates the voltages (VLCD, V1, V2, V3, V4. ) for LCD driving. For large panel driving, it’s preferable to use external voltage source rather than to use built-in power supply circuit for good image quality. When using external voltage source, disable the built-in power supply circuit(AMPON, DCON=‘00’), supply the VLCD, V1, V2, V3, V4 and VOUT externally and open the C1+, C1-, C2+, C2-, C3+, C3-, C4+, C4-, C5+, C5-, C6+, C6-, VREF, VREG, VEE terminals. According to power supply circuit control command input, the power supply circuit can be enabled partially. External power supply and partial inner power circuit can be used together. Refer to the next table. DCON AMPON 0 0 1 0 1 1 Boosting circuit Disable Disable Enable Converting circuit disable enable enable External voltage input VOUT, VLCD, V1, V2, V3, V4 common VOUT common − remark 1,3 2,3 − u u v v v 1. All the built-in boosting circuit, converting circuit is not used. Open the ,C1+, C1-, C2+, C2-, C3+, C3-, C4+, C4-, C5+, C5-, C6+, C6-, VREF, VREG, VEE terminals, LCD driving voltage should be applied externally. 2.Only the Boosting circuit is not used. Open the C1+,C1-,C2+,C2-,C3+,C3-,C4+,C4-,C5+,C5-,C6+,C6-, VOUT terminals, The power for converting circuit must be supplied through VOUT terminal and the reference voltage must be supplied by VREF terminal. 3.The conditions between VOUT, VLCD, V1, V2, V3, and V4 are VOUT ≥ VLCD ≥ V1 ≥ V2 ≥ V3 ≥ V4 ≥ VSS. (23) VOLTAGE BOOSTING CIRCUIT By connecting capacitor CA1 between C1+ and C1-, C2+ and C2-, C3+ and C3-, C4+ and C4-, C5+ and C5- , C6+ and C6-, VOUT and VSS , n-time boosted voltage of VEE - VSS can be generated through VOUT port. The boosting coefficient can be set by command and 2-times/ 3-times / 4-times/ 5times/ 6-times/ 7-times boosted voltage is output through VOUT port. At application, specific boosting coefficient is used, refer to the following description. At 2-times boosting is designed, connect boosting capacitor CA1 between C1+ and C1- , and open C2+, C2-, C3+, C3-, C4+, C4-, C5+, C5-, C6+, C6- terminals. At 3-times boosting is designed, connect boosting capacitor CA1 between C1+ and C1- , C2+ and C2- , and open C3+,C3-, C4+, C4-, C5+, C5-, C6+, C6- terminals. At 4-times boosting is designed, connect boosting capacitor CA1 between C1+ and C1- , C2+ and C2- , C3+ and C3- , and open C4+, C4-, C5+, C5-, C6+, C6- terminals At 5-times/ 6-times/ 7-times boosting are same structures with upper case. w x y z Special care should be taken so that the voltage of VOUT would not exceed 18V MAX. VOUT voltage exceeding 18V can cause malfunction and reliability problem. VOUT=17.5V VOUT=9V VEE=3V VEE=2.5V VSS=0V VSS=0V 3-times boosting - 38 - 7-times boosting HM17CM256 (24) ELECTRIC VOLUME The electric volume is within voltage converting circuit and the brightness of LCD can be controlled by adjusting VLCD level with command. The LCD driving voltage VLCD is generated by selecting 1 level within 128 step electric volume controlled levels by setting 7 bit electric volume register. (25) VOLTAGE REGULATOR CIRCUIT The voltage regulator circuit is within voltage converting circuit and generates regulated voltage using VREF input with magnification by adjusting internal resistor. The generated voltage by voltage regulator is output at VREG terminal. Even though boosted voltage variation, generated regulator voltage is stable because boosting voltage level is higher than the amplified regulator voltage VREG . And so, stable voltage level can be generated even if there is load variation. VREG is used as input voltage of electric volume circuit to generate LCD driving voltage. (26) REFERENCE VOLTAGE GENERATION CIRCUIT The reference voltage generation circuit is within voltage converting circuit. This circuit generates reference voltage VBA terminal for using at regulator circuit through. output voltage level from VBA terminal is as following description. The VBA = VEE x 0.9 The LCD driving voltages can be made by applying reference voltage to reference voltage input terminal VREF . (27) LCD DRIVING VOLTAGE GENERATION CIRCUIT The generation circuit of LCD driving voltage is within voltage converting circuit and generates voltages VLCD, V1, V2, V3, V4 by resistively dividing VLCD into 4 levels. The bias ratio of LCD driving voltages can be one of 1/5, 1/6, 1/7, 1/8, 1/9, 1/10. When using built-in power supply circuit, you should connect voltage stabilization capacitor CA2 at each of LCD power terminals. There is need for selecting the coefficient of capacitor CA2 after display the LCD. When using external voltage supply, disable the built-in power supply circuit(AMPON, DCON=‘00’), supply the VOUT, VLCD, V1, V2, V3, V4 voltages externally and open the C1+ , C1- , C2+ , C2- , C3+ , C3- , C4+ , C4- , C5+ , C5- , C6+ , C6- , VEE , VREF , VREG terminals. When using external voltage source and parts of built-in voltage converting circuit, the terminals of C1+ , C1- , C2+ , C2- , C3+ , C3- , C4+ , C4- , C5+ , C5- , C6+ , C6- should be open because boosting circuit is not activated, you should supply reference voltage through VREF terminal and the voltage for voltage converting circuit at VOUT . Connecting stabilization capacitor CA3 at VREG terminal is recommended. - 39 - HM17CM256 internal power circuit / internal reference voltage generating circuit are activated case.(7 times boosting) VDD VDD VEE CA3 VSS CA1 CA1 CA1 CA1 CA1 VSS CA2 CA2 CA2 CA2 CA2 VSS value CA1 CA2 CA3 caution - 40 - { VDD VEE VBA VREF VREF VREG VREG C1- C1- C1+ C1+ C2- C2- C2+ C2+ C3- C3- C3+ C3+ C4+ CA1 VDD VBA C4- CA1 internal power circuit is not used case C4- HM17CM256 C4+ C5- C5- C5+ C5+ C6- C6- C6+ C6+ VOUT VOUT VLCD V1 VLCD VLCD V1 V3 V1 Extnal power V2 circuit V3 V4 V4 V4 V2 1.0 ~ 4.7µF 1.0 ~ 2.2µF 0.1µF Please use B grade capacitor. V2 V3 HM17CM256 HM17CM256 Internal power circuit is used case. Reference voltage input from outside . (7 times boosting) VDD VREF thermistor VREF C3- C4+ HM17CM256 C6- VOUT CA2 CA2 CA2 CA2 CA2 C3+ C4C4+ C5+ C6C6+ VOUT CA1 VSS VLCD CA2 V1 CA2 V2 CA2 V3 CA2 V4 VSS HM17CM256 C5- CA1 C6+ CA1 VSS C3- CA1 C5+ CA1 C2+ CA1 C5- CA1 C2- CA1 C3+ C4- C1+ CA1 C2+ CA1 C1- CA1 C2- CA1 VREG CA3 VSS C1+ CA1 | VBA C1- used case. by external VDD VEE VBA VREG CA1 value CA1 CA2 CA3 caution VDD VDD VEE CA3 VSS VSS Internal power circuit is Temperature compensation thermistor . (7 times boosting ) CA2 VLCD V1 V2 V3 V4 1.0 ~ 4.7µF 1.0 ~ 2.2µF 0.1µF Please use B grade capacitor. - 41 - HM17CM256 Internal power circuit is used case. (boosting circuit is not used, VOUT is supplied from outside) VDD VDD VEE VBA VREF VREG CA3 VSS C1C1+ C2C2+ C3C3+ C4- HM17CM256 C4+ C5C5+ C6C6+ External power circuit VOUT CA2 CA2 CA2 CA2 CA2 VSS value CA1 CA2 CA3 caution - 42 - } VLCD V1 V2 V3 V4 1.0 ~ 4.7µF 1.0 ~ 2.2µF 0.1µF Please use B grade capacitor. HM17CM256 (28) PARTIAL DISPLAY FUNCTION HM17CM256 can realize the partial display at graphic display area on LCD panel. Partial display is used with lower duty than normal state at driving. And so, HM17CM256 can drive the LCD panel with lower bias ratio, lower boosting times and lower LCD driving voltages, and that can drive the LCD panel with lower power consumption. This function is suitable for calendar or clock display at mobile information apparatus. PARTIAL DISPLAY IMAGE HYUNDAI LCD DRIVER Low Power and Low Voltage LCD DRIVER Normal display partial display The next sequence should be followed carefully to realize partial display function. Any display states DISPLAY OFF(ON/OFF=”0”) built-in power source OFF(DCON=”0”, AMPON=”0”) WAIT ~ Setting the power supply circuit boosting coefficient electric volume bias ratio ~ ~ Built-in power source ON(DCON=”1”, AMPON=”1”) WAIT ~ Setting the display-related function ~ ~ duty ratio display start line setting display start command and so on. Display ON(ON/OFF=”1”) Partial display state - 43 - HM17CM256 When using partial display function, the display duty can be selected among 1/17, 1/26, 1/32, 1/38, 1/47, 1/66, 1/77 by setting the LCD duty set command. The display states such as LCD driving bias ratio, LCD Driving voltage, electric volume setting value, boosting coefficient should be optimized to the selected LCD and display duty. (29) DISCHARGE CIRCUIT The discharge circuit of voltage(VLCD, V1~V4) stabilization capacitor is built in the HM17CM256. To discharge the capacitors, set the DIS register to “1” or set the RES terminal to “0”. When builtin power supply circuit is used, built-in power supply circuit should be disabled before discharging of the capacitor is executed. When external power supply(VLCD, V1~V4, VOUT) is used, external power supply should be turned off before discharging of the capacitor is executed. Do not turn on the internal power supply and external power supply (VLCD, V1~V4, VOUT) during discharging is executed. (30) RESET CIRCUIT HM17CM256 is initialized as following description when RES terminal is set to “L”. INITIAL SETTING CONDITION (default setting) 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. display RAM :unknown X address :00H set Y address :00H set display start line :1 line value 0H display ON/OFF :display OFF positive/negative :positive display duty ratio :1/82 n line inversion :n inversion disable COM shift direction :COM0 → COM79, COMI0, COMI1 increment mode :increment OFF REF mode :positive data SWAP mode :OFF electric volume :(0, 0, 0, 0, 0, 0, 0) power circuit :OFF display mode :gradation display mode bias ratio :1/10 bias gradation palette 0 :(0, 0, 0, 0, 0) gradation palette 1 :(0, 0, 1, 0, 1) gradation palette 2 :(0, 1, 0, 1, 0) gradation palette 3 :(0, 1, 1, 1, 0) gradation palette 4 :(1, 0, 0, 0, 1) gradation palette 5 :(1, 0, 1, 0, 1) gradation palette 6 :(1, 1, 0, 1, 0) gradation palette 7 :(1, 1, 1, 1, 1) gradation mode :variable mode GLSB :"0" RAM data length :8 bit mode discharge register :"0" Usually RES terminal is connected reset terminal of CPU, so that the chip can be initialized simultaneously with CPU. HM17CM256 should be initialized when the power is on. - 44 - HM17CM256 (31) SUPPLYING POWER AND ON/OFF SEQUENCE Special care should be taken to the next notice. Supplying the power at LCD driving voltage terminal when the logic VDD is floating can cause over-current and damage the IC (31-1) WHEN USING EXTERNAL POWER SUPPLY power ON sequence Reset the IC after supplying the logic power at VDD terminal, and then turn on the LCD driving voltage at the terminals (VLCD, V1, V2, V3, V4). And when internal voltage converter is used, reset the IC after supplying the logic power at VDD terminal, and then supply power to VLCD terminal. power OFF sequence Execute HALT command or reset the IC to turn off the outputs of LCD driving output port, and then turn off the LCD driving voltage after logic power OFF. Inserting series resistor of 50 ~100Ω or fuse at VLCD or VOUT terminal (when only internal voltage converting circuit is used) is recommended to prevent over-current. This series resistor should be selected carefully because image quality can be dependent on. (31-2) WHEN USING BUILT-IN POWER SUPPLY CIRCUIT power ON sequence Reset the IC after supplying the logic power at VDD terminal or after supplying power through voltage common port (VEE) of boosting voltage generation and then operate internal power circuit by command. And when internal voltage converter is used, reset the IC after supplying the logic power at VDD terminal, and then supply power to VLCD terminal. You should turn on the display after the output level of internal power module is set. If you do not keep this sequence, LCD can display wrong data. power OFF sequence To make off state of LCD driving output, cut the source to voltage common port (VEE) of boosting voltage generation, the logic power at VDD terminal after reset the IC by HALT command. If VEE, and VDD are supplied from different power source, VEE terminal should be turned on/off during VDD terminal voltage maintain voltage level specified in specification sheet. Specially, when turn off the power, after cut the source to voltage common port (VEE), and then turn off the logic power at VDD terminal after the voltage levels of VEE, VOUT, VLCD, V1~V4 become under LCD on voltage(LCD threshold voltage)level. - 45 - HM17CM256 (32) COMMAND SETTING EXAMPLE (32-1) initial setting VDD, VEE-VSS power ON Power stable RESET input WAIT Function setting by command (user setting electric volume code set bias ratio set Function setting by command (user setting power control set (DCON=”1”, AMPON=”1”) End of initial setting (notice) If the voltage level of VEE and VDD are different, VDD should be inputted first. (32-2) DATA DISPLAY End of initialization Function setting by command (user setting) display start line set increment mode set X address set Y address set Function setting by command (user setting Function setting by command (user setting) Data display - 46 - display data write display ON/OFF command set(ON/OFF=”1”) HM17CM256 (32-3) POWER OFF Any operation states Function setting by command (user setting HALT command set or reset operation (all LCD driver output is VSS level) Discharge command set (discharge of VLCD, V1~V4 capacitor) WAIT VEE, VDD-VSS power OFF Before turning off the power, be sure to execute HALT or RESET command to make LCD driver output OFF state. And if VDD and VEE have different potential (VDD and VEE are not common), be sure to turn off VEE first during VDD is supplied. - 47 - HM17CM256 (33) INSTRUCTION INSTRUCTION TABLE (1) CODE (80 series I/F) INSTRUCTION CODE CS RS RD WR RE2 RE1 RE0 D7 D6 D5 D4 FUNCTION D3 D2 D1 D0 0 0 1 0 0/1 0/1 0/1 Write Data Write in to display RAM display data read out. 0 0 0 1 0/1 0/1 0/1 Read Data Read out from display RAM X address (lower) [0H] 0 1 1 0 0 0 0 0 0 0 0 AX3 AX2 AX1 AX0 Display RAM X direction set X address (upper) [1H] 0 1 1 0 0 0 0 0 0 0 1 Y address (lower) [2H] 0 1 1 0 0 0 0 0 0 1 0 Y address (upper) [3H] 0 1 1 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 1 0 0 display data write in display start line set (lower) [4H] display start line set * AX6 AX5 AX4 Display RAM X direction set AY3 AY2 AY1 AY0 Display RAM Y direction set * AY6 AY5 AY4 Display RAM Y direction set RAM Y address 1 1 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 1 1 1 display control (1) 0 [8H] 1 1 0 0 0 0 1 0 0 0 display control (2) 0 [9H] 1 1 0 0 0 0 1 0 0 1 increment control 0 [AH] 1 1 0 0 0 0 1 0 1 0 WIN AIM AYI AXI 0 1 1 0 0 0 0 1 0 1 1 0 1 1 0 0 0 0 1 1 0 0 * DS2 DS1 DS0 LCD driver duty ratio set boosting coefficient 0 set [DH] 1 1 0 0 0 0 1 1 0 1 * VU2 VU1 VU0 Boosting times set 0 1 1 0 0 0 0 1 1 1 0 * B2 B1 B0 LCD drive bias set 0 1 1 0 0/1 0/1 0/1 1 1 1 1 [5H] N line inversion set (lower) [6H] N line inversion set (upper) [7H] power control [BH] LCD duty set [CH] bias ratio set [EH] RE register set [FH] * common driver. RAM Y address setting LA4 corresponds to scan start line of common driver. 0 (upper) setting LA3 LA2 LA1 LA0 corresponds to scan start line of LA6 LA5 N3 N2 N1 N0 quantity setting of line inversion * N6 N5 N4 quantity setting of line inversion SHIFT: common shift direction set, SHI MO ALL ON/ MON: BW/gradation display, FT N ON OFF ALLON: all on , RE V NL SW RE IN AP F ON/OFF: display ON/OFF control REV: display positive / negative, NLIN: n line inversion ON/OFF, SWAP: display data swap, REF: segment positive / negative WIN: window selection, AIM: increment timing selection, AYI:Y increment, AXI:X increment internal OP Amp. ON, AMP HA DC AC AMPON: HALT: power save ON LT ON L DCON: boosting circuit ON, ACL: reset TST0 RE2 RE1 RE0 RE flag set Notice 1) * mark is Don’t Care Notice 2) [ ] The inner side number is an address for internal register read. Notice 3) The commands that upper/lower register settings are demanded are effective at the point of commands input. But electric volume is effective after upper and lower register setting. - 48 - HM17CM256 INSTRUCTION TABLE (2) CODE (80 series I/F) INSTRUCTION CODE CS RS RD WR RE2 RE1 RE0 D7 Gradation palette A0 set (lower) 0 0 0 Set value to gradation palette 0 PA03 PA02 PA01 PA00 A 0 1 1 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 0 1 Set value to gradation palette 0 PA13 PA12 PA11 PA10 A 1 1 1 0 0 0 1 0 0 1 1 1 1 0 0 0 1 0 1 0 Set value to gradation palette 0 PA23 PA22 PA21 PA20 A 2 1 1 0 0 0 1 0 1 0 1 1 1 0 0 0 1 0 1 1 Set value to gradation palette 0 PA33 PA32 PA31 PA30 A 3 1 1 0 0 0 1 0 1 1 1 1 1 0 0 0 1 1 0 0 Set value to gradation palette 0 PA43 PA42 PA41 PA40 A 4 1 1 0 0 0 1 1 0 0 1 1 1 0 0 0 1 1 0 1 Set value to gradation palette 0 PA53 PA52 PA51 PA50 A 5 1 1 0 0 0 1 1 0 1 1 1 1 0 0 0 1 1 1 0 Set value to gradation palette 0 PA63 PA62 PA61 PA60 A 6 [DH] 0 1 1 0 0 0 1 1 1 0 1 0 1 1 0 0/1 0/1 0/1 1 1 1 1 [1H] 0 [2H] 0 [3H] 0 [4H] 0 [5H] 0 [6H] 0 Gradation palette A3 set (upper) [7H] 0 Gradation palette A4 set (lower) [8H] 0 Gradation palette A4 set (upper) [9H] 0 Gradation palette A5 set (lower) [AH] 0 Gradation palette A5 set (upper) [BH] 0 Gradation palette A6 set (lower) [CH] 0 Gradation palette A6 set (upper) D0 1 Gradation palette A3 set (lower) D1 0 Gradation palette A2 set (upper) FUNCTION D2 0 Gradation palette A2 set (lower) D3 0 Gradation palette A1 set (upper) D4 1 Gradation palette A1 set (lower) D5 1 [0H] 0 Gradation palette A0 set (upper) D6 RE register set [FH] * * * * * * * * * * * * * * Set value to gradation palette * PA04 A 0 Set value to gradation palette * PA14 A 1 Set value to gradation palette * PA24 A 2 Set value to gradation palette * PA34 A 3 Set value to gradation palette * PA44 A 4 Set value to gradation palette * PA54 A 5 Set value to gradation palette * PA64 A 6 TST0 RE2 RE1 RE0 RE flag set Notice 1) * mark is Don’t Care Notice 2) [ ] The inner side number is an address for internal register read. Notice 3) The commands that upper/lower register settings are demanded are effective at the point of commands input. But electric volume is effective after upper and lower register setting. - 49 - HM17CM256 INSTRUCTION TABLE (3) CODE (80 series I/F) INSTRUCTION CODE CS RS RD WR RE2 RE1 RE0 D7 Gradation palette A7 set (lower) 0 0 0 Set value to gradation palette 0 PA73 PA72 PA71 PA70 A 7 1 1 0 0 1 0 0 0 0 1 1 1 0 0 1 0 0 0 1 Set value to gradation palette 0 PB03 PB02 PB01 PB00 B 0 1 1 0 0 1 0 0 0 1 1 1 1 0 0 1 0 0 1 0 Set value to gradation palette 0 PB13 PB12 PB11 PB10 B 1 1 1 0 0 1 0 0 1 0 1 1 1 0 0 1 0 0 1 1 Set value to gradation palette 0 PB23 PB22 PB21 PB20 B 2 1 1 0 0 1 0 0 1 1 1 1 1 0 0 1 0 1 0 0 Set value to gradation palette 0 PB33 PB32 PB31 PB30 B 3 1 1 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 0 1 Set value to gradation palette 0 PB43 PB42 PB41 PB40 B 4 1 1 0 0 1 0 1 0 1 1 1 1 0 0 1 0 1 1 0 Set value to gradation palette 0 PB53 PB52 PB51 PB50 B 5 [DH] 0 1 1 0 0 1 0 1 1 0 1 0 1 1 0 0/1 0/1 0/1 1 1 1 1 [1H] 0 [2H] 0 [3H] 0 [4H] 0 [5H] 0 [6H] 0 Gradation palette B2 set (upper) [7H] 0 Gradation palette B3 set (lower) [8H] 0 Gradation palette B3 set (upper) [9H] 0 Gradation palette B4 set (lower) [AH] 0 Gradation palette B4 set (upper) [BH] 0 Gradation palette B5 set (lower) [CH] 0 Gradation palette B5 set (upper) D0 0 Gradation palette B2 set (lower) D1 1 Gradation palette B1 set (upper) FUNCTION D2 0 Gradation palette B1 set (lower) D3 0 Gradation palette B0 set (upper) D4 1 Gradation palette B0 set (lower) D5 1 [0H] 0 Gradation palette A7 set (upper) D6 RE register set [FH] * * * * * * * * * * * * * * * * * * * * * PA74 PB04 PB14 PB24 PB34 PB44 PB54 TST0 RE2 RE1 RE0 Set value to gradation palette A7 Set value to gradation palette B0 Set value to gradation palette B1 Set value to gradation palette B2 Set value to gradation palette B3 Set value to gradation palette B4 Set value to gradation palette B5 RE flag set Notice 1) * mark is Don’t Care Notice 2) [ ] The inner side number is an address for internal register read. Notice 3) The commands that upper/lower register settings are demanded are effective at the point of commands input. But electric volume is effective after upper and lower register setting. - 50 - HM17CM256 INSTRUCTION TABLE (4) CODE (80 series I/F) INSTRUCTION CODE CS RS RD WR RE2 RE1 RE0 D7 Gradation palette B6 set (lower) 1 0 0 0 Set value to gradation palette 0 PB63 PB62 PB61 PB60 B 6 1 1 0 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 1 Set value to gradation palette 0 PB73 PB72 PB71 PB70 B 7 1 1 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 1 0 Set value to gradation palette 0 PC03 PC02 PC01 PC00 C 0 1 1 0 0 1 1 0 1 0 1 1 1 0 0 1 1 0 1 1 Set value to gradation palette 0 PC13 PC12 PC11 PC10 C 1 1 1 0 0 1 1 0 1 1 1 1 1 0 0 1 1 1 0 0 Set value to gradation palette 0 PC23 PC22 PC21 PC20 C 2 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 1 Set value to gradation palette 0 PC33 PC32 PC31 PC30 C 3 1 1 0 0 1 1 1 0 1 1 1 1 0 0 1 1 1 1 0 Set value to gradation palette 0 PC43 PC42 PC41 PC40 C 4 [DH] 0 1 1 0 0 1 1 1 1 0 1 0 1 1 0 0/1 0/1 0/1 1 1 1 1 [1H] 0 [2H] 0 [3H] 0 [4H] 0 [5H] 0 Gradation palette C1 set (lower) [6H] 0 Gradation palette C1 set (upper) [7H] 0 Gradation palette C2 set (lower) [8H] 0 Gradation palette C2 set (upper) [9H] 0 Gradation palette C3 set (lower) [AH] 0 Gradation palette C3 set (upper) [BH] 0 Gradation palette C4 set (lower) [CH] 0 Gradation palette C4 set (upper) D0 1 Gradation palette C0 set (upper) D1 0 Gradation palette C0 set (lower) FUNCTION D2 0 Gradation palette B7 set (upper) D3 1 Gradation palette B7 set (lower) D5 D4 1 [0H] 0 Gradation palette B6 set (upper) D6 RE register set [FH] * * * * * * * * * * * * * * * * * * * * * PB64 PB74 PC04 PC14 PC24 PC34 PC44 TST0 RE2 RE1 RE0 Set value to gradation palette B6 Set value to gradation palette B7 Set value to gradation palette C0 Set value to gradation palette C1 Set value to gradation palette C2 Set value to gradation palette C3 Set value to gradation palette C4 RE flag set Notice 1) * mark is Don’t Care Notice 2) [ ] The inner side number is an address for internal register read. Notice 3) The commands that upper/lower register settings are demanded are effective at the point of commands input. But electric volume is effective after upper and lower register setting. - 51 - HM17CM256 INSTRUCTION TABLE (5) CODE (80 series I/F) INSTRUCTION CODE CS RS RD WR RE2 RE1 RE0 D7 Gradation palette C5 set D6 D5 D4 D3 FUNCTION D2 D1 D0 1 1 0 1 0 0 0 0 0 Set value to gradation palette 0 PC53 PC52 PC51 PC50 C 1 1 0 1 0 0 0 0 0 1 1 1 0 1 0 0 0 0 1 Set value to gradation palette 0 PC63 PC62 PC61 PC60 C 1 1 0 1 0 0 0 0 1 1 1 1 0 1 0 0 0 1 0 Set value to gradation palette 0 PC73 PC72 PC71 PC70 C 1 1 0 1 0 0 0 1 0 1 * 0 1 1 0 1 0 0 0 1 1 0 * Serial extension CS 0 control [7H] 1 1 0 1 0 0 0 1 1 1 * * * Display selection 0 control [8H] 1 1 0 1 0 0 1 0 0 0 PW M GL SB * 0 1 1 0 1 0 0 1 0 0 1 * 0 1 1 0 1 0 0 1 0 1 Electric volume level set 0 DV3 DV2 DV1 DV0 (lower bit) 0 1 1 0 1 0 0 1 0 1 1 Oscillator Rf control 0 [DH] 1 1 0 1 0 0 1 1 0 RF: oscillator feed back resistor set 1 FFL RF2 RF1 RF0 FFL: oscillator frequency control 0 1 1 0 1 0 0 1 1 1 0 0 1 1 0 0/1 0/1 0/1 1 1 1 1 TST0 RE2 RE1 RE0 Internal register read address set [CH] 0 1 1 0 1 1 0 0 Register read address Internal register read 0 1 0 1 0/1 0/1 0/1 * * * * Read Data (lower) [0H] 0 Gradation palette C5 set (upper) [1H] 0 Gradation palette C6 set (lower) [2H] 0 Gradation palette C6 set (upper) [3H] 0 Gradation palette C7 set (lower) [4H] 0 Gradation palette C7 set (upper) [5H] 0 Display start command set [6H] RAM data length set [9H] Electric volume control (lower) [AH] Electric volume control (upper) [BH] discharge [EH] RE register set [FH] 1 0 0 5 * * Set value to gradation palette * PC54 C 5 6 * * Set value to gradation palette * PC64 C 6 7 * * * Set value to gradation palette * PC74 C 7 SC2 SC1 SC0 Common drive scan start line set EX Serial I/F, extension CS port CS (EXCS) control * Gradation display set WL RAM access data length set * CKS S 8 bit/16 bit selection DV6 DV5 DV4 * * DIS Electric volume level set (upper bit) VLCD, V1~V4 discharge capacitor RE flag set Internal register address set read Internal register read out Notice 1) * mark is Don’t Care Notice 2) [ ] The inner side number is an address for internal register read. Notice 3) The commands that upper/lower register settings are demanded are effective at the point of commands input. But electric volume is effective after upper and lower register setting. Notice 4) CKS=0: internal oscillation mode CKS=1: external oscillation mode Default CSK=0 - 52 - out HM17CM256 INSTRUCTION TABLE (6) CODE (80 series I/F) INSTRUCTION CODE CS RS RD WR RE2 RE1 RE0 D7 Window end X address(lower) [0H] Window end X address(upper) [1H] Window end Y address(lower) [2H] Window end Y address(upper) [3H] FUNCTION D6 D5 D4 D3 D2 D1 D0 EX3 EX2 EX1 EX0 Window mode X direction end address set 0 1 1 0 1 0 1 0 0 0 0 0 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 0 0 1 1 Line inversion start 0 Address (lower) [4H] 1 1 0 1 0 1 0 1 0 0 Line inversion start 0 address (upper) [5H] 1 1 0 1 0 1 0 1 0 1 Line inversion end 0 Address (lower) [6H] 1 1 0 1 0 1 0 1 1 0 Line inversion end 0 Address (upper) [7H] 1 1 0 1 0 1 0 1 1 1 * Line inversion control 0 1 1 0 1 0 1 1 0 0 0 * * BT Dummy segment driver address set [9 0 1 1 0 1 0 1 1 0 0 1 * * * 1 1 0 1 0 1 1 0 1 0 PW PW PW PW PWM mode selection MS MA MB MC 1 1 0 0/1 0/1 0/1 1 1 1 1 TST0 RE2 RE1 RE0 [8H] H] PWM mode control 0 [AH] RE register set [FH] 0 EX6 EX5 EX4 Window mode X direction end address set EY3 EY2 EY1 EY0 Window mode Y direction end address set * * EY6 EY5 EY4 Window mode Y direction end address set LS3 LS2 LS1 LS0 Line inversion start address set * LS6 LS5 LS4 Line inversion start address set LE3 LE2 LE1 LE0 Line inversion end address set LE6 LE5 LE4 Line inversion end address set LR LREV,BT: line inversion display set EV segment DM Dummy Y address selection driver RE flag set Notice 1) * mark is Don’t Care Notice 2) [ ] The inner side number is an address for internal register read. Notice 3) The commands that upper/lower register settings are demanded are effective at the point of commands input. But electric volume is effective after upper and lower register setting. - 53 - HM17CM256 (34) INSTRUCTION DESCRIPTION As shown in instruction table, HM17CM256 has abundant command set. All the data code and command code are valid only when the chip select signal CS is at “0” state. The left side of the following command code and data table are the setting of 80 series CPU` interface. Do not use undefined command code. (34-1) Write display data on RAM CS RS RD WR RE2 RE1 RE0 D7 D6 0 0 1 0 0/1 0/1 0/1 Writing the 8-bit display RAM data at specified X, Y address. D5 D4 D3 D2 D1 D0 D1 D0 Display RAM write data (34-2) Read display data from RAM CS RS RD WR RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 0 0 0 1 0/1 0/1 0/1 Display RAM read data Reading out the 8-bit display RAM data from specified X, Y address. One Dummy read cycle is needed after X, Y address is set. (34-3) X address register set CS RS RD WR RE2 RE1 RE0 0 1 1 0 0 0 0 ( reset :AX3~AX4=0H, read address :0H ) CS RS RD WR RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 AX3 AX2 AX1 AX0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 * AX6 AX5 AX4 0 1 1 0 0 0 0 0 ( reset :AX6~AX4=0H, read address :1H ) * : “Don’t care” Setting the X direction address address set. The lower 4-bits are set first, and then upper 3-bits are set later. Please set from lower bit. (34-4) Y address register set CS RS RD WR RE2 RE1 0 1 1 0 0 0 ( reset :AY3~AY0=0H, read address :2H ) CS RS RD WR RE2 RE1 0 1 1 0 0 0 ( reset :AY6~AY4=0H, read address :3H ) RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 1 0 AY3 AY2 AY1 AY0 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 * : “Don’t care” 0 1 1 * AY6 AY5 AY4 Setting the Y address of display RAM. The lower 4-bits are set first, and then upper 3-bits are set later. Please set from lower bit. 00H~51H is valid range at Y address(AY6~AY0). Do not use 52H~FFH range. The Y address(AY6~AY0) of 50H,51H is used for ICON display data address. - 54 - HM17CM256 (34-5) Display start line register set CS RS RD WR RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 0 0 LA3 LA2 LA1 LA0 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 * : “Don’t care” 1 0 1 * LA6 LA5 LA4 0 1 1 0 0 0 (reset:LA3~LA0=0H, read address:4H) CS RS RD WR RE2 RE1 0 1 1 0 0 0 (reset:LA6~LA4=0H, read address:5H) Setting the line address of COM0. The address stored at the start line register becomes display line at COM0 line of LCD panel. The display of LCD panel is done from line address value to the direction of increase. LA6 LA5 LA4 LA3 LA2 LA1 LA0 Line address 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 : : 1 0 0 : : 1 1 1 1 79 (34-6) n line inversion register set CS RS RD WR RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 1 0 N3 N2 N1 N0 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 * : “Don’t care” 1 1 1 * N6 N5 N4 0 1 1 0 0 0 ( reset :N3~N0=0H, read address :6H) CS RS RD WR RE2 RE1 0 1 1 0 0 0 ( reset :N6~N4=0H, read address :7H) Setting line number to be inversed to register. Setting range is from 2 to 80. can be effective only when N line inversion command NLIN=‘1”. If NLIN=“0”, the polarity of LCD driving voltage is inverted by every other frame. N line inversion register N6 N5 N4 N3 N2 N1 N0 Inversion line number 0 0 0 0 0 0 0 Forbidden * 0 0 0 0 0 0 1 2 : : 1 0 0 1 n=N-1 * : N0~N6 =”0” is forbidden. : : 1 1 1 80 - 55 - HM17CM256 • Inversion timing a) when n-line inversion function is OFF(1/82 duty display) 1 line 81 line 82 line 1 line 2 line 3 line LP FLM FR b) when n-line inversion function is ON N line control N line 1 line 2 line D5 D4 D3 D2 0 1 1 0 0 0 0 1 0 0 ( reset :{SHIFT, MON, ALLON, ON/OFF}=0H, read address : 8H) 0 SHIFT MON 1 line 2 line 3 line LP FR (34-7) display control (1) register set CS RS RD WR RE2 RE1 RE0 D7 D6 D1 D0 ALLON ON/OFF various control setting of display a) ON/OFF command Display ON/OFF control ON/OFF=”0”: display OFF (all ports are VSS level) ON/OFF=”1”: display ON b) ALLON command Setting display data to “1” with independence of RAM data. This command has higher priority than positive display/negative display command. RAM data is not changed. ALLON=”0”: normal display state ALLON=”1”: turn on all the pixel c) MON command BW display / gradation display selection MON=”0”: gradation display mode MON=”1”: BW display mode d) SHIFT command Selection of the shift direction of scan data of common driver output SHIFT=”0”:COM0 COM79 shift SHIFT=”1”:COM79 COM0 shift - 56 - HM17CM256 (34-8) Display control (2) register set CS RS RD WR RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 1 0 0 0 0 1 ( reset :{REV, NLIN, SWAP, REF}=0H, read address :9H ) 0 0 1 REV NLIN SWAP REF various control setting of display a) REF command When CPU tries to access display RAM, the relation between X address and write data is changed by command, normal or headfirst. The output sequence of display data to segment driver can be controlled by register setting. The IC can be placed in panel with less constraint at application. b) SWAP command When CPU tries to access display RAM, the display data can be swapped. SWAP=”0”: Normal state, D7~D0 or D15~D0 are written to the RAM. SWAP=”1”: SWAP mode on : The swapped data of D7~D0 or D15~D0 are written to the RAM. SWAP=”0” SWAP=”1” Write data D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 Internal data d7 d6 d5 d4 d3 d2 d1 d0 d0 d1 d2 d3 d4 d5 d6 d7 Read data D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 c) NLIN command n line inversion ON/OFF control. NLIN=”0”: n line inversion OFF. Polarity signal, FR is inverted every other frame. NLIN=”1”: n line inversion ON. The n lines are inverted according to the contents of n line inversion register d) REV command The relation between RAM data and display data is defined by this command. REV=”0”: The display data are reflected the RAM data until that time. REV=”1”: The display data are reflected the opposite data from RAM data. - 57 - HM17CM256 (34-9) Increment control register set CS RS RD WR RE2 RE1 RE0 D7 0 1 1 0 0 0 0 (reset :{WIN, AIM, AYI, AXI}=0H, read address :AH) D6 D5 D4 D3 D2 D1 D0 1 0 1 * : ”Don’t care” 0 WIN AIM AYI AXI Sets the display RAM address to increment mode when RAM data is accessed. Per RAM write or read access, the increment or non-increment settings of X and Y address counter are possible by AIM, AYI, AXI register setting. When accessing consecutive RAM areas by read or write, the address increment operation is possible without setting the read or write address by this register setting. After setting the auto increment register, the X, Y address should be set lower bits first. Please revise X, Y address register after increment register setting. When WIN register is set to “1”, the CPU accesses specified area of display RAM. In this case X, Y address should be used with auto increment mode set (AXI=”1”, AYI=”1”). Do not revise X, Y address register when it is not auto increment mode. WIN=”0”: normal display RAM access WIN=”1”: window area access at display RAM The window to be accessed is defined by setting the start X, Y address and end X, Y address. When accessing display with window area mode, please set X, Y start address and then X, Y window end address. When accessing consecutive RAM area, it is possible to access next location without setting the address by using this command. X, Y address is unknown after auto increment setting. When WIN register is set to “1”, the RAM should be accessed after setting start point address and end point address. And address setting should be done in sequence of start point of X address and Y address, and then end point of X address and Y address after WIN command setting ( WIN=”1”). The relationship between AIM, AYI, AXI register and X, Y address increment mode is as follow. AIM 0 1 notice notice Increment timing selection Both case of writing in and read out display RAM Only when writing in display RAM( read modify) Remark This mode is valid when read or write is performed on consecutive RAM location. This mode is valid when read out consecutive data and modifying the data and then write them in again or read write per access. AYI 0 0 1 1 notice notice AXI 0 1 0 1 Increment timing selection No increment X address auto increment Y address auto increment X, Y address auto increment Remark Regardless of AIM setting, no auto increment for X and Y address According to AIM setting, auto increment only for X address. And X address is increased as followed loop according to REF register( SEG output direction setting register ) value. MaxH 00H ∗) Please refer to notice RAM address bitmap in (10) relation between display RAM and address According to AIM setting, auto increment only for Y address Y address is increased as followed loop regardless of REF register. - 58 - HM17CM256 51H 00H notice According to AIM setting, auto increment for X and Y address X address is increased to MaxH first and then Y address is increased later. You should set X address, Y address in sequence, anything else is forbidden. MaxH 00H X ∗) Please refer to 51H 00H address Y address RAM address bitmap in (10) relation between display RAM and address And when X, Y auto increment mode operating, window access is possible. selected ( WIN =”1” ), address is increased as following loop. START Address X END Address address START Address Y When window mode is END Address address a) 8 bit access mode The increment operating is as above description. b) 16 bit access mode Two-byte access is done by single RAM access. Address is increased after access. X address is increased as (00H, 01H, 3EH, 3FH) sequence. - 59 - HM17CM256 (34-10) Power control register set CS RS RD WR RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 1 0 0 0 0 1 0 ( reset :{AMPON, HALT, DCON, ACL}=0H read address :BH ) 1 1 AMPON HALT DCON ACL ¡ a) ACL command This command initializes internal circuit and it is valid only at master operating. ACL=”0”: normal state ACL=”1”: initialization ON Just after the execution of ACL command (ACL=”1”), D0 bit is set to 1. But as the initialization process goes on internally, D0 is reset to “0”. When ACL command is executed, internal reset signal is produced by using local display clock ( clock from internal oscillator or from external resistor oscillation mode ). So, after ACL command is executed, it needs to WAIT at least 2 period of the clock for next process beginning. ACL command is effective only at master mode operation because it uses original oscillator clock. It is prohibited for slave mode operation to use the internal oscillator or external oscillator. So, ACL command is impossible at slave mode. Please reset the slave device at RES terminal, when needed. b) DCON command ON/OFF the internal voltage boosting circuit. DCON=”0”: boosting circuit OFF DCON=”1”: boosting circuit ON c) HALT command Power save mode ON/OFF control HALT=”0”: normal state HALT=”1”: power save state The power consumption is decreased near static current at power save mode. States of each sub-block in power save mode are as follow. • • • • • • Oscillator, built-in power supply block stop. Stop driving LCD panel, segment drive, the outputs of common driver are all set to VSS level. Clock input from OSC1 port is disabled. Display RAM data are conserved. Operational modes are preserved as those before power save command was executed. VLCD, V1 ~ V4 become high impedance state. Make display OFF state before power save mode by HALT command. And when returning from power save mode, you should display ON after oscillator, power circuit is activated stably. After display OFF and HALT command, if the display is turned ON before oscillator and power circuit is not activated stably, wrong display can be appeared. d) AMPON command ON/OFF the internal OP. amplifier circuit of power block (voltage regulator block, electric volume, voltage converting circuit ). AMPON=”0”: AMPON=”1”: - 60 - internal power circuit OP. Amplifier OFF internal power circuit OP. Amplifier ON HM17CM256 (34-11) LCD duty set CS RS RD WR 0 1 1 0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 1 1 0 0 * DS2 DS1 DS0 ( reset :{DS2, DS1, DS0}=0H read address :CH) *:”Don’t care” ¢ LCD display duty setting DS2 0 0 0 0 1 1 1 1 DS1 0 0 1 1 0 0 1 1 DS0 0 1 0 1 0 1 0 1 duty Y direction 80 dot width display, 1/82 duty Y direction 75 dot width display, 1/77 duty Y direction 64 dot width display, 1/66 duty Y direction 45 dot width display, 1/47 duty Y direction 30 dot width display, 1/32 duty Y direction 15 dot width display, 1/17 duty Y direction 36 dot width display, 1/38 duty Y direction 24 dot width display, 1/26 duty Partial display is possible by setting duty operation. - 61 - HM17CM256 (34-12) Boosting coefficient setting CS RS RD WR 0 1 1 0 ( reset :{VU2~VU0}=0H RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 1 1 0 1 * VU2 VU1 VU0 read address :DH) * : ”Don’t care” £ coefficient setting of boosting circuit VU2 0 0 0 0 1 1 1 1 VU1 0 0 1 1 0 0 1 1 VU0 Boosting multiple 0 No boosting * 1 2 times boosting operation 0 3 times boosting operation 1 4 times boosting operation 0 5 times boosting operation 1 6 times boosting operation 0 7 times boosting operation 1 forbidden *VREG amplifier gain is 1. (34-13) Bias setting register CS RS RD 0 1 1 ( reset :{B2~B0}=0H £ WR RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 1 1 1 0 * B2 B1 B0 read address : EH) * : ”Don’t care” The bias ratio is selected by this register. and B0 register. B2 0 0 0 0 1 1 1 1 B1 0 0 1 1 0 0 1 1 B0 0 1 0 1 0 1 0 1 1/10, 1/9, 1/8, 1/7, 1/6, 1/5 biases can be selected by B2, B1 bias Operating under 1/9 bias Operating under 1/8 bias Operating under 1/7 bias Operating under 1/6 bias Operating under 1/5 bias Operating under 1/10 bias forbidden forbidden (34-14) RE flag state register setting. CS RS RD WR RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 1 0 0/1 0/1 0/1 1 ( reset :{TST0, RE2, RE1, RE0}=0H read address :FH) 1 1 1 TST0 RE2 RE1 RE0 ¤ Setting the register of command extension register(RE2, RE1, RE0). When accessing command register, the extension register corresponding flag should be set first, and then access it. The TST0 register is that for test, and so please set to “0”. - 62 - HM17CM256 (34-15) Gradation palette register setting CS RS RD 0 1 1 (read address :0H) CS RS RD WR RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 1 0 0 0 0 PA03 PA02 PA01 PA00 WR RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 0 0 1 * * * PA04 0 1 1 0 0 0 ( read address :1H) *:”Don’t care” (reset :PA04~PA00=”00000”) CS RS RD 0 1 1 ( read address :2H) CS RS RD WR RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 1 0 0 1 0 PA13 PA12 PA11 PA10 WR RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 0 1 1 * * * PA14 0 1 1 0 0 0 ( read address :3H) * : ”Don’t care” ( reset :PA14~PA10=”00101”) CS RS RD 0 1 1 ( read address :4H) CS RS RD WR RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 1 0 1 0 0 PA23 PA22 PA21 PA20 WR RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 1 0 1 * * * PA24 0 1 1 0 0 0 ( read address:5H) * : “Don’t care” ( reset :PA24~PA20=”01010”) CS RS RD 0 1 1 ( read address : 6H) CS RS RD WR RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 1 0 1 1 0 PA33 PA32 PA31 PA30 WR RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 1 1 1 * * * PA34 0 1 1 0 0 0 ( read address : 7H) * : “Don’t care” ( reset : PA34~PA30=”01110”) CS RS RD 0 1 1 ( read address :8H) WR RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 1 1 0 0 0 PA43 PA42 PA41 PA40 - 63 - HM17CM256 CS RS RD WR RE2 RE1 0 1 1 0 0 0 ( read address :9H) * : “Don’t care” ( reset :PA44~PA40=”10001”) CS RS RD 0 1 1 ( read address :AH) CS RS RD RS RD 0 1 1 ( read address :CH) CS RS RD RS RD 0 1 1 ( read address :0H) CS RS RD RS RD 0 1 1 ( read address :2H) CS RS RD D4 D3 D2 D1 D0 1 1 0 0 1 * * * PA44 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 1 1 0 1 0 PA53 PA52 PA51 PA50 WR RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 1 0 1 1 * * * PA54 WR RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 1 1 1 0 0 PA63 PA62 PA61 PA60 WR RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 1 1 0 1 * * * PA64 WR RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 0 0 0 0 0 PA73 PA72 PA71 PA70 WR RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 1 * * * PA74 D3 D2 D1 D0 WR RE2 RE1 RE0 D7 D6 D5 D4 0 0 1 0 0 0 1 0 WR RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 1 1 * * * PB04 0 1 1 0 0 1 ( read address :3H) * : “Don’t care” ( reset :PB04~PB00=”00000”) - 64 - D5 RE1 0 1 1 0 0 1 ( read address :1H) * : “Don’t care” ( reset :PA74~PA70=”11111”) CS D6 RE2 0 1 1 0 0 0 ( read address :DH) * : “Don’t care” ( reset :PA64~PA60=”11010”) CS D7 WR 0 1 1 0 0 0 ( read address :BH) * : “Don’t care” ( reset :PA54~PA50=”10101”) CS RE0 PB03 PB02 PB01 PB00 HM17CM256 CS RS RD 0 1 1 ( read address :4H) CS RS RD WR RE2 RE1 RE0 D7 D6 D5 D4 0 0 1 0 0 1 0 0 WR RE2 RE1 RE0 D7 D6 D5 D4 D3 0 0 1 0 1 0 1 1 0 0 1 ( read address :5H) * : “Don’t care” ( reset :PB14~PB10=”00101”) CS RS RD 0 1 1 ( read address :6H) CS RS RD RS RD 0 1 1 ( read address :8H) CS RS RD RS RD 0 1 1 ( read address :AH) CS RS RD RS RD 0 1 1 ( read address :CH) D0 PB11 PB10 D2 D1 D0 * * * PB14 D3 D2 D1 D0 PB13 PB12 RE1 RE0 D7 D6 D5 D4 0 0 1 0 0 1 1 0 WR RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 1 1 * * * PB24 D3 D2 D1 D0 PB23 PB22 PB21 PB20 WR RE2 RE1 RE0 D7 D6 D5 D4 0 0 1 0 1 0 0 0 WR RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 0 1 * * * PB34 D3 D2 D1 D0 PB33 PB32 PB31 PB30 WR RE2 RE1 RE0 D7 D6 D5 D4 0 0 1 0 1 0 1 0 WR RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 1 * * * PB44 D3 D2 D1 D0 0 1 1 0 0 1 ( read address :BH) * : “Don’t care” ( reset :PB44~PB40=”10001”) CS D1 RE2 0 1 1 0 0 1 ( read address :9H) * : “Don’t care” ( reset :PB34~PB30=”01110”) CS D2 WR 0 1 1 0 0 1 ( read address :7H) * : “Don’t care” ( reset :PB24~PB20=”01010”) CS D3 WR RE2 RE1 RE0 D7 D6 D5 D4 0 0 1 0 1 1 0 0 PB43 PB42 PB41 PB40 PB53 PB52 PB51 PB50 - 65 - HM17CM256 CS RS RD WR RE2 RE1 0 1 1 0 0 1 ( read address :DH) * : “Don’t care” ( reset :PB54~PB50=”10101”) CS RS RD 0 1 1 ( read address :0H) CS RS RD RS RD 0 1 1 ( read address :2H) CS RS RD RS RD 0 1 1 ( read address :4H) CS RS RD RS RD 0 1 1 ( read address :6H) CS RS RD D4 D3 D2 D1 D0 0 1 1 0 1 * * * PB54 D3 D2 D1 D0 RE0 D7 D6 D5 D4 0 0 1 1 0 0 0 0 WR RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 0 0 1 * * * PB64 D3 D2 D1 D0 PB63 PB62 PB61 PB60 WR RE2 RE1 RE0 D7 D6 D5 D4 0 0 1 1 0 0 1 0 WR RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 0 1 1 * * * PB74 D3 D2 D1 D0 PB73 PB72 PB71 PB70 WR RE2 RE1 RE0 D7 D6 D5 D4 0 0 1 1 0 1 0 0 WR RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 1 0 1 * * * PC04 D3 D2 D1 D0 PC03 PC02 PC01 PC00 WR RE2 RE1 RE0 D7 D6 D5 D4 0 0 1 1 0 1 1 0 WR RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 1 1 1 * * * PC14 0 1 1 0 0 1 ( read address :7H) * : “Don’t care” ( reset :PC14~PC10=”00101”) - 66 - D5 RE1 0 1 1 0 0 1 ( read address :5H) * : “Don’t care” ( reset :PC04~PC00=”00000”) CS D6 RE2 0 1 1 0 0 1 ( read address :3H) * : “Don’t care” ( reset :PB74~PB70=”11111”) CS D7 WR 0 1 1 0 0 1 ( read address :1H) * : “Don’t care” ( reset :PB64~PB60=”11010”) CS RE0 PC13 PC12 PC11 PC10 HM17CM256 CS RS RD 0 1 1 ( read address :8H) CS RS RD WR RE2 RE1 RE0 D7 D6 D5 D4 0 0 1 1 1 0 0 0 WR RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 1 0 0 1 * * * PC24 D3 D2 D1 D0 0 1 1 0 0 1 ( read address :9H) * : “Don’t care” ( reset :PC24~PC20=”01010”) CS RS RD 0 1 1 ( read address :AH) CS RS RD RS RD 0 1 1 ( read address :CH) CS RS RD RS RD 0 1 1 ( read address :0H) CS RS RD RS RD 0 1 1 ( read address :2H) D0 PC23 PC22 PC21 PC20 RE1 RE0 D7 D6 D5 D4 0 0 1 1 1 0 1 0 WR RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 1 0 1 1 * * * PC34 D3 D2 D1 D0 PC33 PC32 PC31 PC30 WR RE2 RE1 RE0 D7 D6 D5 D4 0 0 1 1 1 1 0 0 WR RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 1 1 0 1 * * * PC44 D3 D2 D1 D0 PC43 PC42 PC41 PC40 WR RE2 RE1 RE0 D7 D6 D5 D4 0 1 0 0 0 0 0 0 WR RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 1 * * * PC54 D3 D2 D1 D0 0 1 1 0 1 0 ( read address :1H) * : “Don’t care” ( reset :PC54~PC50=”10101”) CS D1 RE2 0 1 1 0 0 1 ( read address :DH) * : “Don’t care” ( reset :PC44~PC40=”10001”) CS D2 WR 0 1 1 0 0 1 ( read address :BH) * : ”Don’t care” ( reset :PC34~PC30=”01110”) CS D3 WR RE2 RE1 RE0 D7 D6 D5 D4 0 1 0 0 0 0 1 0 PC53 PC52 PC51 PC50 PC63 PC62 PC61 PC60 - 67 - HM17CM256 CS RS RD WR RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 1 1 * * * PC64 D3 D2 D1 D0 0 1 1 0 1 0 ( read address :3H) * : “Don’t care” ( reset :PC64~PC60=”11010”) CS RS RD 0 1 1 ( read address :4H) CS RS RD WR RE2 RE1 RE0 D7 D6 D5 D4 0 1 0 0 0 1 0 0 WR RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 0 1 * * * PC74 0 1 1 0 1 0 ( read address :5H) * : “Don’t care” ( reset :PC74~PC70=”11111”) Setting each gradation palette. PC73 PC72 PC71 PC70 The gradation level is selected among 32 level. GRADATION LEVEL TABLE Palette value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 - 68 - 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Gradation level 0 1/31 2/31 3/31 4/31 5/31 6/31 7/31 8/31 9/31 10/31 11/31 12/31 13/31 14/31 15/31 Remarks Initial value of palette 0 Initial value of palette 1 Initial value of palette 2 Initial value of palette 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ( palette Aj, palette Bj, palette Cj (j=0~7) 3 kinds ) Gradation Palette value remarks level 0 0 0 0 16/31 0 0 0 1 17/31 Initial value of palette 4 0 0 1 0 18/31 0 0 1 1 19/31 0 1 0 0 20/31 0 1 0 1 21/31 Initial value of palette 5 0 1 1 0 22/31 0 1 1 1 23/31 1 0 0 0 24/31 1 0 0 1 25/31 1 0 1 0 26/31 Initial value of palette 6 1 0 1 1 27/31 1 1 0 0 28/31 1 1 0 1 29/31 1 1 1 0 30/31 1 1 1 1 31/31 Initial value of palette 7 HM17CM256 (34-16) Display start command set CS RS RD WR RE2 RE1 RE0 0 1 1 0 1 0 0 ( reset :{SC2, SC1, SC0}=0H, read address :6H) D7 D6 D5 D4 D3 D2 D1 D0 0 1 * : “Don’t care” 1 0 * SC2 SC1 SC0 Setting the scan start output of common driver. SC2 SC1 SC0 SHIFT=0 starting point of COM. 0 0 0 COM0~ 0 0 1 COM15~ 0 1 0 COM30~ 0 1 1 COM45~ 1 0 0 COM60~ 1 0 1 COM75~ 1 1 0 forbidden 1 1 1 forbidden SHIFT=0:COM increasing direction scanning SHIFT=1:COM decreasing direction scanning SHIFT=1 starting point of COM. COM79~ COM64~ COM49~ COM34~ COM19~ COM4~ forbidden forbidden (34-17) Serial extension CS control CS RS RD WR RE2 RE1 0 1 1 0 1 0 ( reset :{EXCS}=1H, read address :7H) RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 * : “Don’t care” 1 1 1 * * * EXCS D1 D0 * * Controlling the output of extension CS at serial interface application. EXCS pin is I/O pin and used as output at master mode device thus can be controlled. EXCS=”0”:EXCS pin output is set to “L”. EXCS=”1”:EXCS pin output is set to “H”. (34-18) display selection control CS RS RD WR 0 1 1 0 ( reset :{PWM, GLSB}=0H, RE2 RE1 RE0 1 0 0 read address :8H) D7 D6 D5 D4 1 0 * : “Don’t care” 0 0 D3 D2 PWM GLSB a) GLSB command The segment driver outputs corresponding to 4 gradation display actually uses 3 bit data to select 4 gradation levels out of 8 gradation levels, 2 bit data out of RAM area and 1 bit out of Gradation LBS. This command sets the supplement 1 bit Gradation LSB ( GLSB ) register. GLSB=”0”: Set the LSB of segment driver corresponding to 4-gradataion display to “0”. GLSB=”1”: Set the LSB of segment driver corresponding to 4 gradataion display to “1”. b) PWM command Selection gradation display mode. PWM=”0”: Gradation mode is selected variable 8 gradation among 32 levels. PWM=”1”: Fixed 8 gradation display mode. - 69 - HM17CM256 (34-19) RAM data length setting CS RS RD WR RE2 RE1 0 1 1 0 1 0 ( reset :{WLS}=0H, read address :9H) RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 * : “Don’t care” 0 0 1 * * CKS WLS WLS: Selection 8 bit access or 16 bit access at RAM access. Access with 16 bits data length is effective only at RAM access. The other accesses are 8 bits access ( command access ). WLS=”0”: RAM access is done by 8 bits data length. WLS=”1”: RAM access is done by 16 bits data length CKS: Selection the oscillator. CKS=”0”: internal oscillation mode ( default ). Internal oscillation mode should be used under condition of OSC1 and OSC2 open. CKS=”1”: external oscillation mode. External oscillation mode should be used under the condition of clock input by OSC1 port or resistor connection between OSC1 and OSC2 port. (34-20) Electric volume registers setting. CS RS RD 0 1 1 ( read address :AH) CS RS RD WR RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 0 1 0 1 0 DV3 DV2 DV1 DV0 WR RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 1 * DV6 DV5 DV4 0 1 1 0 1 0 ( read address :BH) * : “Don’t care” ( reset :DV6~DV0=00H) Setting the electric volume code. The voltage range is divided into 127 levels by this register DV6 DV5 DV4 DV3 DV2 DV1 DV0 Output voltage 0 0 0 0 0 0 0 low 0 0 0 0 0 0 1 : : : : : 1 1 1 1 1 1 0 : 1 1 1 1 1 1 1 high The output voltage of VREG is determined by Eq. ¥ . VREG = VREF x N (N: booster coefficient) N=1 under the condition of boosting operation is not valid (booster coefficient register, VU=0H ). ¦ ¦ ¦ ¦ § The LCD driving voltage VLCD is decided by VREG level or electric volume value (Eq. VLCD = 0.5 x VREG + M x (VREG - 0.5VREG) / 127 ( M : DV6~DV0 register value ) © © © © ¨ ). ¨ To prevent over voltage from being generated by electric volume setting, when the register value is set to upper side of electric volume, voltage level is not changed immediately. When the register value is set to lower side of electric volume, the voltage level is changed instantly. - 70 - HM17CM256 (34-21) Oscillator circuit Rf control CS RS RD WR RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 1 0 1 FFL Rf2 Rf1 Rf0 0 1 1 0 0 0 0 ( reset {FFL, Rf2, Rf1, Rf0}=0H, read address : DH) ª The feedback resistance of oscillator circuit can be changed by setting this register. The frame frequency is changed according to the frequency of oscillator, and the oscillation frequency is determined by the resistor value. When you set the frame rate, please check the state of LCD display. Rf 2 0 0 0 0 1 1 1 1 Rf 1 0 0 1 1 0 0 1 1 Rf 0 0 1 0 1 0 1 0 1 Feedback resistance size Reference value 0.8 x reference value 0.9 x reference value 1.1 x reference value 1.2 x reference value forbidden forbidden forbidden FFL command Setting oscillator frequency ( frame frequency fFLM). ( refer to DC characteristic ) FFL=0 normal oscillator frequency ( set frame frequency, fFLM to 73Hz(Typ)) FFL=1 high speed oscillator frequency ( set frame frequency, fFLM to 150Hz(Typ)) * The value of typical frame frequency fFLMTyp is under following condition. • Display mode : variable gradation display • 1/82 Duty • {Rf2, Rf1, Rf0}=0H « « « (34-22) Discharge control CS RS 0 ( reset ¬ RD WR RE2 1 1 0 1 {DIS}=0H, read address ¬ RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 1 1 0 * * * DIS EH) * : “Don’t care” The capacitors connected between VLCD~V4 and VSS can be discharged by this control. to capacitor setting example. DIS=”0” discharge stop DIS=”1” start discharge Please refer - 71 - HM17CM256 (34-23) Set read address of internal register CS RS RD WR RE2 0 1 1 0 1 ( reset :{RA3, RA2, RA1, RA0}=BH) RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 1 0 0 RA3 RA2 RA1 RA0 Before executing the internal register data read command the address of register should be specified first. For example, when display control (1) is being read out, { RA3, RA2, RA1, RA0 } = 8H should be specified first. Because selected register is corresponded with RE flag, please set RE flag first and then read out the register. Refer to the command function description and the lists of commands for the address of each register. (34-24) Internal register data read CS RS RD 0 1 1 * : “Don’t care” WR RE2 RE1 RE0 D7 D6 D5 D4 0 0/1 0/1 0/1 * * * * This command is used to read out internal register data. the address for internal register to read should be set first. D3 D2 D1 D0 Internal register data read Before executing this command, RE flag and (34-25) Window end X address set CS RS RD WR RE2 RE1 0 1 1 0 1 0 ( reset :{EX3~EX0}=0H, read address :0H) CS RS RD WR RE2 RE1 0 1 1 0 1 0 ( reset :{EX6~EX4}=0H, read address :1H) RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 0 0 0 EX3 EX2 EX1 EX0 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 * EX6 EX5 EX4 1 0 * : “Don’t care” When the window area of RAM is specified(WIN=“1”) to access, the end X address of the window is set by this command. The lower 4 bits of address should be set first and then upper 3 bits are set later (34-26) Window end Y address set CS RS RD WR RE2 RE1 0 1 1 0 1 0 ( reset :{EY3~EY0}=0H, read address :2H) CS RS RD WR RE2 RE1 0 1 1 0 1 0 ( reset :{EY6~EY4}=0H, read address :3H) RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 0 1 0 EY3 EY2 EY1 EY0 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 1 * EY6 EY5 EY4 1 0 * : “Don’t care” When window area of RAM is specified(WIN=“1”) to access , the end Y address of the window is set by this command. The lower 4 bits of address should be set first and then upper 3 bits are set later. - 72 - HM17CM256 (34-27) Line inversion start address set CS RS RD WR RE2 RE1 0 1 1 0 1 0 ( reset :{LS3~LS0}=0H, read address :4H) CS RS RD WR RE2 RE1 0 1 1 0 1 0 ( reset :{LS6~LS4}=0H, read address :5H) RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 1 0 0 LS3 LS2 LS1 LS0 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 1 * LS6 LS5 LS4 1 0 * : “Don’t care” When the start address of negative display is set on, it is set by this command. The lower 4 bits of address should be set first and then upper 3 bits are set later. The possible range is LS=00H~4FH . The other values are forbidden. Please set the value under the condition, LS≤LE. (34-28) Line inversion end address set CS RS RD WR RE2 RE1 0 1 1 0 1 0 ( reset :{LE3~LE0}=0H, read address :6H) CS RS RD WR RE2 RE1 0 1 1 0 1 0 ( reset :{LE6~LE4}=0H, read address :7H) RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 1 1 0 LE3 LE2 LE1 LE0 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 1 1 * LE6 LE5 LE4 1 0 * : “Don’t care” When the end address of negative display is set on, it is set by this command. The lower 4 bits of address should be set first and then upper 3 bits are set later. The possible range is LS=00H~4FH . The other values are forbidden. Please set the value under the condition, LS≤LE. (34-29) Line inversion control CS RS RD WR RE2 RE1 RE0 0 1 1 0 1 0 1 ( reset :{PSC, BT, LREV}=0H, read address :8H) D7 D6 1 0 * : “Don’t care” D5 D4 D3 D2 D1 D0 0 0 * * BT LREV Setting the status of line inversion display tone. LREV command : line inversion display ON/OFF setting. LREV=”0”: normal display LREV=”1”: line inversion display ON. The area specified by line inversion start/stop address is blinked. The blink type display is controlled by BT command. When line inversion display is ON(LREV=”1”), line inversion start address(LSi) and line inversion stop address(LEi) should be set as following condition. LSi ≤ LEi - (1) And following condition is forbidden. LEi < LSi - (2) - 73 - HM17CM256 BT command : inversion timing selection at line inversion display BT=”0”: Negative tone display in specified area BT=”1”: The image of specified area is blinked by every 32 frame. ® ¯ ¯ ¯ ° ¯ ° ° ° ¯ ° ¯ ¯ ¯ ° ¯ ° ° ° ¯ ° ¯ ¯ ¯ ° ¯ ° ° ° ¯ ° ° ° ° ° ¯ ¯ ¯ ¯ ¯ ° ¯ ¯ ¯ ° ¯ ° ° ° ¯ ° ¯ ¯ ¯ ° ¯ ° ° ° ¯ ° ¯ ¯ ¯ ° ¯ ° ° ° ¯ ¯ ¯ ¯ ¯ ¯ ° ° ° ° ° Changes per every 32 frame. Display example (BT=”1”) And be cautious that LREV and BT commands have no influence on dummy segment driver circuit. And the image selected by COMI0, COMI1 is excluded. HYUNDAI LCD DRIVER Low Power and Low Voltage Changes per every 32 frame. HYUNDAI LCD DRIVER Low Power and Low Voltage line inversioin start address line inversioin end address ² ² Line inversion display example (LREV=”1”,BT=”1”) (34-30) Dummy segment driver address selection ( Refer to dummy segment drive related description. ) CS RS RD WR RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 1 0 1 0 1 1 0 0 1 * * * DMY ( reset :{DMY}=0H, read address :8H) * : “Don’t care” When data is to be written to dummy segment driver, this register is active (DMY=”1”). DMY=”0”: normal display RAM access DMY=”1”: display data access to dummy segment driver Normal segment drivers acquire display data from display RAM, but dummy segment drivers acquire display data from corresponding register not from display RAM. The capacity of register is 4 bytes. That is correspond to SEGSA0~SEGSA3 SEGSB0~SEGSB3 SEGSC0~SEGSC3 output. ± ± When accessing with DMY = “1”, address setting is valid by only X address. There is 4 byte capacity, and so 00H, 01H, 02H, 03H is valid at 8 bits mode and 00H, 01H is valid at 16 bits mode. There is no - 74 - HM17CM256 relation with Y address setting value. To access with DMY = “1”, register data write-in is possible with increment mode. (34-31) PWM mode control CS RS RD WR RE2 RE1 RE0 D7 D6 0 1 1 0 1 0 1 1 0 ( reset :{PWMS, PWMA, PWMB, PWMC}=0H, read address :8H) D5 D4 D3 D2 D1 D0 1 0 PWMS PWMA PWMB PWMC * : “Don’t care” PWM mode selection. ( Refer to following wave diagram. ) PWMS=”0”: Selection PWM type1. PWMA, PWMB, PWMC=”0” : PWM type1-O is selectable for each A, B, C data. PWMA, PWMB, PWMC=”1” : PWM type1-E is selectable for each A, B, C data. PWMS=”1”: Selection PWM type2. a) PWM type1 (PWMS=”0”) “H” CL odd line even line “L” VLCD ³ Type-O ´ V2 SEG VLCD µ Type-E ´ V2 b) PWM type2 (PWMS=”1”) CL “H” “L” SEG VLCD µ µ V2 - 75 - HM17CM256 (35) Relation between each setting and COM / display RAM The COM port number corresponds to Y address of display RAM by SHIFT command, LCD duty command, common display start position command and display start line setting command. • When display start address was set to “0”. According to LCD duty and display start common line address, the port of COM line and display RAM address ( MY ) is changed by 15 line unit. When SHIFT register is set to “0” common line shift to upward direction, and when the value is “1”, common line shift to downward direction. When display start address (LA6~LA0) is set to “0”, the “MY” corresponds to starting position is “0”. The MY shift upward direction as display goes on. In any case, COMI0=MY80, COMI1=MY81 . • When display start line was set except for “0” According to LCD duty and display start common line address, the port of COM line and display RAM address, MY is changed by 15 line unit. When SHIFT register is set to “0” common line shift to upward direction, and when the value is “1”, common line shift to downward direction. When display start address (LA6~LA0) is set to except for “0”, the “MY” corresponds to starting position is shift by the amount of set value. The MY shift upward direction as display goes on but MY is set to “0” after MY=79. In any case, COMI0=MY80, COMI1=MY81 . - 76 - HM17CM256 ¶ display start line set to “0” , 1/82 duty by DS2~DS0 register SHIFT set value DS2 DS1 DS0 SC2 SC1 SC0 LA6 LA0 · COMI0 COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11 COM12 COM13 COM14 COM15 COM16 COM17 COM18 COM19 COM20 COM21 COM22 COM23 COM24 COM25 COM26 COM27 COM28 COM29 COM30 COM31 COM32 COM33 COM34 COM35 COM36 COM37 COM38 COM39 COM40 COM41 COM42 COM43 COM44 COM45 COM46 COM47 COM48 COM49 COM50 COM51 COM52 COM53 COM54 COM55 COM56 COM57 COM58 COM59 COM60 COM61 COM62 COM63 COM64 COM65 COM66 COM67 COM68 COM69 COM70 COM71 COM72 COM73 COM74 COM75 COM76 COM77 COM78 COM79 COMI1 · · · · · · “000” · 80 0 SHIFT=”0” (common forward scan) “000” (1/82 duty) “001” “010” “011” “100” “0000000” (display start point 0) 80 65 80 50 80 35 80 20 “101” “000” 80 5 80 79 SHIFT=”1” (common backward scan) “000” (1/82 duty) “001” “010” “011” “100” “0000000” (display start point 0) 80 64 80 49 80 34 80 19 “101” 80 4 0 79 79 0 0 79 79 0 0 79 79 0 0 79 79 0 0 79 79 0 79 81 64 81 49 81 34 81 19 81 4 81 0 81 65 81 50 81 35 81 20 81 5 81 The number on the table means MY ( Y direction shift address ). The COM electrodes without MY number are driving with non-selection level signal. The Marked line is display start line. - 77 - HM17CM256 ¸ display start line set to “0” , 1/77 duty by DS2~DS0 register SHIFT set value DS2 DS1 DS0 SC2 SC1 SC0 LA6 LA0 ¹ COMI0 COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11 COM12 COM13 COM14 COM15 COM16 COM17 COM18 COM19 COM20 COM21 COM22 COM23 COM24 COM25 COM26 COM27 COM28 COM29 COM30 COM31 COM32 COM33 COM34 COM35 COM36 COM37 COM38 COM39 COM40 COM41 COM42 COM43 COM44 COM45 COM46 COM47 COM48 COM49 COM50 COM51 COM52 COM53 COM54 COM55 COM56 COM57 COM58 COM59 COM60 COM61 COM62 COM63 COM64 COM65 COM66 COM67 COM68 COM69 COM70 COM71 COM72 COM73 COM74 COM75 COM76 COM77 COM78 COM79 COMI1 ¹ ¹ ¹ ¹ ¹ ¹ “000” ¹ 80 0 SHIFT=”0” (common forward scan) “001” (1/77 duty) “001” “010” “011” “100” “0000000” (display start point 0) 80 65 80 50 80 35 80 20 “101” “000” 80 5 80 SHIFT=”1” (common backward scan) “001” (1/77 duty) “001” “010” “011” “100” “0000000” (display start point 0) 80 64 80 49 80 19 80 4 0 74 74 74 0 0 74 74 0 0 74 74 0 0 74 74 0 0 74 74 74 0 81 64 81 49 81 34 81 19 81 4 81 0 81 65 81 50 81 The number on the table means MY ( Y direction shift address ). The COM electrodes without MY number are driving with non-selection level signal. The Marked line is display start line. - 78 - 80 34 “101” 35 81 20 81 5 81 HM17CM256 º display start line set to “0” , 1/66 duty by DS2~DS0 register SHIFT set value DS2 DS1 DS0 SC2 SC1 SC0 LA6 LA0 » COMI0 COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11 COM12 COM13 COM14 COM15 COM16 COM17 COM18 COM19 COM20 COM21 COM22 COM23 COM24 COM25 COM26 COM27 COM28 COM29 COM30 COM31 COM32 COM33 COM34 COM35 COM36 COM37 COM38 COM39 COM40 COM41 COM42 COM43 COM44 COM45 COM46 COM47 COM48 COM49 COM50 COM51 COM52 COM53 COM54 COM55 COM56 COM57 COM58 COM59 COM60 COM61 COM62 COM63 COM64 COM65 COM66 COM67 COM68 COM69 COM70 COM71 COM72 COM73 COM74 COM75 COM76 COM77 COM78 COM79 COMI1 » » » » » » “000” » 80 0 SHIFT=”0” (common forward scan) “010” (1/66 duty) “001” “010” “011” “100” “0000000” (display start point 0) 80 80 50 80 35 80 20 “101” “000” 80 5 80 SHIFT=”1” (common backward scan) “010” (1/66 duty) “001” “010” “011” “100” “0000000” (display start point 0) 80 80 49 80 34 80 19 “101” 80 4 63 0 63 0 63 0 63 63 0 0 63 63 0 0 63 63 0 63 0 63 0 63 81 81 49 81 34 81 19 81 4 81 0 81 81 50 81 35 81 20 81 5 81 The number on the table means MY ( Y direction shift address ). The COM electrodes without MY number are driving with non-selection level signal. The Marked line is display start line. - 79 - HM17CM256 ¼ display start line set to “0” , 1/47 duty by DS2~DS0 register SHIFT set value DS2 DS1 DS0 SC2 SC1 SC0 LA6 LA0 ½ COMI0 COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11 COM12 COM13 COM14 COM15 COM16 COM17 COM18 COM19 COM20 COM21 COM22 COM23 COM24 COM25 COM26 COM27 COM28 COM29 COM30 COM31 COM32 COM33 COM34 COM35 COM36 COM37 COM38 COM39 COM40 COM41 COM42 COM43 COM44 COM45 COM46 COM47 COM48 COM49 COM50 COM51 COM52 COM53 COM54 COM55 COM56 COM57 COM58 COM59 COM60 COM61 COM62 COM63 COM64 COM65 COM66 COM67 COM68 COM69 COM70 COM71 COM72 COM73 COM74 COM75 COM76 COM77 COM78 COM79 COMI1 ½ ½ ½ ½ ½ ½ “000” ½ 80 0 SHIFT=”0” (common forward scan) “011” (1/47 duty) “001” “010” “011” “100” “0000000” (display start point 0) 80 80 80 35 80 20 “101” “000” 80 5 80 SHIFT=”1” (common backward scan) “011” (1/47 duty) “001” “010” “011” “100” “0000000” (display start point 0) 80 80 80 19 80 4 0 44 44 0 0 44 44 0 0 44 44 44 44 0 0 44 44 0 0 44 44 0 81 81 81 34 81 19 81 4 81 0 81 81 81 The number on the table means MY ( Y direction shift address ). The COM electrodes without MY number are driving with non-selection level signal. The Marked line is display start line. - 80 - 80 34 “101” 35 81 20 81 5 81 HM17CM256 ¾ display start line set to “0” , 1/32 duty by DS2~DS0 register SHIFT set value DS2 DS1 DS0 SC2 SC1 SC0 LA6 LA0 ¿ COMI0 COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11 COM12 COM13 COM14 COM15 COM16 COM17 COM18 COM19 COM20 COM21 COM22 COM23 COM24 COM25 COM26 COM27 COM28 COM29 COM30 COM31 COM32 COM33 COM34 COM35 COM36 COM37 COM38 COM39 COM40 COM41 COM42 COM43 COM44 COM45 COM46 COM47 COM48 COM49 COM50 COM51 COM52 COM53 COM54 COM55 COM56 COM57 COM58 COM59 COM60 COM61 COM62 COM63 COM64 COM65 COM66 COM67 COM68 COM69 COM70 COM71 COM72 COM73 COM74 COM75 COM76 COM77 COM78 COM79 COMI1 ¿ ¿ ¿ ¿ ¿ ¿ “000” ¿ 80 0 SHIFT=”0” (common forward scan) “100” (1/32 duty) “001” “010” “011” “100” “0000000” (display start point 0) 80 80 80 80 20 “101” “000” 80 5 80 SHIFT=”1” (common back scan) “100” (1/32 duty) “001” “010” “011” “100” “0000000” (display start point 0) 80 80 80 80 19 “101” 80 4 0 29 29 0 0 29 29 29 0 0 29 29 0 0 29 29 29 0 0 29 29 0 81 81 81 81 19 81 4 81 0 81 81 81 81 20 81 5 81 The number on the table means MY ( Y direction shift address ). The COM electrodes without MY number are driving with non-selection level signal. The Marked line is display start line. - 81 - HM17CM256 À display start line set to “0” , 1/17 duty by DS2~DS0 register SHIFT set value DS2 DS1 DS0 SC2 SC1 SC0 LA6 LA0 Á COMI0 COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11 COM12 COM13 COM14 COM15 COM16 COM17 COM18 COM19 COM20 COM21 COM22 COM23 COM24 COM25 COM26 COM27 COM28 COM29 COM30 COM31 COM32 COM33 COM34 COM35 COM36 COM37 COM38 COM39 COM40 COM41 COM42 COM43 COM44 COM45 COM46 COM47 COM48 COM49 COM50 COM51 COM52 COM53 COM54 COM55 COM56 COM57 COM58 COM59 COM60 COM61 COM62 COM63 COM64 COM65 COM66 COM67 COM68 COM69 COM70 COM71 COM72 COM73 COM74 COM75 COM76 COM77 COM78 COM79 COMI1 Á Á Á Á Á Á “000” Á 80 0 SHIFT=”0” (common forward scan) “101” (1/17 duty) “001” “010” “011” “100” “0000000” (display start point 0) 80 80 80 80 “101” “000” 80 5 80 SHIFT=”1” (common backward scan) “101” (1/17 duty) “001” “010” “011” “100” “0000000” (display start point 0) 80 80 80 80 4 0 14 14 14 0 0 14 14 0 0 14 14 0 0 14 14 0 0 14 14 14 0 81 81 81 81 81 4 81 0 81 81 81 The number on the table means MY ( Y direction shift address ). The COM electrodes without MY number are driving with non-selection level signal. The Marked line is display start line. - 82 - 80 “101” 81 81 5 81 HM17CM256 Â display start line set to “0” , 1/38 duty by DS2~DS0 register SHIFT set value DS2 DS1 DS0 SC2 SC1 SC0 LA6 LA0 Ã COMI0 COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11 COM12 COM13 COM14 COM15 COM16 COM17 COM18 COM19 COM20 COM21 COM22 COM23 COM24 COM25 COM26 COM27 COM28 COM29 COM30 COM31 COM32 COM33 COM34 COM35 COM36 COM37 COM38 COM39 COM40 COM41 COM42 COM43 COM44 COM45 COM46 COM47 COM48 COM49 COM50 COM51 COM52 COM53 COM54 COM55 COM56 COM57 COM58 COM59 COM60 COM61 COM62 COM63 COM64 COM65 COM66 COM67 COM68 COM69 COM70 COM71 COM72 COM73 COM74 COM75 COM76 COM77 COM78 COM79 COMI1 Ã Ã Ã Ã Ã Ã “000” Ã 80 0 SHIFT=”0” (common forward scan) “110” (1/38 duty) “001” “010” “011” “100” “0000000” (display start point 0) 80 80 80 35 80 20 “101” “000” 80 5 80 SHIFT=”1” (common backward scan) “110” (1/38 duty) “001” “010” “011” “100” “0000000” (display start point 0) 80 80 80 34 80 19 “101” 80 4 0 35 0 35 0 35 0 35 0 35 35 0 0 35 35 0 0 35 35 0 81 81 81 34 81 19 81 4 81 0 81 81 81 35 81 20 81 5 81 The number on the table means MY ( Y direction shift address ). The COM electrodes without MY number are driving with non-selection level signal. The Marked line is display start line. - 83 - HM17CM256 Ä display start line set to “0” , 1/26 duty by DS2~DS0 register SHIFT set value DS2 DS1 DS0 SC2 SC1 SC0 LA6 LA0 Å COMI0 COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11 COM12 COM13 COM14 COM15 COM16 COM17 COM18 COM19 COM20 COM21 COM22 COM23 COM24 COM25 COM26 COM27 COM28 COM29 COM30 COM31 COM32 COM33 COM34 COM35 COM36 COM37 COM38 COM39 COM40 COM41 COM42 COM43 COM44 COM45 COM46 COM47 COM48 COM49 COM50 COM51 COM52 COM53 COM54 COM55 COM56 COM57 COM58 COM59 COM60 COM61 COM62 COM63 COM64 COM65 COM66 COM67 COM68 COM69 COM70 COM71 COM72 COM73 COM74 COM75 COM76 COM77 COM78 COM79 COMI1 Å Å Å Å Å Å “000” Å 80 0 SHIFT=”0” (common forward scan) “111” (1/26 duty) “001” “010” “011” “100” “0000000” (display start point 0) 80 80 80 80 20 “101” “000” 80 5 80 SHIFT=”1” (common backward scan) “111” (1/26 duty) “001” “010” “011” “100” “0000000” (display start point 0) 80 80 80 19 80 4 23 0 23 0 23 0 23 23 0 0 23 23 0 0 23 23 0 23 0 23 0 23 81 81 81 81 19 81 4 81 0 81 81 81 The number on the table means MY ( Y direction shift address ). The COM electrodes without MY number are driving with non-selection level signal. The Marked line is display start line. - 84 - 80 “101” 81 20 81 5 81 HM17CM256 Æ display start line set to “5” , 1/82 duty by DS2~DS0 register SHIFT set value DS2 DS1 DS0 SC2 SC1 SC0 LA6 LA0 Ç COMI0 COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11 COM12 COM13 COM14 COM15 COM16 COM17 COM18 COM19 COM20 COM21 COM22 COM23 COM24 COM25 COM26 COM27 COM28 COM29 COM30 COM31 COM32 COM33 COM34 COM35 COM36 COM37 COM38 COM39 COM40 COM41 COM42 COM43 COM44 COM45 COM46 COM47 COM48 COM49 COM50 COM51 COM52 COM53 COM54 COM55 COM56 COM57 COM58 COM59 COM60 COM61 COM62 COM63 COM64 COM65 COM66 COM67 COM68 COM69 COM70 COM71 COM72 COM73 COM74 COM75 COM76 COM77 COM78 COM79 COMI1 Ç Ç Ç Ç Ç Ç “000” Ç 80 5 SHIFT=”0” (common forward scan) “000” (1/82 duty) “001” “010” “011” “100” “0000101” (display start point 5) 80 70 80 55 80 40 80 25 “101” “000” 80 10 80 4 SHIFT=”1” (common backward scan) “000” (1/82 duty) “001” “010” “011” “100” “0000101” (display start point 5) 80 69 80 54 80 39 80 24 0 79 “101” 80 9 5 79 0 0 79 5 5 79 0 0 79 5 5 79 0 0 79 5 5 79 0 0 79 5 5 79 0 79 0 4 81 0 79 5 69 81 54 81 39 81 24 81 9 81 5 81 70 81 55 81 40 81 25 81 10 81 The number on the table means MY ( Y direction shift address ). The COM electrodes without MY number are driving with non-selection level signal. The Marked line is display start line. - 85 - HM17CM256 È display start line set to “5” , 1/77 duty by DS2~DS0 register SHIFT set value DS2 DS1 DS0 SC2 SC1 SC0 LA6 LA0 É COMI0 COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11 COM12 COM13 COM14 COM15 COM16 COM17 COM18 COM19 COM20 COM21 COM22 COM23 COM24 COM25 COM26 COM27 COM28 COM29 COM30 COM31 COM32 COM33 COM34 COM35 COM36 COM37 COM38 COM39 COM40 COM41 COM42 COM43 COM44 COM45 COM46 COM47 COM48 COM49 COM50 COM51 COM52 COM53 COM54 COM55 COM56 COM57 COM58 COM59 COM60 COM61 COM62 COM63 COM64 COM65 COM66 COM67 COM68 COM69 COM70 COM71 COM72 COM73 COM74 COM75 COM76 COM77 COM78 COM79 COMI1 É É É É É É “000” É 80 5 SHIFT=”0” (common forward scan) “001” (1/77 duty) “001” “010” “011” “100” “0000101” (display start point 5) 80 70 80 55 80 40 80 25 “101” “000” 80 10 80 SHIFT=”1” (common backward scan) “001” (1/77 duty) “001” “010” “011” “100” “0000101” (display start point 5) 80 69 80 54 80 24 80 9 5 79 79 79 5 5 79 79 5 5 79 79 5 5 79 79 5 5 79 79 79 5 81 69 81 54 81 39 81 24 81 9 81 5 81 70 81 55 81 The number on the table means MY ( Y direction shift address ). The COM electrodes without MY number are driving with non-selection level signal. The Marked line is display start line. - 86 - 80 39 “101” 40 81 25 81 10 81 HM17CM256 Ê display start line set to “5” , 1/66 duty by DS2~DS0 register SHIFT set value DS2 DS1 DS0 SC2 SC1 SC0 LA6 LA0 Ë COMI0 COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11 COM12 COM13 COM14 COM15 COM16 COM17 COM18 COM19 COM20 COM21 COM22 COM23 COM24 COM25 COM26 COM27 COM28 COM29 COM30 COM31 COM32 COM33 COM34 COM35 COM36 COM37 COM38 COM39 COM40 COM41 COM42 COM43 COM44 COM45 COM46 COM47 COM48 COM49 COM50 COM51 COM52 COM53 COM54 COM55 COM56 COM57 COM58 COM59 COM60 COM61 COM62 COM63 COM64 COM65 COM66 COM67 COM68 COM69 COM70 COM71 COM72 COM73 COM74 COM75 COM76 COM77 COM78 COM79 COMI1 Ë Ë Ë Ë Ë Ë “000” Ë 80 5 SHIFT=”0” (common forward scan) “010” (1/66 duty) “001” “010” “011” “100” “0000101” (display start point 5) 80 80 55 80 40 80 25 “101” “000” 80 10 80 SHIFT=”1” (common backward scan) “010” (1/66 duty) “001” “010” “011” “100” “0000101” (display start point 5) 80 80 54 80 39 80 24 “101” 80 9 68 5 68 5 68 5 68 68 5 5 68 68 5 5 68 68 5 68 5 68 5 68 81 81 54 81 39 81 24 81 9 81 5 81 81 55 81 40 81 25 81 10 81 The number on the table means MY ( Y direction shift address ). The COM electrodes without MY number are driving with non-selection level signal. The Marked line is display start line. - 87 - HM17CM256 Ì display start line set to “5” , 1/47 duty by DS2~DS0 register SHIFT set value DS2 DS1 DS0 SC2 SC1 SC0 LA6 LA0 Í COMI0 COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11 COM12 COM13 COM14 COM15 COM16 COM17 COM18 COM19 COM20 COM21 COM22 COM23 COM24 COM25 COM26 COM27 COM28 COM29 COM30 COM31 COM32 COM33 COM34 COM35 COM36 COM37 COM38 COM39 COM40 COM41 COM42 COM43 COM44 COM45 COM46 COM47 COM48 COM49 COM50 COM51 COM52 COM53 COM54 COM55 COM56 COM57 COM58 COM59 COM60 COM61 COM62 COM63 COM64 COM65 COM66 COM67 COM68 COM69 COM70 COM71 COM72 COM73 COM74 COM75 COM76 COM77 COM78 COM79 COMI1 Í Í Í Í Í Í “000” Í 80 5 SHIFT=”0” (common forward scan) “011” (1/47 duty) “001” “010” “011” “100” “0000101” (display start point 5) 80 80 80 40 80 25 “101” “000” 80 10 80 SHIFT=”1” (common backward scan) “011” (1/47 duty) “001” “010” “011” “100” “0000101” (display start point 5) 80 80 80 24 80 9 5 49 49 5 5 49 49 5 5 49 49 49 49 5 5 49 49 5 5 49 49 5 81 81 81 39 81 24 81 9 81 5 81 81 81 The number on the table means MY ( Y direction shift address ). The COM electrodes without MY number are driving with non-selection level signal. The Marked line is display start line. - 88 - 80 39 “101” 40 81 25 81 10 81 HM17CM256 Î display start line set to “5” , 1/32 duty by DS2~DS0 register SHIFT set value DS2 DS1 DS0 SC2 SC1 SC0 LA6 LA0 Ï COMI0 COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11 COM12 COM13 COM14 COM15 COM16 COM17 COM18 COM19 COM20 COM21 COM22 COM23 COM24 COM25 COM26 COM27 COM28 COM29 COM30 COM31 COM32 COM33 COM34 COM35 COM36 COM37 COM38 COM39 COM40 COM41 COM42 COM43 COM44 COM45 COM46 COM47 COM48 COM49 COM50 COM51 COM52 COM53 COM54 COM55 COM56 COM57 COM58 COM59 COM60 COM61 COM62 COM63 COM64 COM65 COM66 COM67 COM68 COM69 COM70 COM71 COM72 COM73 COM74 COM75 COM76 COM77 COM78 COM79 COMI1 Ï Ï Ï Ï Ï Ï “000” Ï 80 5 SHIFT=”0” (common forward scan) “100” (1/32 duty) “001” “010” “011” “100” “0000101” (display start point 5) 80 80 80 80 25 “101” “000” 80 10 80 SHIFT=”1” (common backward scan) “100” (1/32 duty) “001” “010” “011” “100” “0000101” (display start point 5) 80 80 80 80 24 “101” 80 9 5 34 34 5 5 34 34 34 5 5 34 34 5 5 34 34 34 5 5 34 34 5 81 81 81 81 24 81 9 81 5 81 81 81 81 25 81 10 81 The number on the table means MY ( Y direction shift address ). The COM electrodes without MY number are driving with non-selection level signal. The Marked line is display start line. - 89 - HM17CM256 Ð display start line set to “5” , 1/17 duty by DS2~DS0 register SHIFT set value DS2 DS1 DS0 SC2 SC1 SC0 LA6 LA0 Ñ COMI0 COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11 COM12 COM13 COM14 COM15 COM16 COM17 COM18 COM19 COM20 COM21 COM22 COM23 COM24 COM25 COM26 COM27 COM28 COM29 COM30 COM31 COM32 COM33 COM34 COM35 COM36 COM37 COM38 COM39 COM40 COM41 COM42 COM43 COM44 COM45 COM46 COM47 COM48 COM49 COM50 COM51 COM52 COM53 COM54 COM55 COM56 COM57 COM58 COM59 COM60 COM61 COM62 COM63 COM64 COM65 COM66 COM67 COM68 COM69 COM70 COM71 COM72 COM73 COM74 COM75 COM76 COM77 COM78 COM79 COMI1 Ñ Ñ Ñ Ñ Ñ Ñ “000” Ñ 80 5 SHIFT=”0” (common forward scan) “101” (1/17 duty) “001” “010” “011” “100” “0000101” (display start point 5) 80 80 80 80 “101” “000” 80 10 80 SHIFT=”1” (common backward scan) “101” (1/17 duty) “001” “010” “011” “100” “0000101” (display start point 5) 80 80 80 80 9 5 19 19 19 5 5 19 19 5 5 19 19 5 5 19 19 5 5 19 19 19 5 81 81 81 81 81 9 81 5 81 81 81 The number on the table means MY ( Y direction shift address ). The COM electrodes without MY number are driving with non-selection level signal. The Marked line is display start line. - 90 - 80 “101” 81 81 10 81 HM17CM256 Ò display start line set to “5” , 1/38 duty by DS2~DS0 register SHIFT set value DS2 DS1 DS0 SC2 SC1 SC0 LA6 LA0 Ó COMI0 COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11 COM12 COM13 COM14 COM15 COM16 COM17 COM18 COM19 COM20 COM21 COM22 COM23 COM24 COM25 COM26 COM27 COM28 COM29 COM30 COM31 COM32 COM33 COM34 COM35 COM36 COM37 COM38 COM39 COM40 COM41 COM42 COM43 COM44 COM45 COM46 COM47 COM48 COM49 COM50 COM51 COM52 COM53 COM54 COM55 COM56 COM57 COM58 COM59 COM60 COM61 COM62 COM63 COM64 COM65 COM66 COM67 COM68 COM69 COM70 COM71 COM72 COM73 COM74 COM75 COM76 COM77 COM78 COM79 COMI1 Ó Ó Ó Ó Ó Ó “000” Ó 80 5 SHIFT=”0” (common forward scan) “110” (1/38 duty) “001” “010” “011” “100” “0000101” (display start point 5) 80 80 80 40 80 25 “101” “000” 80 10 80 SHIFT=”1” (common backward scan) “110” (1/38 duty) “001” “010” “011” “100” “0000101” (display start point 5) 80 80 80 39 80 24 “101” 80 9 5 40 5 40 5 40 5 40 5 40 40 5 5 40 40 5 5 40 40 5 81 81 81 39 81 24 81 9 81 5 81 81 81 40 81 25 81 10 81 The number on the table means MY ( Y direction shift address ). The COM electrodes without MY number are driving with non-selection level signal. The Marked line is display start line. - 91 - HM17CM256 Ô display start line set to “5” , 1/26 duty by DS2~DS0 register SHIFT set value DS2 DS1 DS0 SC2 SC1 SC0 LA6 LA0 Õ COMI0 COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11 COM12 COM13 COM14 COM15 COM16 COM17 COM18 COM19 COM20 COM21 COM22 COM23 COM24 COM25 COM26 COM27 COM28 COM29 COM30 COM31 COM32 COM33 COM34 COM35 COM36 COM37 COM38 COM39 COM40 COM41 COM42 COM43 COM44 COM45 COM46 COM47 COM48 COM49 COM50 COM51 COM52 COM53 COM54 COM55 COM56 COM57 COM58 COM59 COM60 COM61 COM62 COM63 COM64 COM65 COM66 COM67 COM68 COM69 COM70 COM71 COM72 COM73 COM74 COM75 COM76 COM77 COM78 COM79 COMI1 Õ Õ Õ Õ Õ Õ “000” Õ 80 5 SHIFT=”0” (common forward scan) “111” (1/26 duty) “001” “010” “011” “100” “0000101” (display start point 5) 80 80 80 80 25 “101” “000” 80 10 80 SHIFT=”1” (common backward scan) “111” (1/26 duty) “001” “010” “011” “100” “0000101” (display start point 5) 80 80 80 24 80 9 28 5 28 5 28 5 28 28 5 5 28 28 5 5 28 28 5 28 5 28 5 28 81 81 81 81 24 81 9 81 5 81 81 81 The number on the table means MY ( Y direction shift address ). The COM electrodes without MY number are driving with non-selection level signal. The Marked line is display start line. - 92 - 80 “101” 81 25 81 10 81 HM17CM256 ■ ABSOLUTE MAXIMUM RATING ITEM supply voltage (1) supply voltage (2) supply voltage (3) supply voltage (4) supply voltage (5) supply voltage (6) input voltage Storage temperature *1 SYMBOL VDD VEE VOUT VREG VLCD V1, V2, V3, V4 VI Tstg CONDITION VSS(0V) reference Ta = +25°C PORT VDD VEE VOUT VREG VLCD V1, V2, V3, V4 *1 RATINGS -0.3 ~ +4.0 -0.3 ~ +4.0 -0.3 ~ +20.0 -0.3 ~ +20.0 -0.3 ~ +20.0 -0.3 ~ VLCD + 0.3 -0.3 ~ VDD + 0.3 -45 ~ +125 UNIT V V V V V V V °C D0~D15, CS, RS, M/S, RD, WR, OSC1, LP, FLM, FR, CLK, RES, TEST port ■ RECOMMENDED OPERATING CONDITIONS ITEM supply voltage Recommended operating voltage Operation temperature *1 *2 *3 *4 *5 SYMBOL VDD1 VDD2 VEE VLCD VOUT VREG VREF Topr PORT VDD VEE VLCD VOUT VREG VREF MIN 1.7 2.4 2.4 5 2.1 -30 TYP MAX 3.3 3.3 3.3 18.0 18.0 VOUT x 0.9 3.3 85 UNIT REMARK V *1 V *2 V *3 V *4 V V V *5 °C The case when internal reference voltage generation circuit (VBA output) is not used. The voltage compare to VSS port. The case when internal reference voltage generation circuit (VBA output) is used. The voltage compare to VSS port. When the boosting circuit is used, supply voltage VEE should be used within the limit. When driving LCD panel by use of internal boosting circuit, it is possible to short VDD and VEE. Please keep the relation, VSS < V4 < V3 < V2 < V1 < VLCD≤VOUT. When the internal voltage regulator circuit is used, reference voltage VREF should be used within the limit. Please keep the relation VREF≤VEE . - 93 - HM17CM256 ■ ELECTRICAL CHARACTERISTICS • DC Characteristics 1 ITEM SYMBOL High level input voltage VIH VIL VOH1 VOL1 VOH2 VOL2 ILI ILO Low level input voltage High level output voltage Low level output voltage High level output voltage Low level output voltage Input leakage current Output leakage current LCD driver output ON resistance Static current Oscillator frequency oscillator frequency by External resistor Boosting output voltage RON1 ISTB fOSC1 fOSC2 fOSC3 fOSC4 fOSC5 fOSC6 fr1 fr2 fr3 fr4 fr5 fr6 VOUT VBA output voltage IDD1 IDD2 IDD3 IDD4 IDD5 IDD6 IDD7 IDD8 IDD9 IDD10 IDD11 IDD12 IDD13 IDD14 IDD15 IDD16 VBA VREG output voltage VREG Current consumption (1) Current consumption (2) Current consumption (3) Current consumption (4) Current consumption (5) Current consumption (6) Current consumption (7) Current consumption (8) Current consumption (9) Current consumption (10) Current consumption (11) Current consumption (12) Current consumption (13) Current consumption (14) Current consumption (15) Current consumption (16) - 94 - Unless otherwise noted VSS = 0V, VDD = +1.7~+3.3V, Ta = -30~+85°C UNIT PORT CONDITION MIN TYP MAX 0.8 VDD VDD V *1 0 0.22 VDD V *1 IOH = -0.4mA VDD - 0.4 V *2 IOL = 0.4mA 0.4 V *2 IOH = -0.1mA VDD - 0.4 V *3 IOL = 0.1mA 0.4 V *3 VI = VSS or VDD -10 10 *4 µA VI = VSS or VDD -10 10 *5 µA VLCD = 10V 1 2 | VON| = 0.5V *6 kΩ VLCD = 6V 2 4 Ö CS=VDD, Ta=25°C VDD = 3V Ta = 25°C VDD = 3V FFL = “0” (normal mode) 15 TBD FFL = “1” (high speed mode) TBD Rf=6.2kΩ Rf=20kΩ Rf=51kΩ TBD Rf=110kΩ Rf=390kΩ Rf=820kΩ N x boosting (N=2~7) RL = 30kΩ (between VOUT ,VSS) VDD = 2.5V 7 x boosting (all ON) VDD = 2.5V 7x boosting(cross check) VDD = 3.0V 6 x boosting (all ON) VDD = 3.0V 6x boosting(cross check) VDD = 3.0V 5 x boosting (all ON) VDD = 3.0V 5x boosting(cross check) VDD = 3.0V 4 x boosting (all ON) VDD = 3.0V 4x boosting(cross check) VEE = 2.4~3.3V VEE = 2.4~3.3V VREF = 0.9 x VEE N x boosting (N=2~7) 372 84 12 762.6 172.2 24.6 775.2 373.9 167.8 84.3 25.8 12.6 TBD kHz TBD TBD N * VEE * 0.95 FFL = “0” FFL = “1” FFL = “0” FFL = “1” FFL = “0” FFL = “1” FFL = “0” FFL = “1” FFL = “0” FFL = “1” FFL = “0” FFL = “1” FFL = “0” FFL = “1” FFL = “0” FFL = “1” µA TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD 0.9 VEE TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD (VREF x N) TBD *7 *8 *9 *10 *8 *9 *10 kHz V *11 µA *12 V *13 V *14 HM17CM256 ■ ELECTRICAL CHARACTERISTICS • • DC Characteristics 1 ITEM SYMBOL Output voltage VLCD V1 V2 V3 V4 Unless otherwise noted VSS = 0V, VDD = +1.7~+3.3V, Ta = -30~+85°C UNIT PORT CONDITION MIN TYP MAX TBD TBD TBD TBD V TBD TBD TBD TBD V TBD TBD TBD TBD V TBD TBD TBD TBD V TBD TBD TBD TBD V Oscillator frequency,fOSC at each mode, relation external clock frequency,fCK to LCD frame frequency,fFLM Used Display duty (1/D) ITEM Display mode PORT clock 1/82, 1/77, 1/66 1/47, 1/38, 1/32, 1/26 1/17 Variable fOSC / (62*D) fOSC / (62*D*2) fOSC / (62*D*4) gradation display Using internal oscillator fOSC Fixed gradation fOSC / (14*D) fOSC / (14*D*2) fOSC / (14*D*4) circuit display BW display fOSC / (2*D) fOSC / (2*D*2) fOSC / (2*D*4) FLM Variable fCK / (62*D) fCK / (62*D*2) fCK / (62*D*4) gradation display Input external fCK Fixed gradation clock fCK / (14*D) fCK / (14*D*2) fCK / (14*D*4) display BW display fCK / (2*D) fCK / (2*D*2) fCK / (2*D*4) - 95 - HM17CM256 Applied port (* Remark Solves) *1 D0~D15, CS, RS, M/S, RD, WR, P/S, SEL68, CLK, CL, FLM, FR, RES ports *2 D0~D15 *3 CL, FLM, FR, CLK *4 CS, RS, M/S, SEL68, RD, WR, P/S, RES, OSC1 ports *5 applicable at D0~D15, CL, FLM, FR, CLK = high impedance state *6 SEGA0~SEGA127, SEGB0~SEGB127, SEGC0~SEGC127, COM0~COM79, COMI0, COMI1 ports resistance when being supplied 0.5V between each output ports and power port (VLCD, V1, V2, V3, V4) applicable under bias ratio = 1/9 *7 VDD ports VDD current when source clock is stopped, chip selection (CS=VDD) is non-selection state and no load. *8 oscillator frequency when internal oscillator circuit is used ( gradation display mode). applicable under Rf register of oscillator circuit, {Rf2, Rf1, Rf0} = “000” *9 oscillator frequency when internal oscillator circuit is used ( fixed gradation display mode). applicable under Rf register of oscillator circuit, {Rf2, Rf1, Rf0} = “000” ports ports *10 oscillator frequency when internal oscillator circuit is used ( BW display mode). applicable under Rf register of oscillator circuit, {Rf2, Rf1, Rf0} = “000” *11 VOUT port N x boosting (N=2~7). applicable under internal oscillator circuit and internal power circuit are ON state VEE = 2.4~3.3V, electric volume is MAX(“1111111”). bias = 1/5~1/10, 1/82 duty, no load at LCD driver port. RL = 30kΩ(between VOUT ,VSS), CA1= CA2=1.0µF, CA3=0.1µF, DCON=“1”, AMPON=“1” *12 applicable under internal oscillator circuit and internal power circuit are ON state and no access from CPU. electric volume is “1111111”. Display is all ON and cross check pattern display ( variable gradation display mode), and no load at LCD driver port. Test condition : VDD=VEE=VREF, CA1=CA2=1.0µF, CA3=0.1µF, DCON=“1”, AMPON=“1”, NLIN=”0”, 1/82 duty. *13 VREG output voltage when VBA output is connected to VREF input, VREG gain is N=1. *14 VREG port VEE= 2.4~3.3V, VREF= 0.9 VEE, bias= 1/5~1/10, 1/82 duty, electric volume is “1111111” Cross hatch state and no load at LCD driver port. Boosting coefficient N is 2~7 times Test condition : CA1=CA2=1.0µF, CA3=0.1µF, DCON=“1”, AMPON=“1”, NLIN=”0” × - 96 - × HM17CM256 ■ AC CHARACTERISTICS • SYSTEM BUS READ / WRITE TIMING (80 series CPU interface) (write timing) tAS8 tAH8 CS RS WR tWRLW8 tWRHW8 tDS8 tDH8 D0 ∼ D15 tCYC8 SYMBOL tAH8 tAS8 System cycle timing Write ”L” pulse width Write ”H” pulse width tCYC8 tWRLW8 tWRHW8 TBD TBD TBD ns ns ns tDS8 tDH8 TBD TBD ns ns Data setup timing Data hold timing CONDITION MIN. TBD TBD (VDD=2.7∼3.3V, Ta=-30∼+85°C) MAX. UNIT PORT ns CS ns RS ITEM Address hold timing Address setup timing SYMBOL tAH8 tAS8 System cycle timing Write ”L” pulse width Write ”H” pulse width tCYC8 tWRLW8 tWRHW8 TBD TBD TBD ns ns ns tDS8 tDH8 TBD TBD ns ns Data setup timing Data hold timing MIN. TBD TBD D0 ∼ D15 (VDD=2.4∼2.7V, Ta=-30∼+85°C) MAX. UNIT PORT ns CS ns RS ITEM Address hold timing Address setup timing CONDITION WR WR D0 ∼ D15 (VDD=1.7∼2.4V, Ta=-30∼+85°C) ITEM Address hold timing Address setup timing SYMBOL tAH8 tAS8 System cycle timing Write ”L” pulse width Write ”H” pulse width tCYC8 tWRLW8 tWRHW8 TBD TBD TBD ns ns ns tDS8 tDH8 TBD TBD ns ns Data setup timing Data hold timing notice) CONDITION MIN. TBD TBD MAX. UNIT ns ns PORT CS RS WR D0 ∼ D15 All timing reference is 20% and 80% of VDD and 80%. - 97 - HM17CM256 Ø read timing Ù tAH8 tAS8 CS RS tWRLR8 RD tWRHR8 tRDH8 D0 ∼ D15 tRDD8 tCYC8 ITEM Address hold timing Address setup timing SYMBOL tAH8 tAS8 System cycle timing Write ”L” pulse width Write ”H” pulse width tCYC8 tWRLR8 tWRHR8 TBD TBD TBD tDS8 tDH8 TBD Data setup timing Data hold timing CONDITION MIN. TBD TBD ns ns ns TBD ITEM Address hold timing Address setup timing SYMBOL tAH8 tAS8 System cycle timing Write ”L” pulse width Write ”H” pulse width tCYC8 tWRLR8 tWRHR8 TBD TBD TBD tDS8 tDH8 TBD Data setup timing Data hold timing (VDD=2.7∼3.3V, Ta=-30∼+85°C) MAX. UNIT PORT ns CS ns RS CONDITION MIN. TBD TBD ns ns RD D0 ∼ D15 (VDD=2.4∼2.7V, Ta=-30∼+85°C) MAX. UNIT PORT ns CS ns RS ns ns ns TBD ns ns RD D0 ∼ D15 (VDD=1.7∼2.4V, Ta=-30∼+85°C) ITEM Address hold timing Address setup timing SYMBOL tAH8 tAS8 System cycle timing Write ”L” pulse width Write ”H” pulse width tCYC8 tWRLR8 tWRHR8 TBD TBD TBD tDS8 tDH8 TBD Data setup timing Data hold timing notice) - 98 - CONDITION All timing reference is 20% and 80% of VDD and 80%. MIN. TBD TBD MAX. UNIT ns ns ns ns ns TBD ns ns PORT CS RS RD D0 ∼ D15 HM17CM256 • SYSTEM BUS READ / WRITE TIMING (68 series CPU interface) (write timing Ú tAS6 tAH6 CS RS R/W (WR) tELW6 tEHW6 E (RD) tDS6 tDH6 D0 ∼ D15 tCYC6 ITEM Address hold timing Address setup timing System cycle timing Enable ”L” pulse width Enable ”H” pulse width Data setup timing Data hold timing ITEM Address hold timing Address setup timing System cycle timing Enable ”L” pulse width Enable ”H” pulse width Data setup timing Data hold timing SYMBOL tAH6 tAS6 CONDITION MIN. TBD TBD (VDD=2.7∼3.3V, Ta=-30∼+85°C) MAX. UNIT PORT ns CS ns RS tCYC6 tELW6 tEHW6 TBD TBD TBD ns ns ns tDS6 tDH6 TBD TBD ns ns SYMBOL tAH6 tAS6 CONDITION MIN. TBD TBD E D0 ∼ D15 (VDD=2.4∼2.7V, Ta=-30∼+85°C) MAX. UNIT PORT ns CS ns RS tCYC6 tELW6 tEHW8 TBD TBD TBD ns ns ns tDS6 tDH6 TBD TBD ns ns E D0 ∼ D15 (VDD=1.7∼2.4V, Ta=-30∼+85°C) ITEM Address hold timing Address setup timing System cycle timing Enable ”L” pulse width Enable ”H” pulse width Data setup timing Data hold timing notice) SYMBOL tAH6 tAS6 CONDITION MIN. TBD TBD MAX. UNIT ns ns tCYC6 tELW6 tEHW6 TBD TBD TBD ns ns ns tDS6 tDH6 TBD TBD ns ns PORT CS RS E D0 ∼ D15 All timing reference is 20% and 80% of VDD and 80%. - 99 - HM17CM256 (read timing) tAS6 tAH6 CS RS R/W (WR) tELR6 tEHR6 E (RD) tRDH6 D0 ∼ D15 tRDD6 tCYC6 ITEM Address hold timing Address setup timing SYMBOL tAH6 tAS6 CONDITION MIN. TBD TBD System cycle timing Enable ”L” pulse width Enable ”H” pulse width tCYC6 tELR6 tEHR6 TBD TBD TBD Data setup timing Data hold timing tDS6 tDH6 TBD ITEM Address hold timing Address setup timing SYMBOL tAH6 tAS6 (VDD=2.7∼3.3V, Ta=-30∼+85°C) MAX. UNIT PORT ns CS ns RS ns ns ns TBD CONDITION MIN. TBD TBD System cycle timing Enable ”L” pulse width Enable ”H” pulse width tCYC6 tELR6 tEHR8 TBD TBD TBD Data setup timing Data hold timing tDS6 tDH6 TBD ns ns E D0 ∼ D15 (VDD=2.4∼2.7V, Ta=-30∼+85°C) MAX. UNIT PORT ns CS ns RS ns ns ns TBD ns ns E D0 ∼ D15 (VDD=1.7∼2.4V, Ta=-30∼+85°C) ITEM Address hold timing Address setup timing SYMBOL tAH6 tAS6 CONDITION MIN. TBD TBD MAX. UNIT ns ns System cycle timing Enable ”L” pulse width Enable ”H” pulse width tCYC6 tELR6 tEHR6 TBD TBD TBD ns ns ns Data setup timing Data hold timing tDS6 tDH6 TBD TBD ns ns notice) - 100 - All timing reference is 20% and 80% of VDD and 80%. PORT CS RS E D0 ∼ D15 HM17CM256 • SERIAL INTERFACE TIMING CS tCSH tCSS RS tASS SCL tAHS tSLW tSHW tCYCS tDSS tDHS SDA ITEM Serial clock cycle SCL ”H” pulse width SCL ”L” pulse width Address setup timing Address hold timing Data setup timing Data hold timing CS – SCL timing CS hold timing ITEM Serial clock cycle SCL ”H” pulse width SCL ”L” pulse width Address setup timing Address hold timing Data setup timing Data hold timing CS – SCL timing CS hold timing notice) SYMBOL tCYCS tSHW tSLW tASS tAHS tDSS tDHS CONDITION tCSS tCSH SYMBOL tCYCS tSHW tSLW tASS tAHS tDSS tDHS tCSS tCSH MIN. TBD TBD TBD TBD TBD TBD TBD TBD TBD CONDITION MIN. TBD TBD TBD TBD TBD TBD TBD TBD TBD (VDD=2.7∼3.3V, Ta=-30∼+85°C) MAX. UNIT PORT ns ns SCL ns ns RS ns ns SDA ns ns ns CS (VDD=2.4∼2.7V, Ta=-30∼+85°C) MAX. UNIT PORT ns ns SCL ns ns RS ns ns SDA ns ns CS ns All timing reference is 20% and 80% of VDD and 80%. - 101 - HM17CM256 ITEM Serial clock cycle SCL ”H” pulse width SCL ”L” pulse width Address setup timing Address hold timing Data setup timing Data hold timing CS – SCL timing CS hold timing notice) - 102 - SYMBOL tCYCS tSHW tSLW tASS tAHS tDSS tDHS tCSS tCSH CONDITION All timing reference is 20% and 80% of VDD and 80%. MIN. TBD TBD TBD TBD TBD TBD TBD TBD TBD (VDD=1.7∼2.4V, Ta=-30∼+85°C) MAX. UNIT PORT ns ns SCL ns ns RS ns ns SDA ns ns CS ns HM17CM256 • DISPLAY CONTROL TIMING tCLLW tCLHW CL tDFLM tDFLM FLM tDM FR INPUT TIMING ( slave mode ) ITEM SYMBOL CL ”H” pulse width tCLHW CL ”L” pulse width tCLLW FLM delay time tDFLM FR delay time tFR INPUT TIMING ( slave mode ) ITEM SYMBOL CL ”H” pulse width tCLHW CL ”L” pulse width tCLLW FLM delay time tDFLM FR delay time tFR OUTPUT TIMING ( master mode ) ITEM SYMBOL FLM delay time tDFLM FR delay time tFR OUTPUT TIMING ( master mode ) ITEM SYMBOL FLM delay time tDFLM FR delay time tFR notice) CONDITION CONDITION CONDITION CL=15pF CONDITION CL=15pF MIN. 80 80 -1.0 -1.0 (VDD=2.4∼3.3V, Ta=-30∼+85°C) MAX. UNIT PORT µs CL µs 1.0 FLM µs 1.0 FR µs MIN. 80 80 -1.0 -1.0 (VDD=1.7∼2.4V, Ta=-30∼+85°C) MAX. UNIT PORT µs CL µs 1.0 FLM µs 1.0 CL µs MIN. 10 10 (VDD=2.4∼3.3V, Ta=-30∼+85°C) MAX. UNIT PORT 500 ns FLM 500 ns FR MIN. 10 10 (VDD=1.7∼2.4V, Ta=-30∼+85°C) MAX. UNIT PORT 1000 ns FLM 1000 ns FR All timing reference is 20% and 80% of VDD and 80%. - 103 - HM17CM256 SOURCE CLOCK INPUT TIMING • tCKLW tCKHW OSC1 ITEM OSC1 “H” pulse width (1) OSC1 “L” pulse width (1) OSC1 “H” pulse width (2) OSC1 “L” pulse width (2) OSC1 “H” pulse width (3) OSC1 “L” pulse width (3) SYMBOL tCKHW1 tCKLW1 tCKHW2 tCKLW2 tCKHW3 tCKLW3 CONDITION MIN. TBD TBD TBD TBD TBD TBD (VDD=2.4∼3.3V, Ta=-30∼+85°C) MAX. UNIT PORT TBD OSC1 µs TBD µs ∗1 TBD OSC1 µs TBD µs ∗2 TBD OSC µs 1 TBD µs ∗3 ITEM OSC1 “H” pulse width (1) OSC1 “L” pulse width (1) OSC1 “H” pulse width (2) OSC1 “L” pulse width (2) OSC1 “H” pulse width (3) OSC1 “L” pulse width (3) SYMBOL tCKHW1 tCKLW1 tCKHW2 tCKLW2 tCKHW3 tCKLW3 CONDITION MIN. TBD TBD TBD TBD TBD TBD (VDD=1.7∼2.4V, Ta=-30∼+85°C) MAX. UNIT PORT TBD OSC1 µs TBD µs ∗1 TBD OSC1 µs TBD µs ∗2 TBD OSC1 µs TBD µs ∗3 notice) ∗1 ∗2 ∗3 - 104 - All timing reference is 20% and 80% of VDD and 80%. applicable under gradation display , MON=”0”, PWM=”0” applicable under fixed gradation display , MON=”0”,PWM=”1” applicable under BW display , MON=”1” HM17CM256 • RESET INPUT TIMING tRW RES tR Internal status ITEM Reset time RES “L” pulse width Reset time notice) SYMBOL CONDITION Reset completion MIN. tR ITEM RES “L” resetting pulse width 1.0 tRW SYMBOL (VDD=2.4∼3.3V, Ta=-30∼+85°C) MAX. UNIT PORT µs 10.0 CONDITION MIN. tR tRW RES (VDD=1.7∼2.4V, Ta=-30∼+85°C) MAX. UNIT PORT 1.5 10.0 µs µs µs RES All timing reference is 20% and 80% of VDD and 80%. - 105 - HM17CM256 ■ APPLICATION EXAMPLE Û Û reference Ü Ü (1) connection with CPU a) 80 series CPU interface 1.7V ~ 3.3V VCC (80 series CPU) A0 A1 ~ A7 IORQ D0 ~ D7 VDD RS 7 Decoder 8 RD WR RES CS D0 ~ D7 RD WR RES GND VSS Reset input b) 68 series CPU interface 1.7V ~ 3.3V VCC (68 series CPU) A0 A1 ~ A15 VMA RS 15 D0 ~ D7 Decoder 8 E R/W RES CS D0 ~ D7 RD(E) WR(R/W) RES GND VDD VSS Reset input c) CPU connection with serial interface 1.7V ~ 3.3V VCC A0 A1 ~ A7 (CPU) RS 7 Decoder SDA SCL RES RES Reset input - 106 - CS PORT1 PORT2 GND VDD VSS HM17CM256 (2) MULTI CHIP INTERFACE a) connection example of input interface (parallel interface) D0 ~ D7 RD P/S SEL68 M/S RS CS RES D0 ~ D7 RD WR P/S SEL68 M/S RS CS RES VDD RES CS1 CS2 RS WR(R/W) RD(E) D0 ~ D7 SEL68 WR (Slave) (Master) 8 (4-line type serial interface) SMODE EXCS SMODE EXCS SPOL SCL SDA RD WR P/S SEL68 M/S RS CS RES EXCS (Slave) SMODE SPOL SCL SDA RD WR P/S SEL68 M/S RS CS RES (Master) VDD RES CS1 CS2 RS SDA SCL (4-line type serial interface, CS1 common) SPOL SCL SDA RD WR P/S SEL68 M/S RS CS RES EXCS (Slave) SMODE SPOL SCL SDA RD WR P/S SEL68 M/S RS CS RES (Master) VDD RES CS RS SDA SCL - 107 - VDD RES CS SDA SCL - 108 (Slave) SPOL SCL EXCS (3-line type serial interface, CS1 common) EXCS SDA SCL SMODE VDD RES CS1 CS2 SMODE SPOL SCL (Master) SDA RD WR P/S SEL68 M/S RS CS RES EXCS SMODE SPOL SCL SDA RD WR P/S SEL68 M/S RS CS RES (Master) SDA RD WR P/S SEL68 M/S RS CS RES EXCS SMODE SPOL SCL SDA RD WR P/S SEL68 M/S RS CS RES HM17CM256 (3-line type serial interface) (Slave) HM17CM256 a) connection example of power supply VDD VDD VEE VBA VREF C1+ C1C2+ C1C2+ C2C3+ C2C3+ C3C4+ C3C4+ C4C5+ C4C5+ CA1 CA1 CA1 CA1 C5C6+ CA1 (Master) CA1 C5C6+ C6VOUT CA1 VSS CA3 VSS (Slave) VDD VDD VEE VBA VREF C1+ C6VOUT VREG CA2 CA2 CA2 CA2 CA2 VLCD VLCD VREG VLCD V1 V1 V1 V2 V2 V2 V3 V3 V3 V4 V4 V4 CLK CL FLM FR CLK CL FLM FR Be cautious of using as following description when LCD panel is connected with master/slave structure. 1) 2) 3) 4) 5) Display timing is controlled by master chip. The CL, FLM, FR, CLK signals are stopped when master chip is display OFF. When you are going to OFF the display, please OFF the display of slave chip first before master chip display is OFF. Boosting circuit and voltage converting circuit is OFF after execution HALT command at master chip, then LCD driving output is VSS level and so display is OFF. And Voltage common is stopped. Because the voltage common of slave chip is stopped, please run slave chip display OFF first and then run master chip HALT command. The electric volume setting is valid at master chip only(at upper structure). To protect that VOUT is being floated, please connect VOUT with VLCD voltage level. Please use under condition that OSC1 and OSC2 port of slave chip is OFF. - 109 - HM17CM256 • • Typical characteristic ITEM Basic delay time of gate CONDITION Ta=+25°C, VSS=0V, VDD=3.0V MIN TYP 10 MAX IN/OUTPUT CIRCUIT STRUCTURE (a) input circuit 1 VDD port : CS, RS, RD, WR, SEL68, M/S P/S, RES I Input signal VSS(0V) (b-1) in/out circuit 1 VDD port : FLM, LP, FR, CLK I/O Input signal VSS(0V) VDD Output control signal Output signal VSS(0V) (b-2) in/out circuit 2 VDD port : D0~D15 I/O Input signal VSS(0V) VSS(0V) Input control signal VDD Output control signal Output signal VSS(0V) - 110 - UNIT ns HM17CM256 (c) LCD driver output circuit VLCD O VLCD V1/V2 output control signal 1 output control signal 2 output control signal 3 output control signal 4 VSS(0V) Port : VLCD V3/V4 VSS(0V) VSS(0V) SEGA0~SEGA127 SEGB0~SEGB127 SEGC0~SEGC127 COM0~COM79 COMI0, COMI1 SEGSA0, SEGSR1 SEGSB0, SEGSB1 SEGSC0, SEGSC1 <precautions> The details of this specification was written sincerely, but it is not a letter of guarantee of legal. Especially, the application circuit is just for reference. This specification do not guarantee that we did not use others patent or intellectural property. - 111 -