DATA SHEET MOS INTEGRATED CIRCUIT µ PD161401 256-COLOR, 1/80-DUTY LCD CONTROLLER/DRIVER WITH ON-CHIP RAM DESCRIPTION The µPD161401 is an LCD controller/driver with RAM and is capable of driving a full-dot LCD. It can display 256 colors on an RGB-STN color LCD. This LCD controller/driver can drive a full-dot LCD of up to 101 × 80 pixel with a single chip. FEATURES • LCD driver with on-chip display RAM • Logic power supply operation from +1.8 V to +3.6 V • Internal booster circuit: x 2 to x 7 selectable • Dot display RAM: (101 x 80) x 8 bits • 8 (R, G)/4 (B) grayscales selectable from 17 levels • Full-dot output: 303 segment lines and 80 common lines • Serial interface (SI, SCL) or 8-/16-bit parallel data input (i80 or M68 system interface) • On-chip voltage divider resistor • Selectable bias value: 1/9 to 1/5 • Selectable duty ratio: 1/80, 1/72 and 1/64 (main duty) • On-chip oscillator ORDERING INFORMATION Part Number Package µPD161401W/P Wafer/Chip (supports COF) Remark Purchasing the above chip entail the exchange of documents such as a separate memorandum or product quality, so please contact one of our sales representatives. The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information. Document No. S15726EJ2V0DS00 (2nd Edition) Data Published June 2002 NS CP(K) Printed in Japan The mark ★ shows major revised points. © 2001 µPD161401 CONTENT 1. BLOCK DIAGRAM ................................................................................................................................... 5 2. PIN CONFIGURATION (Pad Layout) ..................................................................................................... 6 3. PIN FUNCTIONS...................................................................................................................................... 12 3.1 Power Supply Pins...........................................................................................................................................12 3.2 Logic Circuit Pins ............................................................................................................................................13 3.3 Driver Pins ........................................................................................................................................................15 4. PIN I/O CIRCUITS AND RECOMMENDED CONNECTION OF UNUSED PINS.................................... 16 5. FUNCTIONAL DESCRIPTION................................................................................................................. 17 5.1 CPU Interface ....................................................................................................................................................17 5.1.1 Selecting interface type...........................................................................................................................17 5.1.2 Parallel interface .....................................................................................................................................17 5.1.3 Serial interface........................................................................................................................................19 5.1.4 Chip select ..............................................................................................................................................19 5.1.5 Accessing display data RAM and internal registers ................................................................................19 5.2 Display Data RAM ............................................................................................................................................21 5.2.1 Display data RAM ...................................................................................................................................21 5.2.2 X address circuit .....................................................................................................................................21 5.2.3 Y address circuit .....................................................................................................................................23 5.2.4 Column address circuit ...........................................................................................................................24 5.2.5 Common scan circuit ..............................................................................................................................25 5.2.6 Display data latch circuit .........................................................................................................................28 5.2.7 Arbitrary address area access (window access mode (WAS)) ...............................................................28 5.3 Screen Processing...........................................................................................................................................30 5.3.1 Blink/reverse display circuit.....................................................................................................................30 5.3.2 Example of setting blink area..................................................................................................................33 5.4 Oscillator ..........................................................................................................................................................33 5.5 Display Timing Generator ...............................................................................................................................35 5.6 Power Supply Circuit .......................................................................................................................................37 5.6.1 Power supply circuit ................................................................................................................................37 5.6.2 Booster circuit .........................................................................................................................................37 5.6.3 Voltage regulator circuit ..........................................................................................................................39 5.6.4 Level voltage control by operational amplifier .........................................................................................42 5.6.5 Application example of power supply circuit ...........................................................................................44 5.7 Driving LCD ......................................................................................................................................................48 5.7.1 2 Full-dot pulse modulation........................................................................................................................48 Data Sheet S15726EJ2V0DS µPD161401 5.7.2 Grayscale palette....................................................................................................................................51 5.7.3 Setting of display size .............................................................................................................................52 5.7.4 Setting of LCD N-line inversion and M-line shift......................................................................................52 5.7.5 Reverse driving between frames ............................................................................................................54 5.8 Display Mode....................................................................................................................................................55 5.8.1 Selecting display mode ...........................................................................................................................55 5.8.2 Screen scrolling .......................................................................................................................................58 5.8.3 Scroll setting examples ............................................................................................................................59 5.9 Reset .................................................................................................................................................................61 6. COMMANDS ............................................................................................................................................ 63 6.1 Control Register 1 (R0)....................................................................................................................................64 6.2 Control Register 2 (R1)....................................................................................................................................65 6.3 Reset Command Register (R3) .......................................................................................................................66 6.4 X Address Register (R4) ..................................................................................................................................66 6.5 Y Address Register (R5) ..................................................................................................................................66 6.6 MIN.·X Address Register (R7) .........................................................................................................................67 6.7 MAX.·X Address Register (R8) ........................................................................................................................67 6.8 MIN.·Y Address Register (R9) .........................................................................................................................67 6.9 MAX.·Y Address Register (R10) ......................................................................................................................68 6.10 Display Memory Access Register (R12).......................................................................................................68 6.11 Main Duty Setting Register (R14) .................................................................................................................69 6.12 Main Duty N-line Inversion Register (R15)...................................................................................................69 6.13 Main Duty M-line Shift Register (R16) ..........................................................................................................70 6.14 Sub-duty Setting Register (R17) ...................................................................................................................71 6.15 Sub-duty N-line Inversion Register (R18) ....................................................................................................72 6.16 Sub-duty M-line Shift Register (R19)............................................................................................................73 6.17 COM Scanning Address Setting Register (R21)..........................................................................................74 6.18 Sub-duty Start Address Register (R22)........................................................................................................77 6.19 Scroll Fixed Area Position Register (R23) ...................................................................................................78 6.20 Scroll Fixed Area Width Register (R27) .......................................................................................................78 6.21 Scroll Step Number Register (R31) ..............................................................................................................79 6.22 Blink/Reverse Setting Register (R37)...........................................................................................................80 6.23 Complementary Color Blink X Address Register (R38) ..............................................................................80 6.24 Complementary Color Blink Start Line Address Register (R39)................................................................81 6.25 Complementary Color Blink End Line Address Register (R40) .................................................................81 6.26 Complementary Color Blink Data Memory Register (R41) .........................................................................82 6.27 Specified Color Blink X Address Register (R42) .........................................................................................82 6.28 Specified Color Blink Start Line Address Register (R43) ...........................................................................83 6.29 Specified Color Blink End Line Address Register (R44) ............................................................................83 6.30 Specified Color Blink Data Memory Register (R45) ....................................................................................84 6.31 Specified Color Setting Register (R46) ........................................................................................................84 Data Sheet S15726EJ2V0DS 3 µPD161401 6.32 Reverse X Address Register (R47) ...............................................................................................................84 6.33 Reverse Start Line Address Register (R48) .................................................................................................85 6.34 Reverse End Line Address Register (R49) ..................................................................................................85 6.35 Reverse Data Memory Access Register (R50).............................................................................................86 6.36 Power System Control Register 1 (R52) ......................................................................................................87 6.37 Power System Control Register 2 (R53) ......................................................................................................88 6.38 Power System Control Register 3 (R54) ......................................................................................................89 6.39 Power System Control Register 4 (R55) ......................................................................................................90 6.40 Power System Control Register 5 (R56) ......................................................................................................91 6.41 Main Electronic Volume Register (R57) .......................................................................................................92 6.42 Sub-electronic Volume Register (R58).........................................................................................................92 6.43 RAM Test Mode Setting Register (R61)........................................................................................................93 6.44 Driving Mode Select Register (R64) .............................................................................................................93 6.45 Main R Grayscale Data Registers (R65 to R72) ...........................................................................................94 6.46 Main G Grayscale Data Registers (R73 to R80) ...........................................................................................95 6.47 Main B Grayscale Data Registers (R81 to R84) ...........................................................................................96 6.48 Sub R Grayscale Data Registers (R85 to R92).............................................................................................97 6.49 Sub G Grayscale Data Registers (R93 to R100) ..........................................................................................98 6.50 Sub B Grayscale Data Registers (R101 to R104).........................................................................................99 7. µPD161401 REGISTER LIST ................................................................................................................ 100 8. POWER SEQUENCE............................................................................................................................. 102 8.1 Power ON Sequence (with Internal Power Supply, Power ON → Display ON) ........................................103 8.2 Power OFF Sequence (with Internal Power Supply) ...................................................................................105 8.3 Power ON Sequence (with External Driving Power Supply, Power ON → Display ON)...........................106 8.4 Power OFF Sequence (with External Driving Power Supply).....................................................................107 8.5 Flow of VOUT and VLCD Voltages from Power ON to Power OFF .................................................................108 8.6 Flow of VOUT and VLCD Voltages in Display Output and HALT/Standby Modes.........................................109 9. USING RAM TEST MODE ..................................................................................................................... 110 10. ELECTRICAL SPECIFICATIONS........................................................................................................ 111 11. CPU INTERFACE (Reference Example)............................................................................................ 120 4 Data Sheet S15726EJ2V0DS µPD161401 1. BLOCK DIAGRAM SEG1 SEG303 O1 O80 Common driver Segment driver Common timing generator Segment gray-scale control IFM0 IFM1 /CS1 CS2 /RD(E) /WR(R,/W) D15 to D8 Display data latch D7(SI) Graphic control D6(SCL) D5 to D0 RS /DISP I/O buffer Display data RAM 101 x 8 x 80 bits Blink & Inverse data RAM 303 bits TOUT15 to TOUT0 M,/S FR FRSYNC Logic Control Circuit DOF TSTRTST TSTVIHL TPWR0, TPWR1 Data control Data register Gray-scale control Register Command decorder OSCIN1 OSCIN2 OSCOUT OSCSYNC Address control VDD1 VDD2 Oscillator circuit VSS Timing generator C1 +, C1 DC/DC converter D/A converter Op amp. LCD voltage generator C5 + , C5 - VOUT VOUT2 Remark VRS IRS VR AMPOUTM AMPOUTS VLCD VLC1 VLC2 VLC3 VLC4 /xxx is an active-low signal. Data Sheet S15726EJ2V0DS 5 µPD161401 2. PIN CONFIGURATION (Pad Layout) • µPD161401W/P Chip size: 2.57 x 16.05 mm2 Chip thickness: 485 µm (TYP.) 713 M1 D u m m y O80 D u m m O41 y 672 671 Dummy 1 SEG303 SEG302 SEG301 Y SEG194 SEG193 Dummy SEG192 SEG191 X I/O side SEG3 SEG2 SEG1 Dummy 317 360 M2 318 6 D O40 u m m y O1 D u m m y Data Sheet S15726EJ2V0DS 359 µPD161401 Details of pad and alignment mark Pad type A type Pad size (Al): 39 x 71 µm2 TYP. Bump size : 33 x 65 µm2 TYP. Bump height: 17 µm TYP. B type Pad size (Al): 93 x 71 µm2 TYP. Bump size: 87 x 65 µm2 TYP. Bump height: 17 µm TYP. Alignment mark (unit: µm) X Y M1 −1140.00 7560.00 M2 −1140.00 −7560.00 Shape of mark (unit: µm) Mark center 80φ (M1) 75φ (M2) Data Sheet S15726EJ2V0DS 7 µPD161401 Table 2− −1 Pad Layout (1/4) Pad No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 8 Pad Name DUMMY VSS VSS VSS VOUT VOUT VOUT VOUT2 VOUT2 VOUT2 VSS VSS VSS C5− C5− C5− C5+ C5+ C5+ C4− C4− C4− C4+ C4+ C4+ C3− C3− C3− C3+ C3+ C3+ C2− C2− C2− C2+ C2+ C2+ C1− C1− C1− C1+ C1+ C1+ VSS VSS VSS TPWR1 TPWR1 TPWR1 TPWR0 TPWR0 TPWR0 VRS VRS VRS VSS VSS VSS VSS VSS VSS VDD2 VDD2 VDD2 VDD1 VDD1 VDD1 VSS VSS VSS Pad Type B A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A Pad Layout [µm] X -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 Y 7230.00 7105.00 7060.00 7015.00 6970.00 6925.00 6880.00 6835.00 6790.00 6745.00 6700.00 6655.00 6610.00 6565.00 6520.00 6475.00 6430.00 6385.00 6340.00 6295.00 6250.00 6205.00 6160.00 6115.00 6070.00 6025.00 5980.00 5935.00 5890.00 5845.00 5800.00 5755.00 5710.00 5665.00 5620.00 5575.00 5530.00 5485.00 5440.00 5395.00 5350.00 5305.00 5260.00 5215.00 5170.00 5125.00 5080.00 5035.00 4990.00 4945.00 4900.00 4855.00 4810.00 4765.00 44720.00 4675.00 4630.00 4585.00 4540.00 4495.00 4450.00 4405.00 4360.00 4315.00 4270.00 4225.00 4180.00 4135.00 4090.00 4045.00 Pad No. 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 Pad Name VSS VSS VSS M, /S M, /S M, /S VDD1 VDD1 VDD1 IFM0 IFM0 IFM0 VSS VSS VSS IFM1 IFM1 IFM1 VDD1 VDD1 VDD1 IRS IRS IRS VSS VSS VSS /CS1 /CS1 /CS1 CS2 CS2 CS2 VDD1 VDD1 VDD1 /DISP /DISP /DISP RS RS RS VSS VSS VSS /WR (R, /W) /WR (R, /W) /WR (R, /W) /RD (E) /RD (E) /RD (E) VDD1 VDD1 VDD1 D15 D15 D15 D14 D14 D14 D13 D13 D13 VSS VSS VSS D12 D12 D12 D11 Pad Type A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A Pad Layout [µm] X -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 Data Sheet S15726EJ2V0DS Y 4000.00 3955.00 3910.00 3865.00 3820.00 3775.00 3730.00 3685.00 3640.00 3595.00 3550.00 3505.00 3460.00 3415.00 3370.00 3325.00 3280.00 3235.00 3190.00 3145.00 3100.00 3055.00 3010.00 2965.00 2920.00 2875.00 2830.00 2785.00 2740.00 2695.00 2650.00 2605.00 2560.00 2515.00 2470.00 2425.00 2380.00 2335.00 2290.00 2245.00 2200.00 2155.00 2110.00 2065.00 2020.00 1975.00 1930.00 1885.00 1840.00 1795.00 1750.00 1705.00 1660.00 1615.00 1570.00 1525.00 1480.00 1435.00 1390.00 1345.00 1300.00 1255.00 1210.00 1165.00 1120.00 1075.00 1030.00 985.00 940.00 895.00 Pad No. 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 Pad Name D11 D11 D10 D10 D10 VSS VSS VSS D9 D9 D9 D8 D8 D8 VSS VSS VSS D7 D7 D7 D6 D6 D6 D5 D5 D5 VSS VSS VSS D4 D4 D4 D3 D3 D3 D2 D2 D2 VSS VSS VSS D1 D1 D1 D0 D0 D0 VSS VSS VSS FRSYNC FRSYNC FRSYNC FR FR FR DOF DOF DOF OSCSYNC OSCSYNC OSCSYNC VSS VSS VSS OSCIN1 OSCIN1 OSCIN1 VSS VSS Pad Type A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A Pad Layout [µm] X -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 Y 850.00 805.00 760.00 715.00 670.00 625.00 580.00 535.00 490.00 445.00 400.00 355.00 310.00 265.00 220.00 175.00 130.00 85.00 40.00 -5.00 -50.00 -95.00 -140.00 -185.00 -230.00 -275.00 -320.00 -365.00 -410.00 -455.00 -500.00 -545.00 -590.00 -635.00 -680.00 -725.00 -770.00 -815.00 -860.00 -905.00 -950.00 -995.00 -1040.00 -1085.00 -1130.00 -1175.00 -1220.00 -1265.00 -1310.00 -1355.00 -1400.00 -1445.00 -1490.00 -1535.00 -1580.00 -1625.00 -1670.00 -1715.00 -1760.00 -1805.00 -1850.00 -1895.00 -1940.00 -1985.00 -2030.00 -2075.00 -2120.00 -2165.00 -2210.00 -2255.00 µPD161401 Table 2− −1 Pad Layout (2/4) Pad Pad Name No. 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 VSS OSCIN2 OSCIN2 OSCIN2 VSS VSS VSS OSCOUT OSCOUT OSCOUT VSS VSS VSS TSTRTST TSTRTST TSTRTST TSTVIHL TSTVIHL TSTVIHL TOUT15 TOUT15 TOUT15 TOUT14 TOUT14 TOUT14 TOUT13 TOUT13 TOUT13 TOUT12 TOUT12 TOUT12 TOUT11 TOUT11 TOUT11 TOUT10 TOUT10 TOUT10 TOUT9 TOUT9 TOUT9 TOUT8 TOUT8 TOUT8 TOUT7 TOUT7 TOUT7 TOUT6 TOUT6 TOUT6 TOUT5 TOUT5 TOUT5 TOUT4 TOUT4 TOUT4 TOUT3 TOUT3 TOUT3 TOUT2 TOUT2 TOUT2 TOUT1 TOUT1 TOUT1 TOUT0 TOUT0 TOUT0 VSS VSS VSS Pad Pad Layout [µm] Pad Type X No. A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 Y -2300.00 -2345.00 -2390.00 -2435.00 -2480.00 -2525.00 -2570.00 -2615.00 -2660.00 -2705.00 -2750.00 -2795.00 -2840.00 -2885.00 -2930.00 -2975.00 -3020.00 -3065.00 -3110.00 -3155.00 -3200.00 -3245.00 -3290.00 -3335.00 -3380.00 -3425.00 -3470.00 -3515.00 -3560.00 -3605.00 -3650.00 -3695.00 -3740.00 -3785.00 -3830.00 -3875.00 -3920.00 -3965.00 -4010.00 -4055.00 -4100.00 -4145.00 -4190.00 -4235.00 -4280.00 -4325.00 -4370.00 -4415.00 -4460.00 -4505.00 -4550.00 -4595.00 -4640.00 -4685.00 -4730.00 -4775.00 -4820.00 -4865.00 -4910.00 -4955.00 -5000.00 -5045.00 -5090.00 -5135.00 -5180.00 -5225.00 -5270.00 -5315.00 -5360.00 -5405.00 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 Pad Name VSS VSS VSS VSS VSS VSS VR VR VR AMPOUTM AMPOUTM AMPOUTM VSS VSS VSS AMPOUTS AMPOUTS AMPOUTS VSS VSS VSS VLCD VLCD VLCD VLC1 VLC1 VLC1 VLC2 VLC2 VLC2 VLC3 VLC3 VLC3 VLC4 VLC4 VLC4 DUMMY DUMMY O40 O39 O38 O37 O36 O35 O34 O33 O32 O31 O30 O29 O28 O27 O26 O25 O24 O23 O22 O21 O20 O19 O18 O17 O16 O15 O14 O13 O12 O11 O10 O9 Pad Pad Layout [µm] Pad Type X No. A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A B B A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1060.00 -935.00 -890.00 -845.00 -800.00 -755.00 -710.00 -665.00 -620.00 -575.00 -530.00 -485.00 -440.00 -395.00 -350.00 -305.00 -260.00 -215.00 -170.00 -125.00 -80.00 -35.00 10.00 55.00 100.00 145.00 190.00 235.00 280.00 325.00 370.00 415.00 460.00 Data Sheet S15726EJ2V0DS Y -5450.00 -5495.00 -5540.00 -5585.00 -5630.00 -5675.00 -5720.00 -5765.00 -5810.00 -5855.00 -5900.00 -5945.00 -5990.00 -6035.00 -6080.00 -6125.00 -6170.00 -6215.00 -6260.00 -6305.00 -6350.00 -6395.00 -6440.00 -6485.00 -6530.00 -6575.00 -6620.00 -6665.00 -6710.00 -6755.00 -6800.00 -6845.00 -6890.00 -6935.00 -6980.00 -7025.00 -7150.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 Pad Name O8 O7 O6 O5 O4 O3 O2 O1 DUMMY DUMMY SEG1 SEG2 SEG3 SEG4 SEG5 SEG6 SEG7 SEG8 SEG9 SEG10 SEG11 SEG12 SEG13 SEG14 SEG15 SEG16 SEG17 SEG18 SEG19 SEG20 SEG21 SEG22 SEG23 SEG24 SEG25 SEG26 SEG27 SEG28 SEG29 SEG30 SEG31 SEG32 SEG33 SEG34 SEG35 SEG36 SEG37 SEG38 SEG39 SEG40 SEG41 SEG42 SEG43 SEG44 SEG45 SEG46 SEG47 SEG48 SEG49 SEG50 SEG51 SEG52 SEG53 SEG54 SEG55 SEG56 SEG57 SEG58 SEG59 SEG60 Pad Pad Layout [µm] Type X A A A A A A A A B B A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A 505.00 550.00 595.00 640.00 685.00 730.00 775.00 820.00 945.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 Y -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7080.00 -6955.00 -6910.00 -6865.00 -6820.00 -6775.00 -6730.00 -6685.00 -6640.00 -6595.00 -6550.00 -6505.00 -6460.00 -6415.00 -6370.00 -6325.00 -6280.00 -6235.00 -6190.00 -6145.00 -6100.00 -6055.00 -6010.00 -5965.00 -5920.00 -5875.00 -5830.00 -5785.00 -5740.00 -5695.00 -5650.00 -5605.00 -5560.00 -5515.00 -5470.00 -5425.00 -5380.00 -5335.00 -5290.00 -5245.00 -5200.00 -5155.00 -5110.00 -5065.00 -5020.00 -4975.00 -4930.00 -4885.00 -4840.00 -4795.00 -4750.00 -4705.00 -4660.00 -4615.00 -4570.00 -4525.00 -4480.00 -4435.00 -4390.00 -4345.00 -4300.00 9 µPD161401 Table 2− −1 Pad Layout (3/4) Pad Pad Name No. 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 10 SEG61 SEG62 SEG63 SEG64 SEG65 SEG66 SEG67 SEG68 SEG69 SEG70 SEG71 SEG72 SEG73 SEG74 SEG75 SEG76 SEG77 SEG78 SEG79 SEG80 SEG81 SEG82 SEG83 SEG84 SEG85 SEG86 SEG87 SEG88 SEG89 SEG90 SEG91 SEG92 SEG93 SEG94 SEG95 SEG96 SEG97 SEG98 SEG99 SEG100 SEG101 SEG102 SEG103 SEG104 SEG105 SEG106 SEG107 SEG108 SEG109 SEG110 SEG111 SEG112 SEG113 SEG114 SEG115 SEG116 SEG117 SEG118 SEG119 SEG120 SEG121 SEG122 SEG123 SEG124 SEG125 SEG126 SEG127 SEG128 SEG129 SEG130 Pad Pad Layout [µm] Pad Type X No. A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 Y -4255.00 -4210.00 -4165.00 -4120.00 -4075.00 -4030.00 -3985.00 -3940.00 -3895.00 -3850.00 -3805.00 -3760.00 -3715.00 -3670.00 -3625.00 -3580.00 -3535.00 -3490.00 -3445.00 -3400.00 -3355.00 -3310.00 -3265.00 -3220.00 -3175.00 -3130.00 -3085.00 -3040.00 -2995.00 -2950.00 -2905.00 -2860.00 -2815.00 -2770.00 -2725.00 -2680.00 -2635.00 -2590.00 -2545.00 -2500.00 -2455.00 -2410.00 -2365.00 -2320.00 -2275.00 -2230.00 -2185.00 -2140.00 -2095.00 -2050.00 -2005.00 -1960.00 -1915.00 -1870.00 -1825.00 -1780.00 -1735.00 -1690.00 -1645.00 -1600.00 -1555.00 -1510.00 -1465.00 -1420.00 -1375.00 -1330.00 1285.00 -1240.00 -1195.00 -1150.00 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 Pad Name SEG131 SEG132 SEG133 SEG134 SEG135 SEG136 SEG137 SEG138 SEG139 SEG140 SEG141 SEG142 SEG143 SEG144 SEG145 SEG146 SEG147 SEG148 SEG149 SEG150 SEG151 SEG152 SEG153 SEG154 SEG155 SEG156 SEG157 SEG158 SEG159 SEG160 SEG161 SEG162 SEG163 SEG164 SEG165 SEG166 SEG167 SEG168 SEG169 SEG170 SEG171 SEG172 SEG173 SEG174 SEG175 SEG176 SEG177 SEG178 SEG179 SEG180 SEG181 SEG182 SEG183 SEG184 SEG185 SEG186 SEG187 SEG188 SEG189 SEG190 SEG191 SEG192 DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY SEG193 Pad Pad Layout [µm] Pad Type X No. A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 Data Sheet S15726EJ2V0DS Y -1105.00 -1060.00 -1015.00 -970.00 -925.00 -880.00 -835.00 -790.00 -745.00 -700.00 -655.00 -610.00 -565.00 -520.00 -475.00 -430.00 -385.00 -340.00 -295.00 -250.00 -205.00 -160.00 -115.00 -70.00 -25.00 20.00 65.00 110.00 155.00 200.00 245.00 290.00 335.00 380.00 425.00 470.00 515.00 560.00 605.00 650.00 695.00 740.00 785.00 830.00 875.00 920.00 965.00 1010.00 1055.00 1100.00 1145.00 1190.00 1235.00 1280.00 1325.00 1370.00 1415.00 1460.00 1505.00 1550.00 1595.00 1640.00 1685.00 1730.00 1775.00 1820.00 1865.00 1910.00 1955.00 2000.00 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 Pad Name SEG194 SEG195 SEG196 SEG197 SEG198 SEG199 SEG200 SEG201 SEG202 SEG203 SEG204 SEG205 SEG206 SEG207 SEG208 SEG209 SEG210 SEG211 SEG212 SEG213 SEG214 SEG215 SEG216 SEG217 SEG218 SEG219 SEG220 SEG221 SEG222 SEG223 SEG224 SEG225 SEG226 SEG227 SEG228 SEG229 SEG230 SEG231 SEG232 SEG233 SEG234 SEG235 SEG236 SEG237 SEG238 SEG239 SEG240 SEG241 SEG242 SEG243 SEG244 SEG245 SEG246 SEG247 SEG248 SEG249 SEG250 SEG251 SEG252 SEG253 SEG254 SEG255 SEG256 SEG257 SEG258 SEG259 SEG260 SEG261 SEG262 SEG263 Pad Pad Layout [µm] Type X Y 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 2045.00 2090.00 2135.00 2180.00 2225.00 2270.00 2315.00 2360.00 2405.00 2450.00 2495.00 2540.00 2585.00 2630.00 2675.00 2720.00 2765.00 2810.00 2855.00 2900.00 2945.00 2990.00 3035.00 3080.00 3125.00 3170.00 3215.00 3260.00 3305.00 3350.00 3395.00 3440.00 3485.00 3530.00 3575.00 3620.00 3665.00 3710.00 3755.00 3800.00 3845.00 3890.00 3935.00 3980.00 4025.00 4070.00 4115.00 4160.00 4205.00 4250.00 4295.00 4340.00 4385.00 4430.00 4475.00 4520.00 4565.00 4610.00 4655.00 4700.00 4745.00 4790.00 4835.00 4880.00 4925.00 4970.00 5015.00 5060.00 5105.00 5150.00 A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A µPD161401 Table 2− −1 Pad Layout (4/4) Pad Pad Name No. Pad Pad Layout [µm] Pad Type X Y No. 701 702 703 704 705 706 707 708 709 710 711 712 713 631 632 633 634 635 636 637 638 639 640 641 642 643 SEG264 SEG265 SEG266 SEG267 SEG268 SEG269 SEG270 SEG271 SEG272 SEG273 SEG274 SEG275 SEG276 A A A A A A A A A A A A A 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 5195.00 5240.00 5285.00 5330.00 5375.00 5420.00 5465.00 5510.00 5555.00 5600.00 5645.00 5690.00 5735.00 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 SEG277 SEG278 SEG279 SEG280 SEG281 SEG282 SEG283 SEG284 SEG285 SEG286 SEG287 SEG288 SEG289 SEG290 SEG291 SEG292 SEG293 SEG294 SEG295 SEG296 SEG297 SEG298 SEG299 SEG300 SEG301 SEG302 SEG303 DUMMY DUMMY O41 O42 O43 O44 O45 O46 O47 O48 O49 O50 O51 O52 O53 O54 O55 O56 O57 O58 O59 O60 O61 O62 O63 O64 O65 O66 O67 O68 A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 950.00 825.00 780.00 735.00 690.00 645.00 600.00 555.00 510.00 465.00 420.00 375.00 330.00 285.00 240.00 195.00 150.00 105.00 60.00 15.00 -30.00 -75.00 -120.00 -165.00 -210.00 -255.00 -300.00 -345.00 -390.00 5780.00 5825.00 5870.00 5915.00 5960.00 6005.00 6050.00 6095.00 6140.00 6185.00 6230.00 6275.00 6320.00 6365.00 6410.00 6455.00 6500.00 6545.00 6590.00 6635.00 6680.00 6725.00 6770.00 6815.00 6860.00 6905.00 6950.00 7075.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 Pad Name O69 O70 O71 O72 O73 O74 O75 O76 O77 O78 O79 O80 DUMMY Data Sheet S15726EJ2V0DS Pad Pad Layout [µm] Type X A A A A A A A A A A A A B -435.00 -480.00 -525.00 -570.00 -615.00 -660.00 -705.00 -750.00 -795.00 -840.00 -885.00 -930.00 -1055.00 Y 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 11 µPD161401 3. PIN FUNCTIONS 3.1 Power Supply Pins Symbol VDD1 Pin Name Logic power supply Pin No. I/O 65 to 67, 77 to 79, − Supplies power to the logic circuit. Description 62 to 64 − Supplies power to the booster circuit. 2 to 4, 11 to 13, 44 to 46, − Ground pin for the logic and driver circuits. − Supply power to the driver (output pins of the internal 89 to 91,104 to 106, 122 to 124 VDD2 Booster circuit power supply VSS Logic and driver ground pin 56 to 61, 68 to 73, 83 to 85, 95 to 97, 113 to 115, 134 to 136, 146 to 148, 155 to 157, 167 to 169, 179 to 181, 188 to 190, 203 to 205, 209 to 211, 215 to 217, 221 to 223, 278 to 286, 293 to 295, 299 to 301 VOUT, Driver power supply VOUT2 5 to 7, booster circuit). Connect a 1 µF capacitor between GND 8 to 10 and these pins. When the internal booster circuit is not used, the driver power can be directly input to the VOUT pin. At this time, leave VOUT2 open. VLCD, Driver reference 302 to 304, VLC1 to VLC4 power supply 305 to 316 C1+, C1− Booster capacitor C2+, C2− connection pin − Supply the reference power for driving the LCD. Connect a capacitor between GND and these pins when an internal bias is selected. C3+, C3− 43 to 14 − These pins are used to connect capacitors for the internal booster circuit. Connect a 1 µF capacitor between the corresponding (+) and (−) pins. C4+, C4− C5+, C5− 12 Data Sheet S15726EJ2V0DS µPD161401 3.2 Logic Circuit Pins (1/3) Symbol /CS1, Pin Name Chip select CS2 Pin No. I/O 98 to 100, Input 101 to 103 Description These pins are chip select signal pins. When /CS1 = L (CS2 = H), the chip is active, and data/command can be input or output and I/O manipulated. /RD (E) Read (enable) 119 to 121 Input When i80 system parallel data transfer is selected (/RD), read is enabled by this signal. When this pin is L, data is output to the data bus. When M68 system parallel data transfer is selected (E), this pin inputs an enable signal that triggers data write or read. But in the µPD161401, the data of the display access memory register, the complementary color blink data memory register, the specified color blink data memory register and the reverse data memory access register (R12, R41, R45, R50) cannot be read. /WR (R,/W) Write (read/write) 116 to 118 Input When i80 system parallel data transfer is selected (/WR), write is enabled by this signal. Data is written at the rising edge of this signal. When M68 system parallel data transfer is selected (R, /W), this pin determines the data transfer direction, as follows: 0: Write 1: Read IFM0, Interface selection IFM1 86 to 88, Input Selects an interface mode 80 to 82 I/O IFM1 IFM0 L L Serial Interface Mode L H Setting prohibited H L i80 series parallel H H M68 series parallel This is a bi-directional data bus connected to an 8- or 16-bit D0 to D15 Data bus 187 to 182, (SI) (serial input) 178 to 170, standard CPU bus. (SCL) (serial clock) 166 to 158, When the serial interface mode is selected (IFM1, IFM0 = L, L), D7 154 to 149, functions as a serial data input pin (SI), and D6 serves as a serial 145 to 137, clock input pin (SCL). At this time, D0 to D5 and D8 to D15 go into a 133 to 125 high-impedance state. When the 8-bit data bus is selected, only D0 to D7 are used, and D8 to D15 go into a high-impedance state. Data is input starting from its higher byte, followed by the lower byte. If the chip is not selected, all D0 to D15 go into a high-impedance state. RS Index register/data command selection 110 to 112 Input This pin is usually connected to the least significant bit of a standard CPU address bus to identify whether data is an index register or data/command. RS = H: Indicates that D0 to D15 are data/command. RS = L: Indicates that D0 to D15 are an index register. Data Sheet S15726EJ2V0DS 13 µPD161401 (2/3) Symbol /DISP Pin Name Reset Pin No. I/O Description 107 to 109 Input Making /DISP low initializes the DISP flag in the control register 1 (R0) and turns OFF the display. When the serial interface is used, the write counter is also initialized. Making /DISP high enables writing. To light the display after it has been turned OFF by this pin, make /DISP high and set the DISP flag to 1. FR Frame signal 194 to 196 I/O This pin inputs or outputs a liquid crystal AC signal. M,/S = H : Output M,/S = L : Input When two or more µPD161401s are used in master/slave mode, the respective FR pins must be connected to each other. FRSYNC Frame sync signal 191 to 193 I/O This pin inputs or outputs a liquid crystal AC sync signal. M,/S = H : Output M,/S = L : Input When two or more µPD161401s are used in master/slave mode, the respective FRSYNC pins must be connected to each other. DOF Display blink 197 to 199 I/O This pin controls blinking of the LCD. M,/S = H : Output M,/S = L : Input When two or more µPD161401s are used in master/slave mode, the respective DOF pins must be connected to each other. M,/S Master/slave 74 to 76 Input This pin selects master or slave mode. In the master mode, it outputs a timing signal necessary for driving the LCD. In the slave mode, this timing signal is input from an external source to synchronize the LCD. M,/S = H : Master mode M,/S = L : Slave mode The status of each pin, including this pin, and the power circuit is as follows depending on the status of the M,/S pin. IRS VLCD adjustment 92 to 94 Input M,/S Power Circuit FR FRSYNC DOF H Enabled Output Output Output L Disabled Input Input Input This pin selects the resistor used to adjust the VLCD voltage level. IRS = H: The internal resistor is used. IRS = L: The internal resistor is not used. The VLCD voltage level is adjusted by an external voltage divider resistor connected to the VR pin. This pin is enabled only when the master operation mode is selected. If the slave mode is selected, this pin is fixed to H or L. 14 Data Sheet S15726EJ2V0DS µPD161401 (3/3) Symbol OSCIN1 Pin Name Pin No. I/O Description Oscillation signal pin 206 to 208 Input These pins are connected with a resistor inserted between OSCIN1 212 to 214 Input OSCIN2 and OSCOUT, and between OSCIN2 and OSCOUT. When an external oscillator is used, input a clock signal to the OSCIN pin and leave OSCOUT OSCSYNC Display clock output 218 to 220 Output 200 to 202 Output the OSCOUT pin open. This pin outputs a clock for display. When using the µPD161401 in the master or slave mode, refer to 5.4 Oscillator. TOUT0 to Test output 230 to 277 Output TOUT15 TSTRTST, Usually, leave these pins open. Test input pin TSTVIHL TPWR0, These pins are used when the µPD161401 is in the test mode. 224 to 226, Input 227 to 229 Test input/output pin TPWR1 These pins are used to set the µPD161401 in the test mode. Usually, connect these pins to VSS. 50 to 52, I/O These pins are used to input/output test signals when the µPD161401 is in the test mode. Usually, leave these pins open. 47 to 49 3.3 Driver Pins Symbol SEG1 to Pin Name Pin No. I/O Description Segment 361 to 670 Output These pins output segment signals. Common 319 to 358, Output These pins output common signals. SEG303 O1 to O80 673 to 712 VRS Operational amplifier 53 to 55 Input input These are the input pins of the operational amplifier that adjusts the LCD driving voltage. VRS is used to input the reference voltage of the amplifier for LCD voltage adjustment. VR is used to connect a feedback resistor for the operational amplifier. The feedback resistor is connected between this pin and GND, 287 to 289 VR AMPOUTM, or AMPOUTS. This pin is enabled only when the internal divider resistor for VLCD voltage adjustment is not used (IRS = L). When the internal divider resistor is used (IRS = H), this pin is not used. AMPOUTM Operational amplifier Output 290 to 292 These pins are the output pins of the operational amplifier that adjusts the LCD driving voltage. The signals output by these pins output are connected to the LCD driving voltage adjuster resistor (refer to 5.6.3 Voltage regulator circuit) only when the internal resistor for 296 to 298 AMPOUTS LCD voltage adjustment is not used (IRS = L). It is recommended to connect a capacitor of 0.01 to 0.1 µF to these pins to stabilize the output of the internal operational amplifier. DUMMY Dummy pin 1, 317, 318, 359, − These pins are not connected to the internal circuit. 360, 553 to 559, 671, 672, 713 Data Sheet S15726EJ2V0DS 15 µPD161401 4. PIN I/O CIRCUITS AND RECOMMENDED CONNECTION OF UNUSED PINS The I/O circuit type of each pin and recommended connection of unused pins are shown in the table below. Symbol Input Type I/O Recommended of Unused Pins Note /CS1 Schmitt-trigger A Input Connect this pin to VSS. − CS2 Schmitt-trigger A Input Connect this pin to VDD1. − /RD(E) Schmitt-trigger A Input Connect to VDD1 (i80 system interface), or to VDD1 or VSS (serial − interface). /WR(R,/W) Schmitt-trigger A Input Connect to VDD1 or VSS (serial interface). − IFM1, IFM0 Schmitt-trigger A Input Mode setting pin 1 D0 to D5 Schmitt-trigger B I/O Leave open. − D6(SCL) Schmitt-trigger B I/O − − D7(SI) Schmitt-trigger B I/O − − D8 to D15 Schmitt-trigger B I/O Leave open. − RS Schmitt-trigger A Input Register setting pin 2 /DISP Schmitt-trigger C Input FR Schmitt-trigger A I/O Connect to VDD1. − Leave open (in master mode, M,/S = H). − − FRSYNC Schmitt-trigger A I/O Leave open (in master mode, M,/S = H). DOF Schmitt-trigger A I/O Leave open (in master mode, M,/S = H). − M,/S Schmitt-trigger A Input Mode setting pin 1 IRS Schmitt-trigger A Input Mode setting pin 1 OSCIN1 Schmitt-trigger A Input Connect to VDD1 or VSS. − OSCIN2 Schmitt-trigger A Connect to VDD1 or VSS. − OSCOUT − Output Leave open (when an external clock is used). − OSCSYNC − Output Leave open. − TOUT0 to − Output Leave open. − Input TOUT15 TSTRTST Schmitt-trigger A Input Connect this pin to VSS (in normal operation mode). − TSTVIHL Schmitt-trigger A Input Connect this pin to VSS (in normal operation mode). − TPWR − Leave open. − I/O Notes 1. Connect this pin to VDD1 or VSS depending on the mode selected. 2. Input VDD1 or VSS output from the CPU to this pin depending on the mode selected. Remark Schmitt-trigger A : Schmitt inverter Schmitt-trigger B : Schmitt NAND Schmitt-trigger C : Schmitt inverter (with delay circuit) 16 Data Sheet S15726EJ2V0DS µPD161401 5. FUNCTIONAL DESCRIPTION 5.1 CPU Interface 5.1.1 Selecting interface type The µPD161401 transfers data through an 8-bit bi-directional data bus (D7 to D0), a 16-bit bi-directional data bus (D15 to D0), or a serial data input (SI) pin. Interface type can be selected by making the IFM1,IFM0 pin high or low, as shown in the following table. IFM1 IFM0 Interface type L L Serial data input L H Setting Prohibited H L i80 system CPU H H M68 system CPU Parallel data input or serial data input can be chosen as by setting the polarity of IFM1 terminal, as shown in the following table. IFM1 /CS1, CS2 RS H: Parallel input /CS1, CS2 RS L: Serial input /CS1, CS2 RS /RD /WR D15 to D8 D7 D6 D5 to D0 /RD /WR D15 to D8 D7 D6 D5 to D0 Note1 Note1 Hi-ZNote2 SI SCL Hi-ZNote2 Notes 1. Fix these pins to the high or low level. 2. Hi-Z: High impedance 5.1.2 Parallel interface When the parallel interface is selected (IFM = H), an 8-bit bi-directional data bus (D7 to D0) or 16-bit bi-directional data bus (D15 to D0) can be selected by setting the BMOD flag of the control register 2 (R1) to 1 or 0. In addition, the µPD161401 can be directly connected to an i80 or M68 system by making the IFM0 pin high or low as shown in the following table. IFM0 /CS1, CS2 H: M68 system CPU /CS1, CS2 L: i80 system CPU /CS1, CS2 RS /RD /WR RS E R,/W RS /RD /WR BMOD D15 to D8 D7 to D0 0 D15 to D8 D7 to D0 1 Hi-ZNote D7 to D0 0 D15 to D8 D7 to D0 1 Hi-ZNote D7 to D0 Note Hi-Z : High impedance (may be open) Data Sheet S15726EJ2V0DS 17 µPD161401 The data bus signals are identified by the combination of the RS, /RD(E), /WR (R,/W) signals as shown in the following table. Common M68 i80 Common Data Bus Function RS R,/W E /RD /WR BMOD D15 to D8 D7 to D0 1 1 1 0 1 0 Note1 Note1 1 Hi-Z OUT 1 0 1 1 0 0 Note2 IN 1 Hi-Z IN 0 1 1 0 1 0 Hi-Z OUT 1 Hi-Z OUT 0 0 1 1 0 0 Hi-Z IN 1 Hi-Z IN Hi-Z Hi-Z 0/1 Other Reads the register. Writes the display data/register. Prohibited Writes the control index register. − Remark IN : Input status (cannot be open), OUT : Output status, Hi-Z : High impedance (may be open) Notes1. In the µPD161401, the data of the display access memory register, the complementary color blink data memory register, the specified color blink data memory register and the reverse data memory access register (R12, R41, R45, R50) are read-prohibited. However, if R12 is selected, the data bus signals D15 to D0 enter an output state. If another register is specified, the D15 to D8 signals become Hi-Z and the D7 to D0 signals enter an output state. 2. Only the display access memory register (R12) enters the input state. If another register is specified, the D15 to D8 signals become Hi-Z. 18 Data Sheet S15726EJ2V0DS µPD161401 5.1.3 Serial interface When the serial interface has been selected (IFM1, IFM0 = L, L), as long as the chip is in an active state (/CS1= L, CS2 = H ), serial data input (SI) and serial clock input (SCL) can be received. Serial data is read in the order of D7, then D6 to D0 at the rising edge of the serial clock input from the serial input pin. This data is converted to parallel data in synchronization with the 8th rising edge of the serial clock. Serial input data is judged as display data/command data if RS = H and an index if RS = L. The RS input is read every 8th rising edge of the serial clock after the chip becomes active and is used for data discrimination. Figure 5−1. Serial Interface Signal Chart CS2 = "H" /CS1 SI SCL D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 RS Remarks 1. If the chip is not in an active state, the shift register and counter are reset to their initial statuses. 2. The serial clock counter is reset by initialization from the /DISP pin. 3. Data cannot be read when using serial interface mode. 4. Care must be taken when performing SCL wiring to avoid effects from terminal radiation or external noise caused by the wiring length. It is recommended to confirm operation using the actual equipment to be used. 5.1.4 Chip select The µPD161401 has chip select pins (/CS1 and CS2). The CPU parallel interface or Serial interface can be used only when /CS1 = L (CS2 = H). If the chip select pins are not active, the D0 to D15 pins go into a high-impedance state, and the RS, /RD, and /WR pins do not become active. 5.1.5 Accessing display data RAM and internal registers When the CPU accesses the µPD161401, the CPU only has to satisfy the requirement of the cycle time (tCYC) and can transfer data at high speeds. Usually, it is not necessary for the CPU to take wait time into consideration. When the CPU writes data to the µPD161401, no dummy data is necessary. When reading data, dummy data is not necessary either. In the µPD161401, the data of the display access memory register, the complementary color blink data memory register, the specified color blink data memory register and the reverse data memory access register (R12, R41, R45, R50) cannot be read. Figure 5− −2 illustrates as follows. Data Sheet S15726EJ2V0DS 19 µPD161401 Figure 5− −2. Writing and Reading Writing /WR DATA N N+1 N+2 N+3 Reading (other than display memory access register) /WR /RD DATA Caution IRn IRn Data IRn + 1 IRn+1 Data IR Address Set #n IRn Register Data Read IR Address Set #n+1 IRn+1 Register Data Read Display access memory register, the complementary color blink data memory register, the specified color blink data memory register and the reverse data memory access register (R12, R41, R45, R50) cannot be read. 20 Data Sheet S15726EJ2V0DS µPD161401 5.2 Display Data RAM 5.2.1 Display data RAM This RAM stores dot data for display and consists of (101 × 80) × 8 bits. Any address of this RAM can be accessed by specifying an X address and a Y address. Display data D0 to D15 transmitted from the CPU corresponds to the pixels on the LCD (refer to Table 5− −1). If the µPD161401 is used in a multi-chip configuration, restrictions on display data transfer are relaxed and display setting can be performed relatively freely. The CPU writes data to the display RAM via I/O buffers. This write operation is performed independently of an operation to read signals for driving the LCD. Therefore, even if the display data RAM is asynchronously accessed, adverse effects such as flickering do not occur or the current LCD screen. Table 5− −1. Display Data RAM MSB D15 D14 D13 D12 Dot (R) D11 D10 D9 Dot (G) LSB MSB D8 D7 LSB D6 Dot (B) D5 D3 Dot (R) D2 D1 Dot (G) Pixel 1 LCD panel D4 D0 Dot (B) Pixel 2 Pixel 1 Pixel 2 Pixel 3 Pixel 4 Pixel 5 Pixel 6 Pixel 7 Pixel 8 Pixel 1 Pixel 2 Pixel 3 Pixel 4 Pixel 5 Pixel 6 Pixel 7 Pixel 8 00H 01H 02H 03H 04H 05H 06H 07H 5.2.2 X address circuit An X address of the display data RAM is specified by using the X address register (R4) as shown in Figure 5− −5. If the X address increment mode (INC = 0: control register 2 (R1)) is used, the specified X address is incremented or decremented by one each time display data is written. Whether the address is incremented or decremented is specified by the XDIR flag of control register 2 (R1) as shown in Table 5− −2. In the increment mode, the X address is incremented up to 64H. If more display data is written, the Y address is incremented (YDIR = 0) or decremented (YDIR = 1), and the X address returns to 00H. In the decrement mode, the X address is decremented to 00H. If more display data is written, the Y address is incremented (YDIR = 0) or decremented (YDIR = 1), and the X address returns to 64H. When the 16-bit data bus is selected (BMOD = 0), only an even address can be specified. Moreover, when the 16-bit data bus is selected, dummy data is required as shown in Figure 5− −3. Data Sheet S15726EJ2V0DS 21 µPD161401 Figure 5− −3. About Dummy Data Required when the 16-bit Data Bus is Selected · When an ADC = 0 101 pixel1 D15 D8 D7 D0 Dummy data SEG1 SEG303 X address 00H 01H 64H pixel 1 pixel 101 · When an ADC = 1 D8 D7 D15 SEG303 SEG1 pixel1 101 D0 Dummy data X address 64H 00H 01H pixel 1 22 pixel 101 Data Sheet S15726EJ2V0DS µPD161401 5.2.3 Y address circuit A Y address of the display data RAM is specified by using the Y address register (R5) as shown in Figure 5− −5. If the Y address increment mode (INC = 1: control register 2 (R1)) is used, the specified Y address is incremented or decremented by one each time display is written. Whether the address is incremented or decremented is specified by the YDIR flag of control register 2 (R1) as shown in Table 5− −2. In the increment mode, the Y address is incremented up to 4FH. If more display data is written, the X address is incremented (XDIR = 0) or decremented (XDIR = 1), and the Y address returns to 00H. In the decrement mode, the Y address is decremented to 00H. If more display data is written, the X address is incremented (XDIR = 0) or decremented (XDIR = 1), and the Y address returns to 4FH. The relationship between the setting of INC, XDIR, and YDIR of control register 2 (R1) and the address is as follows: Table 5− −2. Relationship between INC, XDIR, and YDIR, and Address INC Setting 0 The address is successively incremented or decremented in the X direction when data is accessed. 1 The address is successively incremented or decremented in the Y direction when data is accessed Note. Note This setting cannot be used when the 16-bit parallel interface is used. XDIR Setting 0 Increments the X address (+1) when data is accessed. 1 Decrements the X address (−1) when data is accessed. YDIR Setting 0 Increments the Y address (+1) when data is accessed. 1 Decrements the Y address (−1) when data is accessed. Table 5− −3. Combination of INC, XDIR, and YDIR, and Address Direction INC 0 1 XDIR YDIR Image of Address Scanning 0 0 A-1 0 1 A-2 1 0 A-3 1 1 A-4 0 0 B-1 0 1 B-2 1 0 B-3 1 1 B-4 Caution If the access direction is changed by using INC, XDIR, or YDIR, be sure to set the X address register (R4) and Y address register (R5) before accessing the display RAM. Data Sheet S15726EJ2V0DS 23 µPD161401 Y address register (R5) D7 D6 D5 D4 D3 D2 D1 D0 YA6 YA5 YA4 YA3 YA2 YA1 YA0 YA6 to YA0 Sets a line address. Figure 5− −4. Combination of INC, XDIR, and YDIR, and Address Scanning Image X address 00H 64H 00H A-1 Y address A-2 A-3 A-4 4FH X address 64H 00H Y address 00H B-1 B-2 B-3 4FH B-4 5.2.4 Column address circuit When the contents of the display data RAM are displayed, column addresses are output to the SEG output pins as shown in Figure 5− −5. The correspondence relationship between the column addresses of the display RAM and segment outputs can be reversed by the ADC flag (segment driver direction select flag) of control register 1 (R0). This reduces the restrictions on chip layout when the LCD module is assembled. Table 5− −4. Relationship between Column Address of Display RAM and Segment Output SEG Output 24 SEG1 SEG303 ADC 0 000H → Column address → 12EH (D1) 1 12EH ← Column address ← 000H Data Sheet S15726EJ2V0DS µPD161401 5.2.5 Common scan circuit The common scan circuit sets the sequence for the scan line of the common signal in which the display RAM is to be read. The RAM line reading direction is set as shown in Table 5− −5 by the COMR flag of control register 1 (R0). For example, if the duty ratio is 1/64, the number of scroll steps is 0, and COMR = 0, the RAM line reading direction is from 00H to 3FH. If COMR = 1, it is from 3FH to 00H. Table 5− −5. Relationship between Common Scan Circuit and Scan Direction COMR 0 00H → 4FH (D0) 1 4FH → 00H In addition, scanning of the common outputs can be assigned by using the COM scanning address setting register (R21) as shown in Table 5− −6, so that the scanning can be started from any O1 to O80 output pin. Therefore, the common wiring of the LCD panel can be optimized when any duty ratio is selected. When COMR = 0, the scan start (COM1) pin and scan end (COMa) pin are the On and O(n+a−1) pins, respectively. The value of a is 64, 72, and 80 for 1/64 duty, 1/72 duty, and 1/80 duty, respectively. When COMR = 1, the scan start (COM1) pin and scan end (COMa) pin are the O(82−a−n) and O(80−−n+1) pins, respectively. Examples of COM scan address settings for 1/64 duty, 1/72 duty, and 1/80 duty are shown in Tables 5− −5, 5− −7, and 5− −8, respectively. Table 5− −6. COM Scanning Address Setting (1/64 duty) COMR = 0 CSA4 CSA3 CSA2 CSA1 CSA0 n the scan start → (COM1) pin On → → 0 0 0 0 0 1 O1 0 0 0 0 1 2 O2 → COMR = 1 the scan end the scan start (COMa)Note pin (COM1) pin O(n+a-1) Note O(82-a-n) Note → O(80-n+1) O64 O17 → O16 → O80 O65 O78 → the scan end (COMa)Note pin O79 0 0 0 1 0 3 O3 → O66 O15 → 0 0 0 1 1 4 O4 → O67 O14 → O77 0 0 1 0 0 5 O5 → O68 O13 → O76 0 0 1 0 1 6 O6 → O69 O12 → O75 O74 0 0 1 1 0 7 O7 → O70 O11 → 0 0 1 1 1 8 O8 → O71 O10 → O73 0 1 0 0 0 9 O9 → O72 O9 → O72 0 1 0 0 1 10 O10 → O73 O8 → O71 O70 0 1 0 1 0 11 O11 → O74 O7 → 0 1 0 1 1 12 O12 → O75 O6 → O69 0 1 1 0 0 13 O13 → O76 O5 → O68 0 1 1 0 1 14 O14 → O77 O4 → O67 O66 0 1 1 1 0 15 O15 → O78 O3 → 0 1 1 1 1 16 O16 → O79 O2 → O65 1 0 0 0 0 17 O17 → O80 O1 → O64 Note When in 1/64 duty, a = 64. Data Sheet S15726EJ2V0DS 25 µPD161401 Table 5− −7. COM Scanning Address Setting (1/72 duty) COMR = 0 CSA4 CSA3 CSA2 CSA1 CSA0 n COMR = 1 the scan start → the scan end (COMa)Note pin (COM1) pin → O(n+a-1) Note On → O1 O72 the scan start → (COM1) pin O(82-a-n) Note O9 Remark the scan end (COMa)Note pin → O(80-n+1) → O80 0 0 0 0 0 1 0 0 0 0 1 2 O2 → O73 O8 → 0 0 0 1 0 3 O3 → O74 O7 → O78 0 0 0 1 1 4 O4 → O75 O6 → O77 O76 O79 0 0 1 0 0 5 O5 → O76 O5 → 0 0 1 0 1 6 O6 → O77 O4 → O75 0 0 1 1 0 7 O7 → O78 O3 → O74 0 0 1 1 1 8 O8 → O79 O2 → O73 O9 → O1 → O72 0 1 0 0 0 9 0 1 0 0 1 10 O80 Prohibit since here Note When in 1/72 duty, a = 72 Caution The COM scan address setting register (R21) should be set so that O1 ≤ scan start pin and scan end pin ≤ O80. If any other settings are made the IC operation is not guaranteed. Table 5− −8. COM Scanning Address Setting (1/80 duty) COMR = 0 CSA4 CSA3 CSA2 CSA1 CSA0 n 0 0 0 0 0 1 0 0 0 0 1 2 the scan start → the scan end (COMa)Note pin (COM1) pin → O(n+a-1) Note On → O1 O80 COMR = 1 the scan start → (COM1) pin O(82-a-n) Note → O1 → Remark the scan end (COMa)Note pin O(80-n+1) O80 Prohibit since here Note When in 1/80 duty, a = 80 Caution When this µPD161401 is used in 1/80 duty, the COM scan address setting register (R21) should be set to CSA4, CSA3, CSA2, CSA1, CSA0 = 0, 0, 0, 0, 0. If any other settings are made the IC operation is not guaranteed. 26 Data Sheet S15726EJ2V0DS µPD161401 Panel pin COM output COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11 COM12 COM13 COM14 COM15 COM16 COM17 COM18 COM19 COM20 COM60 COM61 COM62 COM63 COM64 address Column D1 ADC 0 1 LCD Data Sheet S15726EJ2V0DS O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 O14 O15 O16 O17 O18 O19 O20 output D1 303 1 SEG O60 O61 O62 O63 O64 302 3BH 3CH 3DH 3EH 3FH 40H 41H 42H 43H 44H 45H 46H 47H 48H 49H 4AH 4BH 4CH 4DH 4EH 4FH 2 Driver: On SEG 5 SEG 299 Line address 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 301 4 SEG 300 Setting example 1/64 duty COMR = 0 n = 1(CSA4 to CSA0 = 0) 3 3 SEG 301 D7 D6 D5 1 1 0 0 1 0 0 64H D4 D3 D2 D1 D0 SEG 2 SEG 302 6 1 Data D7 D6 D5 0 0 0 0 0 0 0 0 0 0 0 0 0 1 00H 01H D4 D3 D2 D1 D 0 D7 D6 D5 D4 D3 D2 D1 D 0 SEG 298 D6 D5 D4 D3 D2 D1 D0 SEG 303 X address Figure 5− −5. Configuration of X Address Register 27 µPD161401 5.2.6 Display data latch circuit The display data latch circuit temporarily stores (latches) the display data that is output from the display data RAM to the LCD driver circuit. The display scan command for forwarding or reversing data and the display ON/OFF command control the latched data and do not affect the data of the display data RAM. 5.2.7 Arbitrary address area access (window access mode (WAS)) With the µPD161401, any area of the display RAM selected by the MIN.⋅X/Y address registers (R7 and R9) and MAX.⋅X/Y address registers (R8 and R10) can be accessed. First, select the area to be accessed by using the MIN.⋅X/Y address registers and MAX.⋅X/Y address registers. When WAS of control register 1 is set to 1, the window access mode is then selected. The address scanning setting by INC, XDIR, and YDIR of control register 2 (R1) is also valid in this mode, in the same manner as when data is normally written to the display RAM. In addition, data can be written from any address by specifying the X address register (R4) and Y address register (R5). Note that the display RAM must be accessed after setting the X address register (R6) and Y address register (R7) if the window access area has been set or changed by the MIN.⋅ X/Y address register (R7, R9) or MAX.⋅ X/Y address register (R8, R10). Figure 5− −6. Example of Incrementing Address When INC = 0, XDIR = 0, and YDIR = 0 MIN. . X address Start point MAX. . X address 64H 00H 00H MIN. . Y address . . . MAX. . Y address 4FH End point Cautions 1. When using the window access mode, the relationship between the start point and end point shown in the table below must be established. Item Address Relation Ship X address 00H ≤ MIN.⋅X address ≤ X address (R4) ≤ MAX.⋅X address ≤ 64H Y address 00H ≤ MIN.⋅Y address ≤ Y address (R5) ≤ MAX.⋅Y address ≤ 4FH 2. If invalid address data is set as the MIN./MAX.⋅⋅address, operation is not guaranteed. 3. Access the display RAM after setting the X address register (R6) and Y address register (R7) if the window access area has been set or changed by the MIN.⋅⋅ X/Y address register (R7, R9) or MAX.⋅⋅ X/Y address register (R8, R10). 28 Data Sheet S15726EJ2V0DS µPD161401 Figure 5− −7. Example of Sequence in Window Access Mode Start Control register 2 (WAS = 1) Sets window access mode. MIN. . X address register (R7) Sets start point. MIN. . Y address register (R9) MAX. . X address register (R8) Sets end point. MAX. . Y address register (R10) X address register (R4) Y address register (R5) Display memory access register (R12) Data Writing complete? No Yes End Data Sheet S15726EJ2V0DS 29 µPD161401 5.3 Screen Processing 5.3.1 Blink/reverse display circuit The µPD161401 can blink or reverse a specific area of the full-dot display. Blinking is to turn ON/OFF display repeatedly at about 1 Hz (complementary color or specified color can be selected) and reversing is to reverse the grayscale data on the display. The area to be blinked is specified by using the complementary color/specified color blink start/end line address registers (R39, R40, R43, and R44), complementary color/specified color blink X address registers (R38, R42), and complementary color/specified color blink data memory registers (R41, R45). First, select a blink display start line address and end line address by using the start/end line address registers. Next, select the column to be blinked by using the blink X address register and blink data memory register. The specified color blink is blinked between the graphic data and the color data specified by the specified color setting register (R46). To select an area to be reversed, use the reverse start/end line address registers (R48, R49), reverse X address register (R47), and reverse data memory access register (R50). First, select line addresses at which reverse display is started and stopped, by using the reverse start/end line address registers. Next, select a column to be reversed, by using the reverse X address register and reverse data memory access register. The specified blink/reverse X address is incremented by one each time blink/reverse data has been input. The complementary color/specified color blink RAM and reverse RAM store the data to be blinked and reversed. Each RAM is configured of 101 bits (12 × 8 + 5 bits). To access a desired bit, specify an X address. Blink/reverse data D0 to D7 transmitted from the CPU corresponds to −8. SEGX on the LCD, as illustrated in Figure 5− If the BLD bit and INV bit of the blink/reverse setting register (R37) are set to H after an area and data have been set, blinking or reversing the data is started. Figure 5− −9 shows the relationship between the start line address, end line address, blinking/reversing data, and LCD. If the same area is specified for complementary color blinking and specified color blinking, the specified color blinking takes precedence. Table 5− −9. Reversing Operation and Display Original Grayscale After Reversing (supplement color) R/G display data 0, 0, 0 1, 1, 1 0, 0, 1 1, 1, 0 0, 1, 0 1, 0, 1 0, 1, 1 1, 0, 0 1, 0, 0 0, 1, 1 1, 0, 1 0, 1, 0 1, 1, 0 0, 0, 1 1, 1, 1 0, 0, 0 B display data 30 0, 0 1, 1 0, 1 1, 0 1, 0 0, 1 1, 1 0, 0 Data Sheet S15726EJ2V0DS µPD161401 Figure 5− −8. Correspondence between Blink/Reverse Data and Segment R38,R42,R47 X address When an ADC = 0 D3 D2 D1 D0 Data D7 D6 D5 0 0 0 0 0 0 0 1 00H 01H D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 1 1 0 0 0CH D4 D3 D2 D1 D0 pixel101 64 pixel100 63 pixel99 62 pixel98 61 pixel97 60 pixel16 0F pixel15 0E pixel14 0D pixel13 0C pixel12 0B pixel11 0A pixel10 09 pixel9 08 pixel8 07 pixel7 06 pixel6 05 pixel5 04 pixel4 03 pixel3 02 pixel2 01 pixel1 00 Note Note Note Column output LCD Output Note The value written in D2 to D0 of X address 0CH is invalid. pixel101 64 pixel100 63 pixel99 62 pixel98 61 1 1 0 0 0CH D4 D3 D2 D1 D0 pixel97 60 pixel16 0F pixel15 0E D 7 D6 D5 pixel14 0D pixel13 0C pixel12 0B pixel11 0A pixel10 09 pixel9 08 pixel8 07 pixel7 06 pixel6 05 pixel5 04 pixel4 03 D7 D6 D5 pixel1 00 Data 0 0 0 0 0 0 0 1 00H 01H D4 D3 D2 D1 D0 D 7 D6 D5 D4 D3 D2 D 1 D 0 pixel3 02 D3 D2 D1 D0 pixel2 01 R38,R42,R47 X address When an ADC = 1 Column output n+6 n+7 LCD Output Note The value written in D7 to D5 of X address 00H is invalid. Figure 5− −9. Blink/Reverse Display Area Setting Image n n+1 n+2 n+3 n+4 n+5 Blink/reverse 0 0 1 1 0 0 1 0 0 0 1 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 1 0 1 0 0 data ;;;; ; ;;;;;;;; ;;;;;; ; ;;;;; ; ; ;;;;;;;;;; Start line End line : Blink or reverse pixel Data Sheet S15726EJ2V0DS 31 µPD161401 Figure 5− −10. Example of Sequence of Setting Blink/Reverse Display Start Blink/reverse start line address register Blink/reverse end line address register Blink/reverse X address register Blink/reverse data memory Data NO Writing complete ? YES Blink/reverse setting register (R37) (BLDn, INV = H) End The data configuration of the range specification registers (start/end line address registers R39, R40, R43, R44, R48, and R49) of each line is in the format shown below. Each display area is set in this format. . D7 D6 D5 D4 D3 D2 D1 D0 X_6 X_5 X_4 X_3 X_2 X_1 X_0 X_6 to X_0 Sets start/end line addresses. Remark X_: CBS, CBE, SBS, SBE, IVS, IVE 32 Data Sheet S15726EJ2V0DS µPD161401 5.3.2 Example of setting blink area This section explains how to specify an area to be blinked, taking complementary color blinking as an example. The same setting is also applied to specified color blinking and reverse display. (1) Example of using 1 chip at duty ratio of 1/80 T.B.D. Remark T.B.D. (To be determined.) (2) Example of using 2 chip (Master and slave) at duty ratio of 1/80 T.B.D. 5.4 Oscillator The µPD161401 has a CR oscillator (with external R) for main duty/sub-duty display. This oscillator generates the display clock. This oscillator is controlled by the DTY flag of control register 2 (R1), and the configuration of its display clock can be set in accordance with the system used. The function of each circuit of the oscillator is shown below. The main duty display/sub-duty display oscillator becomes valid only when oscillation resistors (RM and RS) are connected to it. The clock for main duty display or subduty display can be selected depending on the status of the DTY flag of control register 2 (R1). Figure 5− −11. Oscillator Block Selected by DTY OSC IN1 OSC IN2 Oscillator for main duty/sub-duty OSC OUT To graphic driver circuit OSC SYNC The relationship between the frame frequency (fFRAME) in the normal display mode, oscillation frequency (fOSCINn), and set duty frame is as follows. fFRAME = fOSCINn ÷ 16 ÷ N N = Duty ratio Data Sheet S15726EJ2V0DS 33 µPD161401 Table 5− −10 shows the relationship between oscillation resistors RM and RS, and the display clock circuit. Table 5− −10. Relationship between Display Clock Circuit, Pins, and Resistor RM Connection RS Connection Clock for Main Duty Display Clock for Sub-duty Display Example Connected Connected Internal oscillation Internal oscillation A Not connected Not connected External clock External clock B Figure 5− −12. Example of Using Clock fM OSC IN1 OSC IN1 fS RM OSC IN2 OSC IN2 RS OSC OUT Open (A) OSC OUT (B) OSCIN1 : For main duty OSCIN2 : For sub-duty Figure 5− −13. Example of Master/Slave Connection Master Slave (M,/S = H) (M,/S = L) OSC SYNC OSC IN1 OSC IN2 Open (A) 34 Data Sheet S15726EJ2V0DS OSC OUT µPD161401 5.5 Display Timing Generator The display timing generator generates timing signals for the line address circuit and display data latch circuit, from the display clock. The display data is latched to the display data latch circuit in synchronization with the display clock and output to the segment driver output pins. The display data can be read completely independently of the access to the display data RAM by the CPU. Therefore, even if the display data RAM is asynchronously accessed, no adverse effect, such as flickering, occurs on the LCD. The internal common timing, LCD AC signal (FR), and frame synchronization signal (FRSYNC) are generated by the display clock. A driver waveform in the frame AC driving mode shown in Figure 5− −14 is generated for the LCD driver circuit. When the µPD161401 is used in a multi-chip configuration, the display timing signals for the slave chip (FR and FRSYNC) must be supplied from the master chip. Table 5− −11. Relationship between FR, FRSYNC, and Operation Mode Operation Mode FR FRSYNC Master (M,/S = H) Output Output Slave (M,/S = L) Input Input Data Sheet S15726EJ2V0DS 35 µPD161401 Figure 5− −14. Driver Waveform in Frame AC Driver Mode 1 FRAME 1 2 3 4 5 6 7 8 78 79 80 1 2 3 4 5 6 7 8 OSCSYNC FRSYNC FR RAM DATA VLCD VLC1 VLC2 SEG1 VLC3 VLC4 VSS VLCD VLC1 VLC2 COM1 VLC3 VLC4 VSS VLCD VLC1 VLC2 COM2 VLC3 VLC4 VSS VLCD VLC1 VLC2 COM80 VLC3 VLC4 VSS 36 Data Sheet S15726EJ2V0DS 78 79 80 µPD161401 5.6 Power Supply Circuit 5.6.1 Power supply circuit The power supply circuit generates the voltage necessary for driving the LCD. The power circuit consists of a booster circuit, voltage regulator circuit, and voltage follower circuit. Power system control register 1 (R52) turns ON/OFF the transformer, reference voltage generator, voltage regulator circuit (V regulator circuit), and voltage follower circuit (V/F circuit). Part of the internal power supply function and an external power supply can be used in combination. Table 5− −12 shows the functions controlled by the 4-bit data of power system control register 1 (R52). Table 5− −13 shows examples of combinations of the power circuit functions. Table 5− −12. Function of Each Bit of Power System Control Register Status Item 1 0 OP3 : Booster circuit control bit ON OFF OP2 : Reference voltage generator control bit ON OFF OP1 : Voltage regulator circuit (V regulator circuit) control bit ON OFF OP0 : Voltage follower circuit (V/F circuit) control bit ON OFF Table 5− −13. Examples of Combinations (Reference Values) Booster Reference V Regulator V/F External Booster Status OP3 OP2 OP1 OP0 Circuit voltage Circuit Circuit <1> Only internal power supply is 1 1 1 1 Ο Ο Ο Ο VDD2 Used 0 1 1 1 × Ο Ο Ο VDD2, VOUT Open VDD2, Used Power Input System Pins used <2> External VOUT power supply <3> Only V/F circuit is used <4> Only external power supply is used 1 0 0 1 Ο × × Ο 0 0 0 0 × × × × AMPOUT VDD2, VOUT, Open VLCD, VLC1 to VLC4 + − + − Remarks 1. The “booster system pins” are the C1 , C1 to C5 , C5 pins. 2. All the power circuits are turned OFF when the µPD161401 serves as a slave (M,/S pin = L). 5.6.2 Booster circuit The power supply circuit has an internal booster circuit that increases the LCD driver voltage two- to seven-fold. Because this booster circuit uses the internal oscillator signals, either the oscillator must be operating or an external display clock must be input to operate this circuit. The booster circuit usually uses the C1+, C1− to C5+, C5− pins and VDD2 pins. Keep the wiring impedance of these pins as low as possible. The number of boosting steps for main duty display and sub-duty display is set as shown in Table 5− −14 by the MBTn and SBTn flags of power system control register 4 (R55). For the number of boosting steps and how to connect capacitors, refer to Figure 5− −15. Data Sheet S15726EJ2V0DS 37 µPD161401 VOUT x5 VOUT VOUT VOUT VOUT2 VOUT2 VOUT2 C5C5C5C5C5- x2 x2 x4 VOUT Open x6 VOUT2 C5- C5+ C4C4- C3C4+ C5+ C5+ C4C4- C5+ C5+ C4- C4C5+ C2C3+ C1C2+ Open x2 x2 x3 VOUT x2 C3C4+ C2C3+ C1+ C1C2+ Open x7 VOUT2 x2 C1+ C3C4+ Open x2 VOUT2 x2 C1C2+ C1+ Open C3C4+ C1+ x2 C3C4+ C2C3+ C2C3+ x2 C1C2+ x2 x2 C2C3+ C1+ C1C2+ x2 C3C4+ x2 C2C3+ C1+ C1C2+ Figure 5− −15. Number of Boosting Steps and Capacitor Connection x2 x2 To boost LCD drive voltage seven-fold To boost LCD drive voltage six-fold To boost LCD drive voltage five-fold To boost LCD drive voltage four-fold To boost LCD drive voltage three-fold To boost LCD drive voltage two-fold Remark “xN” (N = 2 to 7) of the capacitors in the above figure indicates the maximum voltage applied to the capacitors. xN : VDD2 x N (V) Table 5− −14. Number of Boosting Steps of Main Duty/Sub-duty Display Booster Circuit (during Normal Display) 38 MBT2 MBT1 MBT0 SBT2 SBT1 SBT0 0 0 0 Two 0 0 1 Three 0 1 0 Four 0 1 1 Five 1 0 0 Six 1 0 1 Seven 1 1 0 Prohibited 1 1 1 Prohibited Number of Boosting steps (unit: fold) Data Sheet S15726EJ2V0DS µPD161401 5.6.3 Voltage regulator circuit The boosted voltage from VOUT is supplied to the voltage regulator circuit and output to the LCD drive voltage pin VLCD. Because the µPD161401 has a 128-step electronic volume function and an internal VLCD adjuster resistor, a highaccuracy voltage regulator circuit can be configured by adding only a few components. VLCD regulator circuit (a) When internal resistor for adjusting VLCD is used By using the internal resistor for adjusting VLCD and the electronic control function, LCD drive voltage VLCD can be controlled and the contrast of the LCD can be adjusted by using commands. In this case, no external resistor is necessary. Where VLCD < VOUT, the value of VLCD can be calculated as follows: Example Calculating value of VLCD (where VLCD < VOUT) VLCD = (1 + Rb ) VEV Ra VLCD = (1 + Rb ) (1 − α ) VREG Ra 256 Remark VEV = (1 − α ) VREG 256 Figure 5− −16. Example of Circuit Using Internal Resistor for Adjustment VLCD + VLCD VEV (constant power supply + electronic volume) − Rb Ra VREG is the internal fixed power source of the IC and has three types of temperature characteristic curves. These temperature characteristic curves can be adjusted as shown in Table 5− −15 depending on the setting of power system control register 1 (R52) (TCS2 to TCS0). Table 5− −15 shows VREG at TA = 25°C. Table 5− −15. Adjusting Temperature Characteristic Curve Status Internal power supply When external reference TCS2 TCS1 TCS0 Temperature Gradient (unit: %/°C) VREG (TYP.) (unit: V) 0 0 0 −0.12 1.77 0 0 1 −0.13 1.69 0 1 0 −0.15 1.63 0 1 1 −0.17 1.59 1 × × − − power supply is used Data Sheet S15726EJ2V0DS 39 µPD161401 α is the value of the electronic volume register. It can take any of 128 values in accordance with the data set to the 7bit electronic control register. The value of α set by the main electronic volume register (R57) (main duty display) and sub-electronic volume register (R58) (sub-duty display) is shown in Table 5− −16. Table 5− −16. Changes in Value of α Depending on Setting of Electronic Volume Register MEV6 MEV5 MEV4 MEV3 MEV2 MEV1 MEV0 SEV6 SEV5 SEV4 SEV3 SEV2 SEV1 SEV0 0 0 0 0 0 0 0 256 0 0 0 0 0 0 1 126 0 0 0 0 0 1 0 125 0 0 0 0 0 1 1 124 1 1 1 1 1 0 1 2 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 α Rb/Ra is a ratio of the internal resistors for adjusting VLCD. This resistance ratio can be adjusted in 128 steps, by using power control register 2 (R53) (VRRn: main duty display mode, and SVRn: sub-duty display mode). The value of the reference voltage (1 + Rb/Ra) is determined as shown in Table 5− −17, depending on the setting of 4 bits of the VLCD internal resistance ratio register. Table 5− −17. Determining Reference Voltage Value by Setting of Internal Resistance Ratio Register Register 40 VRR3 VRR2 VRR1 VRR0 SVR3 SVR2 SVR1 SVR0 0 0 0 0 3 0 0 0 1 4 0 0 1 0 5 0 0 1 1 6 0 1 0 0 7 0 1 0 1 8 0 1 1 0 9 0 1 1 1 10 1 0 0 0 11 1 0 0 1 12 1 0 1 0 13 1 0 1 1 14 1 1 0 0 15 1 1 0 1 16 1 1 1 0 17 1 1 1 1 18 Data Sheet S15726EJ2V0DS 1 + Rb/Ra µPD161401 (b) When external resistor is used (when internal resistor for adjusting VLCD is not used) LCD drive voltage VLCD can be controlled not only by a setting of the internal resistor for adjusting VLCD (IRS = L) but also by connecting resistors Rae, Rbe, and Rce between VSS and VR, between VR and AMPOUTM, and between VR and AMPOUTS, respectively. In this case also, LCD drive voltage VLCD and the contrast of the LCD can be adjusted by using the electronic control function and commands. In addition, the µPD161401 can select two values of VLCD for normal display and partial display. These values are set by using an external divider resistor and automatically selected by the DTY flag of control register 2 (R1). Where VLCD < VOUT, the value of VLCD can be calculated by the expression in Example 1 (DTY = 0) and the expression in Example 2 (DTY = 1). Example 1. To calculate value of VLCD (DTY = 0, in main duty display mode) VLCD = (1 + Rbe ) VEV Rae VLCD = (1 + Rbe Rae ) (1 − Remark VEV = (1 − α ) VREG 256 α ) VREG 256 Example 2. To calculate value of VLCD (DTY = 1, in sub-duty display mode) VLCD = (1 + Rce ) VEV Rae VLCD = (1 + α Rce ) (1 − 256 Rae Remark VEV = (1 − α 256 ) VREG ) VREG Figure 5− −17. Example of Circuit Using External Resistor + VLCD − Main/sub-duty VLCD adjustment selector B A VR VRS AMPOUTS AMPOUTM Rbe Rce Rae Main duty display mode (DTY = 0) A B Sub-duty display mode (DTY = 1) A B Data Sheet S15726EJ2V0DS 41 µPD161401 5.6.4 Level voltage control by operational amplifier Although the µPD161401 has a power-saving power supply circuit, the display quality may be degraded if it is used to drive a high-load LCD panel. The driving capability of the segment output can be controlled as shown in Table 5− −18 by LCS1 and LCS0 of power system control register 5 (R56), and the driving capability of the common outputs can be controlled as shown in Table 5− −19 by LCC1 and LCC0 of the same register. By controlling the driving capability, the display quality and power consumption may be improved. Determine the driving capability in accordance with the actual display status. If the display quality is not sufficiently improved in any driving mode, it will be necessary to supply the LCD drive voltage from an external power supply. In addition, the operational amplifier driving modes shown in Table 5− −20 can be selected by the setting of HPM1 and HPM0, so that the wait time to stabilize the supply voltage immediately after the power has been turned ON or OFF can be shortened. PSM1 specifies whether a boosting voltage of VDD2 × 2 is applied to the VLC3 or VLC4 level voltage follower of (refer to Table 5− −21). If a voltage boosted two-fold is applied to the voltage follower circuit, the current consumption may be reduced. Thoroughly confirm and evaluate the VLC3 and VLC4 levels of the LCD panel with the actual system to determine whether the two-fold LCD drive voltage is to be supplied. PSM0 can be used to set the current value of all the voltage follower circuits as shown in Table 5− −22. Table 5− −18. Setting Driving Capability of Segment Outputs (LCS1, LCS0 = 0, 0) LCS1 LCS0 Segment Output Driving Capability (unit: fold) 0 0 One 0 1 Two 1 0 Four 1 1 Eight Table 5− −19. Setting Driving Capability of Common Outputs (LCS1, LCS0 = 0, 0) LCC1 LCC0 Common Output Driving Capability (unit: fold) 0 0 Two 0 1 Four 1 0 Eight 1 1 Sixteen Table 5− −20. Setting Operation Mode of Operational Amplifier 42 HPM1 HPM0 Mode Setting 0 0 Normal mode 0 1 Power supply ON mode 1 1 0 Power supply OFF mode 1 1 Power supply ON mode 2 Data Sheet S15726EJ2V0DS µPD161401 Table 5− −21. Setting of Two-Fold Drive Voltage PSM1 Mode Setting 0 Not used 1 Used Table 5− −22. Voltage Follower Bias Current Setting PSM0 Bias Current Setting (unit: fold) 0 One 1 Two Data Sheet S15726EJ2V0DS 43 µPD161401 5.6.5 Application example of power supply circuit Figure 5− −18. IRS = H, [OP3, OP2, OP1, OP0] = [1, 1, 1, 1] Six-fold drive voltage VDD1 VDD2 VRS VOUT VR Open AMPOUTS VOUT2 AMPOUTM C1 + VLCD C 1C2+ VLC1 C2 - VLC2 C3+ VLC3 C3 C4+ VLC4 C4 C5+ C5 VSS Figure 5− −19. IRS = L, [OP3, OP2, OP1, OP0] = [1, 1, 1, 1] Six-fold drive voltage VDD1 VDD2 VOUT VRS Open AMPOUTS Rc VR VOUT2 AMPOUTM C1+ VLCD C1 C2 + VLC1 C 2C3+ C3 C4+ VLC2 VLC3 VLC4 C4 C5 + C5 VSS 44 Data Sheet S15726EJ2V0DS Rb' Ra' µPD161401 Figure 5− −20. IRS = H, [OP3, OP2, OP1, OP0] = [0, 0, 0, 1] VDD1 VDD2 VRS VR VOUT Open VOUT2 Open AMPOUTS AMPOUTM + C1 - C1 C2 + C2C3+ Open C3 C4 + VLCD VLC1 VLC2 VLC3 VLC4 C4 + C5 C5 VSS Figure 5− −21. IRS = L, [OP3, OP2, OP1, OP0] = [0, 0, 0, 1] VDD1 VDD2 VRS Open VR VOUT Open VOUT2 AMPOUTS C1+ AMPOUTM C1 - VLCD C2+ C2C3+ Open - C3 C4+ C4C5 + VLC1 VLC2 VLC3 VLC4 C5 VSS Data Sheet S15726EJ2V0DS 45 µPD161401 Figure 5− −22. IRS = L, [OP3, OP2, OP1, OP0] = [0, 0, 0, 0] VDD1 VDD2 VRS VOUT AMPOUTS VR Open AMPOUTM VOUT2 Open C1+ VLCD C1 C2 + VLC1 C2 C3 + Open VLC2 VLC3 C3 C4+ VLC4 C4 + C5 C5 VSS Figure 5− −23. Master/Slave Connection Example 1 VRS VDD1 VDD2 M,/S VR Open + C1 C1 + C2 C2 + C3 C3 + C4 C4 + C5 C5 - VRS VDD1 VDD2 VR M,/S AMPOUTS AMPOUTS AMPOUTM VOUT AMPOUTM VOUT Master VOUT2 + Open VOUT2 C1 C2+ C2 C3+ Open VLCD VLCD VLC1 VLC1 VLC2 VLC2 C4 C5+ VLC3 VLC3 C5 - VLC4 VLC4 VSS 46 Slave C1+ C3 C4+ VSS Data Sheet S15726EJ2V0DS µPD161401 Figure 5− −24. Master/Slave Connection Example 2 VRS VDD1 VDD2 M,/S C + 1 C1 C2+ VR VR Open AMPOUTS AMPOUTS AMPOUTM AMPOUTM C1+ VOUT C1 C2+ VOUT C2 + C3 Open VDD1 VDD2 M,/S VRS VOUT2 Open VOUT2 - C3 C4 + - C4 + C5 C5 - Master Slave C2 C3+ C3 + C4 VLCD VLCD VLC1 VLC1 VLC2 VLC2 C4 + C5 VLC3 VLC3 C5 - VLC4 VLC4 Open VSS VSS Data Sheet S15726EJ2V0DS 47 µPD161401 5.7 Driving LCD The µPD161401 has a full-dot driver. This full-dot driver can modulate grayscale, depending on the setting of the pulse widths. In this driving mode, eight R/G output grayscales and four B output grayscales are selected from a 17stage grayscale palette, and the selected grayscales are registered to the output grayscale palette of the IC. For details, refer to Table 5− −23 Example of Pulse Width Modulation Output. 5.7.1 Full-dot pulse modulation The pulse width modulation function of the µPD161401 divides the segment pulse width of the signal for normal LCD display (16), and outputs the divided pulse width in accordance with the output timing of dots at the ratio of the grayscale palette selected by a command. Figure 5− −25. Full-Dot Pulse Width Modulation 1 Frame 1 2 3 4 5 6 7 8 78 79 80 1 2 3 4 5 6 7 8 78 79 80 VLCD VLC1 VLC2 SEG1 VLC3 VLC4 VSS VLCD VLC1 VLC2 COM1 VLC3 VLC4 VSS ;; ;; Expanded view of part 1 2 3 16/16 8/16 ;; ; 1/16 VLCD VLC1 VLC2 Caution The width of the common output pulse is not modulated. 48 Data Sheet S15726EJ2V0DS µPD161401 The pulse is output in the form of combined odd line/even line or even line/odd line output, as shown in Figure 5− −26. Table 5− −23 shows the combination of the rising and falling edges of the pulse of each frame. Figure 5− −26. Example of Pulse Width Modulation Output of Odd/Even Line 1 Frame 1 2 3 4 5 6 7 8 9 10 11 12 78 79 80 1 2 3 4 5 6 7 8 VLCD VLC1 VLC2 VLC3 VLC4 VSS 2 3 16/16 16/16 16/16 ; ;;; ; 1 8/16 6/16 8/16 Data Sheet S15726EJ2V0DS 49 µPD161401 Table 5− −23. Pulse Width Modulation Output Grayscale Level COM 0 1 or 2 Frames 3 or 4 Frames SEG Odd Number SEG Even Number SEG Odd Number SEG Even Number 2n+1 0 0 0 0 2n+2 0 0 0 0 2n+1 1↑ 1↓ 1↓ 1↑ 2n+2 1↓ 1↑ 1↑ 1↓ 2n+1 2↑ 2↓ 2↓ 2↑ 2n+2 2↓ 2↑ 2↑ 2↓ 2n+1 3↑ 3↓ 3↓ 3↑ 2n+2 3↓ 3↑ 3↑ 3↓ 4 2n+1 4↑ 4↓ 4↓ 4↑ 2n+2 4↓ 4↑ 4↑ 4↓ 5 2n+1 5↑ 5↓ 5↓ 5↑ 2n+2 5↓ 5↑ 5↑ 5↓ 6 2n+1 6↑ 6↓ 6↓ 6↑ 2n+2 6↓ 6↑ 6↑ 6↓ 7 2n+1 7↑ 7↓ 7↓ 7↑ 2n+2 7↓ 7↑ 7↑ 7↓ 8 2n+1 8↑ 8↓ 8↓ 8↑ 2n+2 8↓ 8↑ 8↑ 8↓ 9 2n+1 9↑ 9↓ 9↓ 9↑ 2n+2 9↓ 9↑ 9↑ 9↓ 2n+1 10 ↑ 10 ↓ 10 ↓ 10 ↑ 2n+2 10 ↓ 10 ↑ 10 ↑ 10 ↓ 2n+1 11 ↑ 11 ↓ 11 ↓ 11 ↑ 2n+2 11 ↓ 11 ↑ 11 ↑ 11 ↓ 2n+1 12 ↑ 12 ↓ 12 ↓ 12 ↑ 2n+2 12 ↓ 12 ↑ 12 ↑ 12 ↓ 2n+1 13 ↑ 13 ↓ 13 ↓ 13 ↑ 2n+2 13 ↓ 13 ↑ 13 ↑ 13 ↓ 2n+1 14 ↑ 14 ↓ 14 ↓ 14 ↑ 2n+2 14 ↓ 14 ↑ 14 ↑ 14 ↓ 2n+1 15 ↑ 15 ↓ 15 ↓ 15 ↑ 2n+2 15 ↓ 15 ↑ 15 ↑ 15 ↓ 2n+1 16 ↑ 16 ↓ 16 ↓ 16 ↑ 2n+2 16 ↓ 16 ↑ 16 ↑ 16 ↓ 1 2 3 10 11 12 13 14 15 16 Remarks 1. n: Integer of 0 to 39 2. ↑A: Pulse rises in the middle of A line output. 3. ↓A: Pulse rises at the beginning of A line output. 4. A: PWM pulse width (A/16) 50 Data Sheet S15726EJ2V0DS µPD161401 5.7.2 Grayscale palette The µPD161401 has 17 levels of grayscale outputs. Eight R/G output grayscales and four B output grayscales can be selected for each of main duty display and sub-duty display, by using the grayscale data registers (R65 to R104), and can be output as the grayscale outputs of the IC to R/G/B. Table 5− −24. Correspondence of Grayscale Levels of Grayscale Data Registers Grayscale Level Set Value of Grayscale Data Register D4 D3 D2 D1 D0 Level 0 0 0 0 0 0 Level 1 0 0 0 0 1 Level 2 0 0 0 1 0 Level 3 0 0 0 1 1 Level 4 0 0 1 0 0 Level 5 0 0 1 0 1 Level 6 0 0 1 1 0 Level 7 0 0 1 1 1 Level 8 0 1 0 0 0 Level 9 0 1 0 0 1 Level 10 0 1 0 1 0 Level 11 0 1 0 1 1 Level 12 0 1 1 0 0 Level 13 0 1 1 0 1 Level 14 0 1 1 1 0 Level 15 0 1 1 1 1 Level 16 1 0 0 0 0 Remark OFF data 50% 100% Data Sheet S15726EJ2V0DS 51 µPD161401 5.7.3 Setting of display size The µPD161401 can set the main duty cycles in a range of 1/80, 1/72 and 1/64 duty, the sub-duty cycles in a range of 1/48, 1/40, 1/32, 1/24 and 1/16 duty. This can be done by setting MDT6 to MDT0 and SDT6 to SDT0 of the main duty setting register (R14) and sub-duty setting register (R17) as Table 5− −25 and 5− −26: Table 5− −25. Setting of Main Duty (R14) MDT6 MDT5 MDT4 MDT3 MDT2 MDT1 MDT0 Duty 1 0 0 1 1 1 1 1/80 1 0 0 0 1 1 1 1/72 0 1 1 1 1 1 1 1/64 Table 5− −26. Setting of Sub-duty (R17) SDT6 SDT5 SDT4 SDT3 SDT2 SDT1 SDT0 Duty 0 1 0 1 1 1 1 1/48 0 1 0 0 1 1 1 1/40 0 0 1 1 1 1 1 1/32 0 0 1 0 1 1 1 1/24 0 0 0 1 1 1 1 1/16 5.7.4 Setting of LCD N-line inversion and M-line shift During main duty display, the shift amount of the reverse position of AC driving and the reverse position of each display frame can be set by the main duty N-line inversion register (R15) and main duty M-line shift register (R16). They can also be set by the sub-duty N-line inversion register (R18) and sub-duty M-line shift register (R19) during sub-duty display. The N-line reverse cycle function can set a line to be reversed as shown in Table 5− −27, depending on the setting of MID5 to MID0 or SID5 to SID0 of the main or sub-duty N-line inversion register. The M-line shift amount of the reverse position of each display frame can be set as shown in Table 5− −28, by using MSD5 to MSD0 or SSD5 to SSD0 of the main or sub-duty M-line shift register. Table 5− −27. Setting of N-line Inversion Register (R15) 52 MID5 MID4 MID3 MID2 MID1 MID0 Reversed SID5 SID4 SID3 SID2 SID1 SID0 Cycle 0 0 0 0 0 0 1 0 0 0 0 0 1 2 0 0 0 0 1 0 3 0 0 0 0 1 1 4 1 0 0 1 0 1 38 1 0 0 1 1 0 39 1 0 0 1 1 1 40 Data Sheet S15726EJ2V0DS µPD161401 Table 5− −28. Setting of M-line Shift Register MSD5 MSD4 MSD3 MSD2 MSD1 MSD0 SSD5 SSD4 SSD3 SSD2 SSD1 SSD0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 2 0 0 0 0 1 1 3 1 0 0 1 1 0 38 1 0 0 1 1 1 39 1 0 1 0 0 0 40 Reversed Position Shift Amount Make sure that the display size, reverse cycle, and shift amount of reverse position have the relationship indicated by the following expression: Display size (duty) ≥ reverse cycle ≥ reverse shift amount Data Sheet S15726EJ2V0DS 53 µPD161401 5.7.5 Reverse driving between frames In the µPD161401, the LCD drive waveform can be reversed and output between frames by setting the FXOR flag of Driving mode select register (R64), as shown in Figure 5− −27. This function is executed in combination with the reverse cycle and reverse shift functions. Figure 5− −27. Image of Reversal between Pulse Width Modulation Frames Reversal between frames not implemented (FXOR = 0) Reverse cycle (R15, R18) Frame n Frame n+1 Frame n+2 Frame n+3 Reverse position shift amount (R16, R19) Implementation of reversal between frames (FXOR = 1) Reverse cycle (R15, R18) Frame n Frame n+1 Frame n+2 Frame n+3 Reverse position shift amount (R16, R19) 54 Data Sheet S15726EJ2V0DS µPD161401 5.8 Display Mode 5.8.1 Selecting display mode The µPD161401 has two display modes: main duty display and sub-duty display. In each of these modes, any duty ratio can be selected and parts other than the display area can be scanned with a non-selected waveform. The display mode can be selected by using the DTY flag of control register 2 (R1), and parameters such as the duty ratio, bias value, and number of boosting steps are automatically selected as shown in the table below. Display Setting Main Duty Display (DTY = 0) Sub-duty Display (DTY = 1) Duty ratio Main duty setting register (R14) Sub-duty setting register (R17) N-line inversion Main duty N-line inversion register (R15) Sub-duty N-line inversion register (R18) M-line shift Main duty M-line shift register (R16) Sub-duty M-line shift register (R19) VLCD adjustment Bias value Number of boosting steps Power system control register 2 (R53) Power system control register 2 (R53) VRR3 to VRR0 SVR3 to SVR0 Power system control register 3 (R54) Power system control register 3 (R54) BIS2 to BIS0 SBIS2 to SBIS0 Power system control register 4 (R55) Power system control register 4 (R55) MBT2 to MBT0 SBT2 to SBT0 Electronic volume Main electronic volume register (R57) Sub-electronic volume register (R58) Grayscale data setting Main R grayscale data registers (R65 to R72) Sub R grayscale data registers (R85 to R92) Main G grayscale data registers (R73 to R80) Sub G grayscale data registers (R93 to R100) Main B grayscale data registers (R81 to R84) Sub B grayscale data registers (R101 to R104) When the mode is changed from the main duty display mode to the sub-duty display mode or vice versa, the display screen may be temporarily disturbed, depending on the setting of each duty mode, if electric charge remains in the smoothing capacitor connected between the LCD drive voltage pins (VLCD, VLC1 to VLC4) and VSS. It is recommended that the following power sequence be observed to avoid any trouble that may occur when the display mode is changed. Data Sheet S15726EJ2V0DS 55 µPD161401 ★ (1) Main duty display mode to sub-duty display mode Operation status Main duty display mode ↓ Control register 1 DISP = 0, HALT = 0 R0 Display OFF. Internal operation starts. R56 Change the operation mode of the operational amplifier to “power OFF mode”. R1 Sub-duty display mode setting Note1 ↓ Power system control register 5 (HPM1 = 1, HPM0 = 0) ↓ Control register 2 DTY = 1 ↓ Power system control register 5 (HPM1 = 0, HPM0 = 1) R56 Wait time 2 Wait for at least 150 ms. Note2 ↓ Power system control register 5 (HPM1 = 0, HPM0 = 0) Wait time 1 Wait for at least 50 ms. Note2 Change the operation mode of the operational amplifier to “power ON mode”. R56 The operation mode of the operational amplifier: “normal mode”. R0 Display ON. Internal operation starts. ↓ Control register 1 (DISP = 1, HALT = 0) ↓ Setting completed Notes 1. A scroll function cannot be used in sub-duty display mode. In the state where the scroll function is used by main duty display mode when it changes to sub-duty, a scroll function is disregarded. Then, when it changes to main duty display mode again, a scroll function returns to an effective state (state before changing to sub-duty). 2. The wait times 1, 2 vary depending on the characteristics of the LCD panel and the capacitance of the boosting or smoothing capacitor. It is recommended to determine these values after thorough evaluation with the actual system. 56 Data Sheet S15726EJ2V0DS µPD161401 ★ (2) Sub-duty display mode to main duty display mode Sub-duty display mode Note1 Operation status ↓ Control register 1 DISP = 0, HALT = 0 R0 Display OFF. Internal operation starts. R56 Change the operation mode of the operational amplifier to “power ON mode”. R1 Main duty display mode setting ↓ Power system control register 5 (HPM1 = 0, HPM0 = 1) ↓ Control register 2 DTY = 0 ↓ Power system control register 5 (HPM1 = 0, HPM0 = 0) R56 Wait time Wait for at least 160 ms. Note2 The operation mode of the operational amplifier: “normal mode”. ↓ Control register 1 (DISP = 1, HALT = 0) R0 Display ON. Internal operation starts. ↓ Setting completed Notes 1. A scroll function cannot be used in sub-duty display mode. In the state where the scroll function is used by main duty display mode when it changes to sub-duty, a scroll function is disregarded. Then, when it changes to main duty display mode again, a scroll function returns to an effective state (state before changing to sub-duty). 2. The wait time varies depending on the characteristics of the LCD panel and the capacitance of the boosting or smoothing capacitor. It is recommended to determine this value after thorough evaluation with the actual system. Data Sheet S15726EJ2V0DS 57 µPD161401 5.8.2 Screen scrolling The µPD161401 has a screen scroll function. This function is enabled during main duty display. The width of the area to be fixed is specified by the scroll fixed area width register (R27) and the number of scroll steps is set by the scroll step number register (R31). By these settings, other parts of screen can be scrolled with part of the screen fixed. To specify the position of the area to be fixed, set the FIXAHL flag of the scroll fixed area position register (R23) as shown in Table 5− −29. Specify the fixed area position on the upper part of the LCD panel in master mode and on the bottom part of the panel in slave mode. Table 5− −29. Scroll Fixed Area Width Register (R27) FIXAW1 FIXAW0 Fixed area width 0 0 0 0 1 16 1 0 24 1 1 32 Table 5− −30. Scroll Step Count Register (R31) MST6 MST5 MST4 MST3 MST2 MST1 MST0 Number of Scroll Steps 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 2 0 0 0 0 0 1 1 3 1 0 0 1 1 1 0 78 1 0 0 1 1 1 1 79 1 0 1 0 0 0 0 Other settings prohibited Note that the relationship between the number of scroll steps and the width of the scroll fixed area needs to be set so that the following condition is set. Number of scroll steps ≤ 79 − Width of scroll fixed area Caution If values other than the above is set, the operation is not guaranteed. Table 5− −31. Scroll Fixed Area Position Register (R23) 58 FIXAHL LCD Display Position 0 Bottom 1 Upper Data Sheet S15726EJ2V0DS µPD161401 5.8.3 Scroll setting examples ★ (1) Setting example 1 Duty: 1/64 duty RAM read direction: normal (R0:COMR = 0) Scroll fixed area width: 16 lines (R27: FIXAW1,0 = 0,1) (a) Scroll fixed position: upper (R23: FIXAHL = 1) Y address 0FH Y address COM1 00H Fixed area (b) Scroll fixed position: bottom (R23: FIXAHL = 0) 00H COM16 Display RAM Display RAM 3FH COM49 30H COM64 3FH Fixed area 4FH 4FH The relationships between the numbers of scroll steps and RAM Y address scan order in cases of (a) and (b) are as follows. (a) Number of scroll steps: 0 (R31: MSTn = 00H) RAM Y address: 00H → 0FH, 10H → 3FH Number of scroll steps: 1 (R31: MSTn = 01H) RAM Y address: 00H → 0FH, 11H → 40H Number of scroll steps: 10 (R31: MSTn = 0AH) RAM Y address: 00H → 0FH, 1AH → 49H (b) Number of scroll steps: 0 (R31: MSTn = 00H) RAM Y address: 00H → 2FH, 30H → 3FH Number of scroll steps: 1 (R31: MSTn = 01H) RAM Y address: 00H → 2FH, 40H, 30H → 3FH Number of scroll steps: 10 (R31: MSTn = 0AH) RAM Y address: 0AH → 2FH, 40H → 49H, 30H → 3FH Data Sheet S15726EJ2V0DS 59 µPD161401 ★ (2) Setting example 2 Duty: 1/64 duty RAM read direction: reverse (R0: COMR = 1) Scroll fixed area width: 16 lines (R27: FIXAW1,0 = 0,1) (a) Scroll fixed position: upper (R23: FIXAHL = 1) Y address 0FH Y address COM64 00H Fixed area (b) Scroll fixed position: bottom (R23: FIXAHL = 0) 00H COM49 Display RAM Display RAM 3FH COM16 30H COM1 3FH 4FH Fixed area 4Fh The relationships between the numbers of scroll steps and RAM Y address scan order in cases of (a) and (b) are as follows. (a) Number of scroll steps: 0 (R31: MSTn = 00H) RAM Y address: 3FH → 10h, 0FH → 00H Number of scroll steps: 1 (R31: MSTn = 01H) RAM Y address: 40H → 11h, 0FH → 00H Number of scroll steps: 10 (R31: MSTn = 0AH) RAM Y address: 49H → 1Ah, 0FH → 00H (b) 60 Number of scroll steps: 0 (R31: MSTn = 00H) RAM Y address: 3Fh → 30H, 2FH → 00H Number of scroll steps: 1 (R31: MSTn = 01H) RAM Y address: 3Fh → 30H, 40h, 2FH → 01H Number of scroll steps: 10 (R31: MSTn = 0AH) RAM Y address: 3Fh → 30hH, 49H → 40H, 2FH → 0AH Data Sheet S15726EJ2V0DS µPD161401 5.9 Reset When the reset command is input, the IC is initialized to the default status shown in the table below. Note that initialization by using the /DISP pin should be used only to prevent malfunctioning due to noise. Table 5− −32. Default Values of Registers (1/2) Register Reset Command /DISP Control register 1 R0 Ο Ο (DISP, TRON flag only) Control register 2 R1 Ο × X address register R4 Ο × Y address register R5 Ο × MIN.⋅X address register R7 Ο × MAX.⋅X address register R8 Ο × MIN.⋅Y address register R9 Ο × MIN.⋅Y address register R10 Ο × Display memory access register R12 × × Main duty setting register R14 Ο × Main duty N-line inversion register R15 Ο × Main duty M-line shift register R16 Ο × Sub-duty setting register R17 Ο × Sub-duty N-line inversion register R18 Ο × Sub-duty M-line shift register R19 Ο × COM scanning address setting register R21 Ο × Sub-duty start address register R22 Ο × Scroll fixed area position register R23 Ο × Scroll fixed area width register R27 Ο × Scroll steps number register R31 Ο × Blinking/reverse setting register R37 Ο × Complementary color blink X address register R38 Ο × Complementary color blink start line address register R39 Ο × Complementary color blink end line address register R40 Ο × Complementary color blink data memory register R41 × × Specified color blink X address register R42 Ο × Specified color blink start line address register R43 Ο × Specified color blink end line address register R44 Ο × Specified color blink data memory register R45 × × Specified color setting register R46 Ο × Reverse X address register R47 Ο × Reverse start line address register R48 Ο × Remark O: Default value is input. X: Default value is not input. Cautions 1. When initialization is made using the /DISP pin, the contents of memory are not guaranteed. In this case, use the initialized RAM. When initialization is made via the reset command, the contents of memory are retained. 2. If the device is initialized by the /DISP pin while the serial interface is being used, the serial clock counter is initialized. 3. Always input the reset command as the first command after power application. Data Sheet S15726EJ2V0DS 61 µPD161401 Table 5− −32. Default Values of Registers (2/2) Register Reverse end line address register R49 Reset Command /DISP Ο × Reversed data memory access register R50 × × Power system control register 1 R52 Ο × Power system control register 2 R53 Ο × Power system control register 3 R54 Ο × Power system control register 4 R55 Ο × Power system control register 5 R56 Ο × Main electronic volume register R57 Ο × Sub-electronic volume register R58 Ο × RAM test mode setting register R61 Ο × Driving mode select register R64 Ο × Main R grayscale data registers 1 to 8 R65 to R72 Ο × Main G grayscale data registers 1 to 8 R73 to R80 Ο × Main B grayscale data registers 1 to 4 R81 to R84 Ο × Sub R grayscale data registers 1 to 8 R85 to R92 Ο × Sub G grayscale data registers 1 to 8 R93 to R100 Ο × Sub B grayscale data registers 1 to 8 R101 to R104 Ο × Remark O: Default value is input. X: Default value is not input. Cautions 1. When initialization is made using the /DISP pin, the contents of memory are not guaranteed. In this case, use the initialized RAM. When initialization is made via the reset command, the contents of memory are retained. 2. If the device is initialized by the /DISP pin while the serial interface is being used, the serial clock counter is initialized. 3. Always input the reset command as the first command after power application. 62 Data Sheet S15726EJ2V0DS µPD161401 6. COMMANDS The µPD161401 identifies data bus signals by a combination of the RS, /RD (E), and /WR (R,/W) signals. It interprets and executes commands only in accordance with the internal timing, without being dependent upon the external clock. Therefore, the processing speed is extremely high and, usually, no busy check is necessary. An i80 system CPU interface inputs a low pulse to the /RD pin when it reads data from the µPD161401 to issue a command. It inputs a low pulse to the /WR pin when it writes data to the µPD161401. Data can be read from an M68 system CPU interface if a high-pulse signal is input to the R,/W pin, and written if a low-pulse signal is input to the R,/W pin. A command is executed if a high-pulse signal is input to the E pin in this status. Therefore, in the explanation of the commands and display commands in 6.1 Control Register 1 (R0) and the sections that follow, the M68 system CPU interface uses H, instead of /RD (E), when reading status or display data. This is how it differs from the i80 system CPU interface. The commands of the µPD161401 are explained below, taking an i80 system CPU interface as an example. When the serial interface is used, sequentially input data to the µPD161401, starting from D7. The data bus length to input commands is as follows: • Commands other than those that manipulate the display memory access register (R12) are input in byte units, regardless of the value of BMOD (control register 2 (R1), bus length setting). • The commands that manipulate the display memory access register (R12) are input in 1-byte units when BMOD = 1, or in 2-byte units when BMOD = 0. A. Commands other than those that manipulate display memory access register (R12) BMOD = 1 (8-bit data bus) Pin D7 D6 D5 D4 D3 D2 D1 D0 DATA D7 D6 D5 D4 D3 D2 D1 D0 BMOD = 0 (16-bit data bus) Pin D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 DATA Note Note Note Note Note Note Note Note D7 D6 D5 D4 D3 D2 D1 D0 Note 0 or 1 B. Display memory access register (R12) BMOD = 1 (8-bit data bus) Pin D7 D6 D5 D4 D3 D2 D1 D0 DATA D7 D6 D5 D4 D3 D2 D1 D0 BMOD = 0 (16-bit data bus) Pin D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 DATA D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 Data Sheet S15726EJ2V0DS 63 µPD161401 6.1 Control Register 1 (R0) This command specifies the general operation mode of the µPD161401. RS E /RD R,/W D7 D6 D5 D4 D3 D2 D1 D0 TRON WAS COMF DISP STBY HALT ADC COMR /WR 1 1 TRON 0 0: Normal mode (all values written to the test register are ignored) 1: Test register valid mode (values written to the test register are valid) WAS 0: Normal data write mode COMF 0: Normal display operation 1: Window access mode (Refer to 5.2.7 Arbitrary address area access (window access mode (WAS)).) 1: All output from common pins is OFF (all the common pins output a non-selected waveform. At this time, the segment pins output OFF data (level 0)). DISP 0: Display OFF (All the LCD output pins output a VSS level, and the oscillator and DC/DC converter operate.) 1: Display ON STBY 0: Normal operation 1: Internal operation and oscillation stop. Display OFF HALT 0: Internal operation starts. 1: Internal operation stops (all the LCD output pins output a VSS level, the oscillator operates, and the DC/DC converter stops, and the reference voltage generator operates). ADC Column addresses correspond to SEG outputs that are used to display the display data RAM (refer to Table 6− −1). COMR Selects the direction in which the lines of the graphic RAM are read (refer to Table 6− −2). Table 6− −1. Relationship between Column Address of Display RAM and Segment Output SEG Output SEG1 SEG303 ••• ADC 0 000H → Column address → 12EH (D1) 1 12EH ← Column address ← 000H Table 6− −2. Relationship between Common Scan Circuit and Scan Direction COMR 0 00H → 4FH (D0) 1 4FH → 00H Default (default value of reset command) 64 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 0 0 0 0 Data Sheet S15726EJ2V0DS µPD161401 6.2 Control Register 2 (R1) This command specifies the general operation mode of the µPD161401. RS E R,/W /RD /WR 1 0 1 FDM D7 D6 FDM D5 D4 BMOD D3 D2 D1 D0 DTY INC XDIR YDIR Sets all screen display modes. 0: Normal operation 1: All screen display (Turns ON all screens [outputs grayscale level 16 to all screens].) BMOD Selects data length when parallel data is input. 0: 16-bit data bus 1: 8-bit data bus DTY 0: Main duty display mode 1: Sub-duty display mode INC Note 0: Increments/decrements X address each time it is accessed. 1: Increments/decrements Y address each time it is accessed. XDIR Note Specifies the direction in which the X address is to be accessed. 0: Increment (+1) 1: Decrement (-1) YDIR Note Specifies the direction in which the Y address is to be accessed. 0: Increment (+1) 1: Decrement (-1) Note If the access direction is changed by INC, XDIR, or YDIR, be sure to set the X address register (R4) and Y address register (R5) before accessing the display RAM. Table 6− −3. Relationship between Functions of µPD161401 and Display Mode Display Setting Main Duty Display (DTY = 0) Sub-duty Display (DTY = 1) Duty Main duty setting register (R14) Sub-duty setting register (R17) N-line inversion Main duty N-line inversion register (R15) Sub-duty N-line inversion register (R18) M-line shift Main duty M-line shift register (R16) Sub-duty M-line shift register (R19) VLCD adjustment Bias value Power system control register 2 (R53) Power system control register 2 (R53) VRR3 to VRR0 SVR3 to SVR0 Power system control register 3 (R54) Power system control register 3 (R54) BIS2 to BIS0 SBIS to SBIS0 Number of boosting Power system control register 4 (R55) Power system control register 4 (R55) steps MBT2 to MBT0 SBT2 to SBT0 Electronic volume Main electronic volume register (R57) Sub-electronic volume register (R58) Grayscale data Main R grayscale data register (R65 to R72) Sub R grayscale data register (R85 to R92) setting Main G grayscale data register (R73 to R80) Sub G grayscale data register (R93 to R100) Main B grayscale data register (R81 to R84) Sub B grayscale data register (R101 to R104) Default (default value of reset command) D7 D6 D5 D4 D3 D2 D1 D0 0 Note 0 Note 0 0 0 0 Note 0 or 1 Data Sheet S15726EJ2V0DS 65 µPD161401 6.3 Reset Command Register (R3) When this command is input, the registers of the µPD161401 (R0 to R104) are set to the default values. RS D7 D6 D5 D4 D3 D2 D1 D0 1 0 0 0 0 0 0 0 1 Caution At power application, be sure to input the reset command as the first command. 6.4 X Address Register (R4) The X address register specifies the X address of the display RAM the CPU accesses. This address is automatically incremented or decremented each time the display RAM has been accessed (INC = 0). RS D7 1 D6 D5 D4 D3 D2 D1 D0 XA6 XA5 XA4 XA3 XA2 XA1 XA0 Caution If the access direction is changed by control register 2 (R1: INC, XDIR, YDIR) or window access area is changed or set by MIN.⋅⋅X address register (R7, R9) and MAX.⋅⋅X address register (R8, R10), be sure to set the X address register (R4) and Y address register (R5) before accessing the display RAM. Default value (default value of reset command) D7 D6 D5 D4 D3 D2 D1 D0 Note 0 0 0 0 0 0 0 Note 0 or 1 6.5 Y Address Register (R5) The Y address register specifies the Y address of the display RAM the CPU accesses. This address is automatically incremented or decremented each time the display RAM is accessed (INC = 1). RS D7 1 YA6 to YA0 Caution D6 D5 D4 D3 D2 D1 D0 YA6 YA5 YA4 YA3 YA2 YA1 YA0 Sets line address If the access direction is changed by control register 2 (R1: INC, XDIR, YDIR), be sure to set the X address register (R4) and Y address register (R5) before accessing the display RAM. Default value (default value of reset command) D7 D6 D5 D4 D3 D2 D1 D0 Note 0 0 0 0 0 0 0 Note 0 or 1 66 Data Sheet S15726EJ2V0DS µPD161401 6.6 MIN.·X Address Register (R7) This register specifies the X address of the start point of the display RAM the CPU accesses when the window access mode is used. RS D7 1 D6 D5 D4 D3 D2 D1 D0 XMN6 XMN5 XMN4 XMN3 XMN2 XMN1 XMN0 Default value (default value of reset command) D7 D6 D5 D4 D3 D2 D1 D0 Note 0 0 0 0 0 0 0 Note 0 or 1 6.7 MAX.·X Address Register (R8) This register specifies the X address of the end point of the display RAM the CPU accesses when the window access mode is used. RS D7 1 D6 D5 D4 D3 D2 D1 D0 XMX6 XMX5 XMX4 XMX3 XMX2 XMX1 XMX0 Default value (default value of reset command) D7 D6 D5 D4 D3 D2 D1 D0 Note 0 0 0 0 0 0 0 Note 0 or 1 6.8 MIN.·Y Address Register (R9) This register specifies the Y address of the start point of the display RAM the CPU accesses when the window access mode is used. RS D7 1 D6 D5 D4 D3 D2 D1 D0 YMN6 YMN5 YMN4 YMN3 YMN2 YMN1 YMN0 Default value (default value of reset command) D7 D6 D5 D4 D3 D2 D1 D0 Note 0 0 0 0 0 0 0 Note 0 or 1 Data Sheet S15726EJ2V0DS 67 µPD161401 6.9 MAX.·Y Address Register (R10) This register specifies the Y address of the end point of the display RAM the CPU accesses when the window access mode is used. RS D7 1 D6 D5 D4 D3 D2 D1 D0 YMX6 YMX5 YMX4 YMX3 YMX2 YMX1 YMX0 Default value (default value of reset command) D7 D6 D5 D4 D3 D2 D1 D0 Note 0 0 0 0 0 0 0 Note 0 or 1 6.10 Display Memory Access Register (R12) The display memory access register is used to access the display RAM. When data is written to this register, it is directly written to the display RAM. In the µPD161401, the data of the display access memory register (R12) cannot be read. BMOD = 1 (8-bit data bus) RS D7 D6 D5 D4 D3 D2 D1 D0 1 D7 D6 D5 D4 D3 D2 D1 D0 BMOD = 0 (16-bit data bus) RS D15 D14 D13 D12 D11 D10 D9 D8 1 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 Default value (default value of reset command) BMOD = 1 (8-bit data bus) D7 D6 D5 D4 D3 D2 D1 D0 Note Note Note Note Note Note Note Note Note 0 or 1 BMOD = 0 (16-bit data bus) D15 D14 D13 D12 D11 D10 D9 D8 Note Note Note Note Note Note Note Note D7 D6 D5 D4 D3 D2 D1 D0 Note Note Note Note Note Note Note Note Note 0 or 1 68 Data Sheet S15726EJ2V0DS µPD161401 6.11 Main Duty Setting Register (R14) This register can set the display duty ratio in a range of 1/80, 1/72 and 1/64 duty as shown in Table 6− −5 in the main duty display mode. Before changing the contents of this register, be sure to stop the internal operation by using the HALT command (control register 1 (R0)). RS D7 1 D6 D5 D4 D3 D2 D1 D0 MDT6 MDT5 MDT4 MDT3 MDT2 MDT1 MDT0 Table 6− −5. Main Duty Setting Register (R14) MDT6 MDT5 MDT4 MDT3 MDT2 MDT1 MDT0 Duty 1 0 0 1 1 1 1 1/80 1 0 0 0 1 1 1 1/72 0 1 1 1 1 1 1 1/64 Default value (default value of reset command) D7 D6 D5 D4 D3 D2 D1 D0 Note 1 0 0 1 1 1 1 Note 0 or 1 6.12 Main Duty N-line Inversion Register (R15) This register can set the line position of AC driving in the main duty display mode as shown in Table 6− −6. RS D7 D6 1 D5 D4 D3 D2 D1 D0 MID5 MID4 MID3 MID2 MID1 MID0 Table 6− −6. Setting of Main Duty N-line Inversion Register (R15) MID5 MID4 MID3 MID2 MID1 MID0 Line to be reversed 0 0 0 0 0 0 1 0 0 0 0 0 1 2 0 0 0 0 1 0 3 1 0 0 1 0 1 38 1 0 0 1 1 0 39 1 0 0 1 1 1 40 Default value (default value of reset command) D7 D6 D5 D4 D3 D2 D1 D0 Note Note 1 0 0 1 1 1 Note 0 or 1 Data Sheet S15726EJ2V0DS 69 µPD161401 6.13 Main Duty M-line Shift Register (R16) This register shifts the reverse position of each frame in the main duty display mode by the shift amount shown in Table 6− −7. RS D7 D6 1 D5 D4 D3 D2 D1 D0 MSD5 MSD4 MSD3 MSD2 MSD1 MSD0 Table 6− −7. Main Duty M-line Shift Register (R16) Shift amount of position MSD5 MSD4 MSD3 MSD2 MSD1 MSD0 to be reversed 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 2 0 0 0 0 1 1 3 1 0 0 1 1 0 38 1 0 0 1 1 1 39 1 0 1 0 0 0 40 Make sure that the relationship between the display size, reverse cycle, and reverse position is established as follows. Display size (Duty) ≥ reverse cycle ≥ reverse shift amount Default value (default value of reset command) D7 D6 D5 D4 D3 D2 D1 D0 Note Note 0 0 0 0 0 0 Note 0 or1 70 Data Sheet S15726EJ2V0DS µPD161401 6.14 Sub-duty Setting Register (R17) This register can set the display duty ratio in a range of 1/48, 1/40, 1/32, 1/24 and 1/16 as shown in Table 6− −8 in the sub-duty display mode by setting SDT6 to SDT0. RS D7 1 D6 D5 D4 D3 D2 D1 D0 SDT6 SDT5 SDT4 SDT3 SDT2 SDT1 SDT0 Table 6− −8. Main Duty Setting Register (R17) SDT6 SDT5 SDT4 SDT3 SDT2 SDT1 SDT0 Duty 0 1 0 1 1 1 1 1/48 0 1 0 0 1 1 1 1/40 0 0 1 1 1 1 1 1/32 0 0 1 0 1 1 1 1/24 0 0 0 1 1 1 1 1/16 Default value (default value of reset command) D7 D6 D5 D4 D3 D2 D1 D0 Note 0 1 0 1 1 1 1 Note 0 or 1 Data Sheet S15726EJ2V0DS 71 µPD161401 6.15 Sub-duty N-line Inversion Register (R18) This register can set the line position of driving in the sub-duty display mode as shown in Table 6− −9. RS D7 D6 1 D5 D4 D3 D2 D1 D0 SID5 SID4 SID3 SID2 SID1 SID0 Table 6− −9. Sub-duty N-line Inversion Register (R18) SID5 SID4 SID3 SID2 SID1 SID0 Line to be reversed 0 0 0 0 0 0 1 0 0 0 0 0 1 2 0 0 0 0 1 0 3 0 0 0 0 1 1 4 1 0 0 1 0 1 38 1 0 0 1 1 0 39 1 0 0 1 1 1 40 Caution Please protect the following relations. Sub-duty display size (duty) ≥ sub-duty reversed line If this relation is not protected, the operation is not guaranteed. However, when the above-mentioned relation is not protected, inside µPD161401, processing which makes reversed line equal to display size is carried out. In addition, the value of a register is not rewritten automatically. Default value (default value of reset command) D7 D6 D5 D4 D3 D2 D1 D0 Note Note 1 0 0 1 1 1 Note 0 or 1 72 Data Sheet S15726EJ2V0DS µPD161401 6.16 Sub-duty M-line Shift Register (R19) This register shifts the reverse position of each frame in the sub-duty display mode by the shift amount shown in Table 6− −10. RS D7 D6 1 D5 D4 D3 D2 D1 D0 SSD5 SSD4 SSD3 SSD2 SSD1 SSD0 Table 6− −10. Sub-duty M-line Shift Register (R19) SSD5 SSD4 SSD3 SSD2 SSD1 SSD0 Shift amount of position to be reversed 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 2 0 0 0 0 1 1 3 1 0 0 1 1 0 38 1 0 0 1 1 1 39 1 0 1 0 0 0 40 Make sure that the relationship between the display size, reverse cycle, and reverse position is established as follows. Display size (duty) ≥ reverse cycle ≥ reverse shift amount Default value (default value of reset command) D7 D6 D5 D4 D3 D2 D1 D0 Note Note 0 0 0 0 0 0 Note 0 or 1 Data Sheet S15726EJ2V0DS 73 µPD161401 6.17 COM Scanning Address Setting Register (R21) This command specifies that scanning of the common outputs can be started from any of the On (n = 1 to 80) output pins. Set the CSA4 to CSA0 bits as shown in Table 6− −11 (1/2). The scan start pin can be specified by the value n obtained from this table and the selected duty shown in Table 6− −11 (2/2). The common wiring on the LCD panel can be optimized according to the selected duty. Tables 6− −12, 6− −13, and 6− −14 indicate examples of the COM scan address settings for 1/64 duty, 1/72 duty, and 1/80 duty. RS D7 D6 D5 1 D4 D3 D2 D1 D0 CSA4 CSA3 CSA2 CSA1 CSA0 Table 6− −11. COM Scanning Address Setting Register (1/2) CSA4 CSA3 CSA2 CSA1 CSA0 n 0 0 0 0 0 1 0 0 0 0 1 2 0 0 0 1 0 3 0 1 1 1 0 15 0 1 1 1 1 16 1 0 0 0 0 17 1 0 0 0 1 Other settings prohibited Table 6− −11. COM Scanning Address Setting Register (2/2) COMR = 0 Scanning start (COM1) pin On → → COMR = 1 Scanning end (COMa) Note O(n+a−1) pin Note Scanning start (COM1) pin O(82−a−n) → → Scanning end (COMa) Note pin O(80−n+1) Note Note a = 64: 1/64 duty a = 72: 1/72 duty a = 80: 1/80 duty Caution Set the COM scan address setting register so that the scan start pin and scan end pin satisfy the equation below. If a value that exceeds this condition is set, the µPD161401 operation is not guaranteed. O1 ≤ Scan start pin and scan end pin ≤ O80 74 Data Sheet S15726EJ2V0DS µPD161401 Table 6− −12. Example of COM Scanning Address Setting (1/64 duty) COMR = 0 Scanning start CSA4 CSA3 CSA2 CSA1 CSA0 n → (COM1) pin COMR = 1 Scanning end (COMa) Note Scanning start pin (COM1) pin → Scanning end (COMa) Note pin On → O(n+a−1) Note O(82−a−n) → O(80−n+1) Note 0 0 0 0 0 1 O1 → O64 O17 → O80 0 0 0 0 1 2 O2 → O65 O16 → O79 0 0 0 1 0 3 O3 → O66 O15 → O78 0 0 0 1 1 4 O4 → O67 O14 → O77 0 0 1 0 0 5 O5 → O68 O13 → O76 0 0 1 0 1 6 O6 → O69 O12 → O75 0 0 1 1 0 7 O7 → O70 O11 → O74 0 0 1 1 1 8 O8 → O71 O10 → O73 0 1 0 0 0 9 O9 → O72 O9 → O72 0 1 0 0 1 10 O10 → O73 O8 → O71 0 1 0 1 0 11 O11 → O74 O7 → O70 0 1 0 1 1 12 O12 → O75 O6 → O69 0 1 1 0 0 13 O13 → O76 O5 → O68 0 1 1 0 1 14 O14 → O77 O4 → O67 0 1 1 1 0 15 O15 → O78 O3 → O66 0 1 1 1 1 16 O16 → O79 O2 → O65 1 0 0 0 0 17 O17 → O80 O1 → O64 Note a = 64 at 1/64 duty Data Sheet S15726EJ2V0DS 75 µPD161401 Table 6− −13. Example of COM Scanning Address Setting (1/72 duty) COMR = 0 COMR = 1 Scanning start → Scanning end CSA4 CSA3 CSA2 CSA1 CSA0 n (COM1) pin Scanning start (COMa) Note pin (COM1) pin → Remark Scanning end (COMa) Note pin On → O(n+a−1) Note O(82−a−n) → O(80−n+1) Note 0 0 0 0 0 1 O1 → O72 O9 → O80 0 0 0 0 1 2 O2 → O73 O8 → O79 0 0 0 1 0 3 O3 → O74 O7 → O78 0 0 0 1 1 4 O4 → O75 O6 → O77 0 0 1 0 0 5 O5 → O76 O5 → O76 0 0 1 0 1 6 O6 → O77 O4 → O75 0 0 1 1 0 7 O7 → O78 O3 → O74 0 0 1 1 1 8 O8 → O79 O2 → O73 0 1 0 0 0 9 O9 → O80 O1 → O72 0 1 0 0 1 10 Other settings prohibited Note a = 72 at 1/72 duty Caution Set the COM scan address setting register (R21) so that O1 ≤ scan start pin and scan end pin ≤ O80. If a value that exceeds this condition is set, the µPD161401 operation is not guaranteed Table 6− −14. Example of COM Scanning Address Setting (1/80 duty) COMR = 0 Scanning CSA4 CSA3 CSA2 CSA1 CSA0 n → start COMR = 1 Scanning end Scanning start (COMa) Note pin (COM1) pin → Remark Scanning end (COMa) Note pin (COM1) pin 0 0 0 0 0 1 0 0 0 0 1 2 On → O(n+a−1) Note O(82−a−n) → O(80−n+1) Note O1 → O80 O1 → O80 Other settings prohibited Note a = 80 at 1/80 duty Caution When the µPD161401 is used in 1/80 duty, set the COM scan address setting register (R21) to CSA4, CSA3, CSA2, CSA1, CSA0 = 0, 0, 0, 0, 0. If any other settings are made, the µPD161401 operation is not guaranteed. Default value (default value of reset command) D7 D6 D5 D4 D3 D2 D1 D0 Note Note Note 0 0 0 0 0 Note 0 or 1 76 Data Sheet S15726EJ2V0DS µPD161401 6.18 Sub-duty Start Address Register (R22) The sub-duty start address register specifies the start address of the display RAM the CPU accesses to use the subduty display mode. The sub-duty display area starts from this start line address and consists of the number of lines specified by the sub-duty setting register (R17). RS D7 1 D6 D5 D4 D3 D2 D1 D0 SSA6 SSA5 SSA4 SSA3 SSA2 SSA1 SSA0 Table 6− −15. Sub-duty Start Address Register SSA6 SSA5 SSA4 SSA3 SSA2 SSA1 SSA0 Common 0 0 0 0 0 0 0 COM1 0 0 0 0 0 0 1 COM2 0 0 0 0 0 1 0 COM3 0 0 0 0 0 1 1 COM4 1 0 0 1 1 0 1 COM78 1 0 0 1 1 1 0 COM79 1 0 0 1 1 1 1 COM80 Make sure that SSA (R22) and SDT (R17) have in the following relationship. SSAn + SDTn ≤ MDT ≤ 4FH Default value (default value of reset command) D7 D6 D5 D4 D3 D2 D1 D0 Note 0 0 0 0 0 0 0 Note 0 or 1 Data Sheet S15726EJ2V0DS 77 µPD161401 6.19 Scroll Fixed Area Position Register (R23) This command specifies the display position of the scroll fixed area to upper or bottom of side in LCD panel. RS D7 D6 D5 D4 D3 D2 D1 D0 1 FIXAHL Table 6− −16. Scroll Fixed Position Register (R23) FIXAHL Display Position 0 bottom 1 upper Default value (default value of reset command) D7 D6 D5 D4 D3 D2 D1 D0 Note Note Note Note Note Note Note 1 Note 0 or 1 6.20 Scroll Fixed Area Width Register (R27) This register selects the width of the area to be fixed from 0, 16, 24, and 32 lines. RS D7 D6 D5 D4 D3 D2 1 D1 D0 FIXAW1 FIXAW0 Table 4− −16. Scroll Fixed Area Width Register (R27) FIXAW1 FIXAW0 0 0 Fixed Area Width 0 0 1 16 1 0 24 1 1 32 Even if the screen display size is changed by the duty setting register (R14 and R17), FIXAW1 and FIXAW0 are not overwritten. Default value (default value of reset command) D7 D6 D5 D4 D3 D2 D1 D0 Note Note Note Note Note Note 0 0 Note 0 or 1 78 Data Sheet S15726EJ2V0DS µPD161401 6.21 Scroll Step Number Register (R31) This register sets the number of scroll steps when the scroll function is used. RS D7 1 D6 D5 D4 D3 D2 D1 D0 MST6 MST5 MST4 MST3 MST2 MST1 MST0 Table 6− −18. Scroll Step Number Register (R31) MST6 MST5 MST4 MST3 MST2 MST1 MST0 Number of Scroll Steps 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 2 0 0 0 0 0 1 1 3 1 0 0 1 1 0 1 77 1 0 0 1 1 1 0 78 1 0 0 1 1 1 1 79 1 0 1 0 0 0 0 Other settings prohibited Caution The relationship between the number of scroll steps and scroll fixed area width should be as follows. Number of scroll steps ≤ 79 − Scroll fixed area width If values exceeding the above condition are set, the operation is not guaranteed. Default value (default value of reset command) D7 D6 D5 D4 D3 D2 D1 D0 Note 0 0 0 0 0 0 0 Note 0 or 1 Data Sheet S15726EJ2V0DS 79 µPD161401 6.22 Blink/Reverse Setting Register (R37) This register controls blink display or reverse display. Blink display is controlled by the BLD1 and BLD0 flags of this register, and reverse display is controlled by the INV flag, as shown in the table below. The condition of each of the blink and reverse display areas is individually set by R38 to R50. RS D7 D6 D5 D4 1 D3 D2 INV D1 D0 BLD1 BLD0 Table 6− −19. Blink/Reverse Display Control INV Display 0 Reverse display OFF 1 Reverse display ON BLD1 Display 0 Specified-color blink display OFF 1 Specified-color blink display ON BLD0 Display 0 Complementary-color blink display OFF 1 Complementary-color blink display ON Default value (default value of reset command) D7 D6 D5 D4 D3 D2 D1 D0 Note Note Note Note 0 Note 0 0 Note 0 or 1 6.23 Complementary Color Blink X Address Register (R38) The complementary color blink X address register specifies the X address of the complementary color blink RAM the CPU accesses. This address is automatically incremented each time the complementary color blink data RAM is accessed. RS D7 D6 D5 D4 1 D3 D2 D1 D0 CBX3 CBX2 CBX1 CBX0 Default value (default value of reset command) D7 D6 D5 D4 D3 D2 D1 D0 Note Note Note Note 0 0 0 0 Note 0 or 1 80 Data Sheet S15726EJ2V0DS µPD161401 6.24 Complementary Color Blink Start Line Address Register (R39) The complementary color blink start line address register specifies the start line address the CPU accesses to use complementary color blinking display. The range of the complementary color blink lines is determined by this register and the complementary color blink end line address register. RS D7 1 CBS6 to CBS0 D6 D5 D4 D3 D2 D1 D0 CBS6 CBS5 CBS4 CBS3 CBS2 CBS1 CBS0 Setting Sets a start line address Caution Make sure that CBS [6:0] ≤ 4FH. If 4FH is exceeded, operation is not guaranteed. Default value (default value of reset command) D7 D6 D5 D4 D3 D2 D1 D0 Note 0 0 0 0 0 0 0 Note 0 or 1 6.25 Complementary Color Blink End Line Address Register (R40) The complementary color blink end line address register specifies the end line address the CPU accesses to use complementary color blink display. The range of the complementary color blink lines is determined by this register and the complementary color blink start line address register. RS D7 1 CBE6 to CBE0 D6 D5 D4 D3 D2 D1 D0 CBE6 CBE5 CBE4 CBE3 CBE2 CBE1 CBE0 Setting Sets an end line address Caution Make sure that CBE [6:0] ≤ 4FH. If 4FH is exceeded, operation is not guaranteed. Default value (default value of reset command) D7 D6 D5 D4 D3 D2 D1 D0 Note 0 0 0 0 0 0 0 Note 0 or 1 Data Sheet S15726EJ2V0DS 81 µPD161401 6.26 Complementary Color Blink Data Memory Register (R41) The complementary color blink data memory register is used to access the complementary color blink data RAM. If this register is accessed for write, data is directly written to the complementary color blink data RAM. RS D7 D6 D5 D4 D3 D2 D1 D0 1 D7 D6 D5 D4 D3 D2 D1 D0 Data Status 0 Normal 1 Complementary color blinking Default value (default value of reset command, all data) D7 D6 D5 D4 D3 D2 D1 D0 Note Note Note Note Note Note Note Note Note 0 or 1 6.27 Specified Color Blink X Address Register (R42) The specified color blink X address register specifies the X address of the specified color blinking RAM the CPU accesses. This address is automatically incremented each time the specified color blink data RAM is accessed. RS D7 D6 D5 D4 1 D3 D2 D1 D0 SBX3 SBX2 SBX1 SBX0 Default value (default value of reset command) D7 D6 D5 D4 D3 D2 D1 D0 Note Note Note Note 0 0 0 0 Note 0 or 1 82 Data Sheet S15726EJ2V0DS µPD161401 6.28 Specified Color Blink Start Line Address Register (R43) The specified color blink start line address register specifies the start line address the CPU accesses to use specified color blinking display. The range of the specified color blink lines is determined by this register and the specified color blinking end line address register. RS D7 1 SBS6 to SBS0 D6 D5 D4 D3 D2 D1 D0 SBS6 SBS5 SBS4 SBS3 SBS2 SBS1 SBS0 Setting Sets a start line address. Caution Make sure that SBS [6:0] ≤ 4FH. If 4FH is exceeded, operation is not guaranteed. Default value (default value of reset command) D7 D6 D5 D4 D3 D2 D1 D0 Note 0 0 0 0 0 0 0 Note 0 or 1 6.29 Specified Color Blink End Line Address Register (R44) The specified color blink end line address register specifies the end line address the CPU accesses to use specified color blink display. The range of the specified color blink lines is determined by this register and the specified color blink start line address register. RS D7 1 SBE6 to SBE0 D6 D5 D4 D3 D2 D1 D0 SBE6 SBE5 SBE4 SBE3 SBE2 SBE1 SBE0 Setting Sets an end line address. Caution Make sure that SBE [6:0] ≤ 4FH. If 4FH is exceeded, operation is not guaranteed. Default value (default value of reset command) D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 0 0 0 0 Data Sheet S15726EJ2V0DS 83 µPD161401 6.30 Specified Color Blink Data Memory Register (R45) The specified color blink data memory register is used to access the specified color blink data RAM. If this register is accessed for write, data is directly written to the specified color blink data RAM. RS D7 D6 D5 D4 D3 D2 D1 D0 1 D7 D6 D5 D4 D3 D2 D1 D0 Data Status 0 Normal 1 Specified color blinking Default value (default value of reset command, all data) D7 D6 D5 D4 D3 D2 D1 D0 Note Note Note Note Note Note Note Note Note 0 or 1 6.31 Specified Color Setting Register (R46) This register sets specified color data when the specified color blink function is used. The data between this data and the display RAM data blinks in a specified color. RS D7 D6 D5 D4 D3 D2 D1 1 D7 D6 D5 D4 D3 D2 D1 R G D0 Remark D0 B In 256-color mode Default value (default value of reset command, all data) D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 0 0 0 0 6.32 Reverse X Address Register (R47) The reverse X address register specifies the X address of the reverse data RAM the CPU accesses. This address is incremented each time the reverse RAM has been accessed. RS D7 D6 D5 D4 1 D3 D2 D1 D0 IVX3 IVX2 IVX1 IVX0 Default value (default value of reset command) D7 D6 D5 D4 D3 D2 D1 D0 Note Note Note Note 0 0 0 0 Note 0 or 1 84 Data Sheet S15726EJ2V0DS µPD161401 6.33 Reverse Start Line Address Register (R48) The reverse start line address register specifies start line address of the display RAM the CPU accesses for reverse display. The range of the reverse lines is determined by this register and the reverse end line address register. RS D7 1 IVS6 to IVS0 D6 D5 D4 D3 D2 D1 D0 IVS6 IVS5 IVS4 IVS3 IVS2 IVS1 IVS0 Sets a start line address. Caution Make sure that IVS [6:0] ≤ 4FH. If 4FH is exceeded, operation is not guaranteed. Default value (default value of reset command) D7 D6 D5 D4 D3 D2 D1 D0 Note 0 0 0 0 0 0 0 Note 0 or 1 6.34 Reverse End Line Address Register (R49) The reverse end line address register specifies the end line address of the display RAM the CPU accesses for reverse display. The range of the reverse lines is determined by this register and the reverse start line address register. RS D7 1 IVE6 to IVE0 D6 D5 D4 D3 D2 D1 D0 IVE6 IVE5 IVE4 IVE3 IVE2 IVE1 IVE0 Setting Sets an end line address. Caution Make sure that IVE [6:0] ≤ 4FH. If 4FH is exceeded, operation is not guaranteed. Default value (default value of reset command) D7 D6 D5 D4 D3 D2 D1 D0 Note 0 0 0 0 0 0 0 Note 0 or 1 Data Sheet S15726EJ2V0DS 85 µPD161401 6.35 Reverse Data Memory Access Register (R50) The reverse data memory access register is used to access the reverse data RAM. When this register is accessed for write, data is directly written to the reverse data RAM. RS D7 D6 D5 D4 D3 D2 D1 D0 1 D7 D6 D5 D4 D3 D2 D1 D0 Data Status 0 Normal 1 Reverse Default value (default value of reset command, all data) D7 D6 D5 D4 D3 D2 D1 D0 Note Note Note Note Note Note Note Note Note 0 or 1 86 Data Sheet S15726EJ2V0DS Setting µPD161401 6.36 Power System Control Register 1 (R52) This command sets the power system mode of the µPD161401. E R,/W RS /RD /WR 1 1 0 TCS2 to TCS0 OP3 to OP0 D7 D6 D5 D4 D3 D2 D1 D0 TCS2 TCS1 TCS0 OP3 OP2 OP1 OP0 These bits set the value that selects the temperature curve of the VREG voltage to a value shown in Table 6− − 20. These bits turn ON/OFF the booster circuit, reference voltage generator, control the voltage regulator circuit (V regulator circuit) and voltage follower circuit (V/F circuit). The functions controlled by these four-power control set command controlled by these 4 bits are listed in Table 6− − 21. Table 6− −20. VREG Voltage Temperature Curve Value TCS2 TCS1 TCS0 0 0 0 0 0 1 0 Temperature Gradient (unit: %/°C) VREG (TYP.) (unit: V) 0 –0.12 1.77 1 –0.13 1.69 –0.15 1.63 –0.17 1.59 − − 0 1 1 1 X X Status Internal power supply When external reference power supply is used Table 6− −21. Details of Control by Each Bit of Power System Control Register Status Item 1 0 OFF OP3 : Booster circuit control bit ON OP2 : Reference voltage generator control bit ON OFF OP1 : Voltage regulator circuit (V regulator circuit) control bit ON OFF OP0 : Voltage follower circuit (V/F circuit) control bit ON OFF Default value (default value of reset command) D7 D6 D5 D4 D3 D2 D1 D0 Note 0 0 0 0 0 0 0 Note 0 or 1 Data Sheet S15726EJ2V0DS 87 µPD161401 6.37 Power System Control Register 2 (R53) This command sets the power system mode of the µPD161401. E R,/W RS /RD /WR D7 D6 D5 D4 D3 D2 D1 D0 1 1 0 VRR3 VRR2 VRR1 VRR0 SVR3 SVR2 SVR1 SVR0 VRR3 to VRR0 Setting When the main duty display mode is used, the resistance ratio can be changed in 16 steps by the VLCD internal resistance ratio adjustment command. Four bits of the VLCD internal resistance ratio adjustment register set the reference value of (1 + Rb/Ra) to the value shown in Table 6− −22. SVR3 to SVR0 When the sub-duty display mode is used, the resistance ratio can be changed in 16 steps by the VLCD internal resistance ratio adjustment command. Four bits of the VLCD internal resistance ratio adjustment register set the reference value of (1 + Rb/Ra) to the value shown in Table 6− −22. Table 6-22. VLCD Internal Resistance Ratio Adjustment Register Register VRR2 VRR1 VRR0 SVR3 SVR2 SVR1 SVR0 0 0 0 0 3 0 0 0 1 4 0 0 1 0 5 0 0 1 1 6 0 1 0 0 7 0 1 0 1 8 0 1 1 0 9 0 1 1 1 10 1 0 0 0 11 1 0 0 1 12 1 0 1 0 13 1 0 1 1 14 1 1 0 0 15 1 1 0 1 16 1 1 1 0 17 1 1 1 1 18 Default value (default value of reset command) 88 1 + Rb/Ra VRR3 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 0 0 0 0 Data Sheet S15726EJ2V0DS µPD161401 6.38 Power System Control Register 3 (R54) This command sets the bias value for main duty display and sub-duty display by the µPD161401. RS D7 1 BIS2 to BIS0 Note SBIS2 to SBIS0 Note D6 D5 D4 BIS2 BIS1 BIS0 D3 D2 D1 D0 SBIS2 SBIS1 SBIS0 Setting These flags select the bias ratio in the main duty display mode as follows: BIS2 BIS1 BIS0 Bias Ratio 0 0 0 1/9 bias 0 0 1 1/8 bias 0 1 0 1/7 bias 0 1 1 1/6 bias 1 0 0 1/5 bias 1 0 1 Prohibited 1 1 0 Prohibited 1 1 1 Prohibited These flags select the bias ratio in the sub-duty display mode as follows: SBIS2 SBIS1 SBIS0 Bias Ratio 0 0 0 1/9 bias 0 0 1 1/8 bias 0 1 0 1/7 bias 0 1 1 1/6 bias 1 0 0 1/5 bias 1 0 1 Prohibited 1 1 0 Prohibited 1 1 1 Prohibited Note Before changing these flags, execute the HALT command. Default value (default value of reset command) D7 D6 D5 D4 D3 D2 D1 D0 Note 0 0 0 Note 0 0 0 Note 0 or 1 Data Sheet S15726EJ2V0DS 89 µPD161401 6.39 Power System Control Register 4 (R55) This command sets the number of boosting steps for main duty display and sub-duty display of µPD161401 as shown in Table 6− −23. RS D7 1 D6 D5 D4 MBT2 MBT1 MBT0 D3 D2 D1 D0 SBT2 SBT1 SBT0 Setting Table 6− −23. Number of Boosting Steps for Main/Sub-duty Display of Booster Circuit MBT2 MBT1 MBT0 SBT2 SBT1 SBT0 0 0 0 Two 0 0 1 Three 0 1 0 Four 0 1 1 Five 1 0 0 Six 1 0 1 Seven 1 1 0 Prohibited 1 1 1 Prohibited Number of Boosting Steps (unit: fold) Default value (default value of reset command) D7 D6 D5 D4 D3 D2 D1 D0 Note 0 0 0 Note 0 0 0 Note 0 or 1 90 Data Sheet S15726EJ2V0DS µPD161401 6.40 Power System Control Register 5 (R56) This command sets the status of the voltage follower circuit of the µPD161401 that drives the LCD, as follows: RS D7 D6 D5 D4 D3 D2 D1 D0 1 LCS1 LCS0 LCC1 LCC0 HPM1 HPM0 PSM1 PSM0 Setting Table 6− −24. Setting of Segment Output Driving Capability (LCS1, LCS0 = 0, 0) LCS1 LCS0 Segment Output Driving Capability (unit: fold) 0 0 One 0 1 Two 1 0 Four 1 1 Eight Table 6− −25. Setting of Common Output Driving Capability (LCS1, LCS0 = 0, 0) LCC1 LCC0 Common Output Driving Capability (unit: fold) 0 0 Two 0 1 Four 1 0 Eight 1 1 Sixteen Table 6− −26. Setting of Operational Amplifier Operation Mode HPM1 HPM0 Mode Setting 0 0 Normal mode 0 1 Power ON mode1 1 0 Power OFF mode 1 1 Power ON mode2 Table 6− −27. Setting of Two-fold Supply Voltage (VLC3, VLC4 Level Voltage Follower Power Supply) PSM1 Mode Setting 0 Not used 1 used Table 6− −28. Setting of Voltage Follower Bias Current PSM0 Bias Current Setting (unit: fold) 0 One 1 Two Default value (default value of reset command) D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 1 0 0 1 0 Data Sheet S15726EJ2V0DS 91 µPD161401 6.41 Main Electronic Volume Register (R57) The main electronic volume register specifies the electronic volume value for adjusting the contrast in the main duty display mode, in 128 steps. RS D7 1 D6 D5 D4 D3 D2 D1 D0 MEV6 MEV5 MEV4 MEV3 MEV2 MEV1 MEV0 Setting Default value (default value of reset command) D7 D6 D5 D4 D3 D2 D1 D0 Note 0 0 0 0 0 0 0 Note 0 or 1 6.42 Sub-electronic Volume Register (R58) The sub-electronic volume register specifies an electronic volume value for adjusting the contrast in the sub-duty display mode, in 128 steps. RS D7 1 D6 D5 D4 D3 D2 D1 D0 SEV6 SEV5 SEV4 SEV3 SEV2 SEV1 SEV0 Default value (default value of reset command) D7 D6 D5 D4 D3 D2 D1 D0 Note 0 0 0 0 0 0 0 Note 0 or 1 92 Data Sheet S15726EJ2V0DS Setting µPD161401 6.43 RAM Test Mode Setting Register (R61) The RAM test mode setting register directly writes the data of each display status to the display RAM as shown in Table 6− −29. RS D7 D6 D5 D4 D3 1 D2 D1 D0 RTS2 RTS1 RTS0 Table 6− −29. RAM Test Mode RTS2 RTS1 RTS0 Write Data 0 0 0 Normal operation 0 0 1 all [00000000] / pixel display 0 1 0 all [11111111] / pixel display 0 1 1 Checker pattern display of [00000000] / [11111111] 1 0 0 Vertical grayscale bar display 1 0 1 Horizontal grayscale bar display 1 1 0 Each color grayscale display 1 1 1 256-color display Default value (default value of reset command) D7 D6 D5 D4 D3 D2 D1 D0 Note Note Note Note Note 0 0 0 Note 0 or 1 6.44 Driving Mode Select Register (R64) The FXOR flag of the drive mode select register controls the reversal of the LCD drive waveform between frames as shown in Table 6− −30. Note that the reverse function is executed between frames regardless of the FXOR flag during sub-duty display. RS D7 D6 D5 D4 1 D3 D2 D1 D0 FXOR Table 6− −30. Driving Mode Select Register (R64) FXOR Reversing Between Frames 0 OFF 1 ON Default value (default value of reset command) D7 D6 D5 D4 D3 D2 D1 D0 Note Note Note Note 0 Note Note Note Note 0 or 1 Data Sheet S15726EJ2V0DS 93 µPD161401 6.45 Main R Grayscale Data Registers (R65 to R72) The main R grayscale data registers specify the grayscale level of the R output in the main duty display mode. By using these registers, grayscale display can be optimized. Rx Data RS R65 0, 0, 0 R66 0, 0, 1 R67 R68 D7 D6 D5 D4 D3 D2 D1 D0 1 MRG4 MRG3 MRG2 MRG1 MRG0 1 MRG4 MRG3 MRG2 MRG1 MRG0 0, 1, 0 1 MRG4 MRG3 MRG2 MRG1 MRG0 0, 1, 1 1 MRG4 MRG3 MRG2 MRG1 MRG0 R69 1, 0, 0 1 MRG4 MRG3 MRG2 MRG1 MRG0 R70 1, 0, 1 1 MRG4 MRG3 MRG2 MRG1 MRG0 R71 1, 1, 0 1 MRG4 MRG3 MRG2 MRG1 MRG0 R72 1, 1, 1 1 MRG4 MRG3 MRG2 MRG1 MRG0 D7 D6 D5 D4 D3 D2 D1 D0 Grayscale Level × × × 0 0 0 0 0 Level 0 × × × 0 0 0 0 1 Level 1 × × × 0 0 0 1 0 Level 2 × × × 0 0 0 1 1 Level 3 × × × 0 1 1 1 1 Level 15 × × × 1 0 0 0 0 Level 16 Default value (default value of reset command, common to all grayscale data registers) D7 D6 D5 D4 D3 D2 D1 D0 Note Note Note 0 0 0 0 0 Note 0 or 1 94 Setting Data Sheet S15726EJ2V0DS µPD161401 6.46 Main G Grayscale Data Registers (R73 to R80) The main G grayscale data registers specify the grayscale level of the G output in the main duty display mode. By using these registers, grayscale display can be optimized. Rx Data RS R73 0, 0, 0 R74 0, 0, 1 R75 R76 D7 D6 D5 D4 D3 D2 D1 D0 1 MGG4 MGG3 MGG2 MGG1 MGG0 1 MGG4 MGG3 MGG2 MGG1 MGG0 0, 1, 0 1 MGG4 MGG3 MGG2 MGG1 MGG0 0, 1, 1 1 MGG4 MGG3 MGG2 MGG1 MGG0 R77 1, 0, 0 1 MGG4 MGG3 MGG2 MGG1 MGG0 R78 1, 0, 1 1 MGG4 MGG3 MGG2 MGG1 MGG0 R79 1, 1, 0 1 MGG4 MGG3 MGG2 MGG1 MGG0 R80 1, 1, 1 1 MGG4 MGG3 MGG2 MGG1 MGG0 Setting D7 D6 D5 D4 D3 D2 D1 D0 Grayscale Level × × × 0 0 0 0 0 Level 0 × × × 0 0 0 0 1 Level 1 × × × 0 0 0 1 0 Level 2 × × × 0 0 0 1 1 Level 3 × × × 0 1 1 1 1 Level 15 × × × 1 0 0 0 0 Level 16 Default value (default value of reset command, common to all grayscale data registers) D7 D6 D5 D4 D3 D2 D1 D0 Note Note Note 0 0 0 0 0 Note 0 or 1 Data Sheet S15726EJ2V0DS 95 µPD161401 6.47 Main B Grayscale Data Registers (R81 to R84) The main B grayscale data registers specify the grayscale level of the B output in the main duty display mode. By using these registers, grayscale display can be optimized. Rx Data RS R81 0, 0 R82 0, 1 R83 R84 D7 D6 D5 D4 D3 D2 D1 D0 1 MBG4 MBG3 MBG2 MBG1 MBG0 1 MBG4 MBG3 MBG2 MBG1 MBG0 1, 0 1 MBG4 MBG3 MBG2 MBG1 MBG0 1, 1 1 MBG4 MBG3 MBG2 MBG1 MBG0 D7 D6 D5 D4 D3 D2 D1 D0 Grayscale Level × × × 0 0 0 0 0 Level 0 × × × 0 0 0 0 1 Level 1 × × × 0 0 0 1 0 Level 2 × × × 0 0 0 1 1 Level 3 × × × 0 1 1 1 1 Level 15 × × × 1 0 0 0 0 Level 16 Default value (default value of reset command, common to all grayscale data registers) D7 D6 D5 D4 D3 D2 D1 D0 Note Note Note 0 0 0 0 0 Note 0 or 1 96 Setting Data Sheet S15726EJ2V0DS µPD161401 6.48 Sub R Grayscale Data Registers (R85 to R92) The sub R grayscale data registers specify the grayscale level of the R output in the sub-duty display mode. By using these registers, grayscale display can be optimized. Rx Data RS R85 0, 0, 0 R86 0, 0, 1 R87 R88 D7 D6 D5 D4 D3 D2 D1 D0 1 SRG4 SRG3 SRG2 SRG1 SRG0 1 SRG4 SRG3 SRG2 SRG1 SRG0 0, 1, 0 1 SRG4 SRG3 SRG2 SRG1 SRG0 0, 1, 1 1 SRG4 SRG3 SRG2 SRG1 SRG0 R89 1, 0, 0 1 SRG4 SRG3 SRG2 SRG1 SRG0 R90 1, 0, 1 1 SRG4 SRG3 SRG2 SRG1 SRG0 R91 1, 1, 0 1 SRG4 SRG3 SRG2 SRG1 SRG0 R92 1, 1, 1 1 SRG4 SRG3 SRG2 SRG1 SRG0 Setting D7 D6 D5 D4 D3 D2 D1 D0 Grayscale Level × × × 0 0 0 0 0 Level 0 × × × 0 0 0 0 1 Level 1 × × × 0 0 0 1 0 Level 2 × × × 0 0 0 1 1 Level 3 × × × 0 1 1 1 1 Level 15 × × × 1 0 0 0 0 Level 16 Default value (default value of reset command, common to all grayscale data registers) D7 D6 D5 D4 D3 D2 D1 D0 Note Note Note 0 0 0 0 0 Note 0 or 1 Data Sheet S15726EJ2V0DS 97 µPD161401 6.49 Sub G Grayscale Data Registers (R93 to R100) The sub G grayscale data registers specify the grayscale level of the G output in the sub-duty display mode. By using these registers, grayscale display can be optimized. Rx Data RS R93 0, 0, 0 R94 0, 0, 1 R95 R96 D7 D6 D5 D4 D3 D2 D1 D0 1 SGG4 SGG3 SGG2 SGG1 SGG0 1 SGG4 SGG3 SGG2 SGG1 SGG0 0, 1, 0 1 SGG4 SGG3 SGG2 SGG1 SGG0 0, 1, 1 1 SGG4 SGG3 SGG2 SGG1 SGG0 R97 1, 0, 0 1 SGG4 SGG3 SGG2 SGG1 SGG0 R98 1, 0, 1 1 SGG4 SGG3 SGG2 SGG1 SGG0 R99 1, 1, 0 1 SGG4 SGG3 SGG2 SGG1 SGG0 R100 1, 1, 1 1 SGG4 SGG3 SGG2 SGG1 SGG0 D7 D6 D5 D4 D3 D2 D1 D0 Grayscale Level × × × 0 0 0 0 0 Level 0 × × × 0 0 0 0 1 Level 1 × × × 0 0 0 1 0 Level 2 × × × 0 0 0 1 1 Level 3 × × × 0 1 1 1 1 Level 15 × × × 1 0 0 0 0 Level 16 Default value (default value of reset command, common to all grayscale data registers) D7 D6 D5 D4 D3 D2 D1 D0 Note Note Note 0 0 0 0 0 Note 0 or 1 98 Setting Data Sheet S15726EJ2V0DS µPD161401 6.50 Sub B Grayscale Data Registers (R101 to R104) The sub B grayscale data registers specify the grayscale level of the B output in the sub-duty display mode. By using these registers, grayscale display can be optimized. Rx Data RS R101 0, 0 R102 0, 1 R103 R104 D7 D6 D5 D4 D3 D2 D1 D0 1 SBG4 SBG3 SBG2 SBG1 SBG0 1 SBG4 SBG3 SBG2 SBG1 SBG0 1, 0 1 SBG4 SBG3 SBG2 SBG1 SBG0 1, 1 1 SBG4 SBG3 SBG2 SBG1 SBG0 Setting D7 D6 D5 D4 D3 D2 D1 D0 Grayscale Level × × × 0 0 0 0 0 Level 0 × × × 0 0 0 0 1 Level 1 × × × 0 0 0 1 0 Level 2 × × × 0 0 0 1 1 Level 3 × × × 0 1 1 1 1 Level 15 × × × 1 0 0 0 0 Level 16 Default value (default value of reset command, common to all grayscale data registers) D7 D6 D5 D4 D3 D2 D1 D0 Note Note Note 0 0 0 0 0 Note 0 or 1 Data Sheet S15726EJ2V0DS 99 µPD161401 7. µPD161401 REGISTER LIST (1/2) CS RS 6 Index Register 5 4 3 2 1 0 0 Register Name R/W 7 6 5 IR6 IR5 Data Bit 4 3 2 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 R3 Reset Command 0 1 0 0 0 0 1 0 0 R4 X Address Register R/W XA6 XA5 0 1 0 0 0 0 1 0 1 R5 Y Address Register R/W YA6 YA5 0 1 0 0 0 0 1 1 0 R6 0 1 0 0 0 0 1 1 1 R7 MIN.·X Address Register R/W 0 1 0 0 0 1 0 0 0 R8 MAX. X Address Register R/W 0 1 0 0 0 1 0 0 1 R9 MIN. Y Address Register 0 1 0 0 0 1 0 1 0 R10 MAX. Y Address Register 0 1 0 0 0 1 0 1 1 R11 0 1 0 0 0 1 1 0 0 R12 0 0 0 0 IR Index Register R0 Control Register 1 R/W TRON WAS COMF DISP 1 R1 Control Register 2 R/W FDM BMOD 0 R2 Display Memory Access Register W IR4 IR3 IR2 STBY HALT IR1 IR0 ADC COMR YDIR DTY INC XDIR XA4 XA3 XA2 XA1 XA0 YA4 YA3 YA2 YA1 YA0 XMN6 XMN5 XMN4 XMN3 XMN2 XMN1 XMN0 XMX6 XMX5 XMX4 XMX3 XMX2 XMX1 XMX0 R/W YMN6 YMN5 YMN4 YMN3 YMN2 YMN1 YMN0 R/W YMX6 YMX5 YMX4 YMX3 YMX2 YMX1 YMX0 W W RES D15 D14 D13 D15 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 MDT1 MDT0 0 1 0 0 0 1 1 0 1 R13 0 1 0 0 0 1 1 1 0 R14 Main Duty Setting Register R/W 0 1 0 0 0 1 1 1 1 R15 Main Duty N-line Inversion Register R/W MID5 MID2 MID1 MID0 0 1 0 0 1 0 0 0 0 R16 Main Duty M-line Shift Register R/W MSD5 MSD4 MSD3 MSD2 MSD1 MSD0 0 1 0 0 1 0 0 0 1 R17 Sub-duty Setting Register R/W SDT6 SDT5 SDT4 SDT3 SDT2 SDT1 SDT0 0 1 0 0 1 0 0 1 0 R18 Sub-duty N-line Inversion Register R/W SID5 SID2 SID1 SID0 0 1 0 0 1 0 0 1 1 R19 Sub-duty M-line Shift Register R/W SSD5 SSD4 SSD3 SSD2 SSD1 SSD0 0 1 0 0 1 0 1 0 0 R20 0 1 0 0 1 0 1 0 1 R21 COM Scanning Address Setting Register R/W CSA4 CSA3 CSA2 CSA1 CSA0 0 1 0 0 1 0 1 1 0 R22 Sub-duty Start Address Register R/W SSA4 SSA3 SSA1 0 1 0 0 1 0 1 1 1 R23 Scroll Fixed Area Position Register R/W FIXAHL 0 1 0 0 1 1 0 0 0 R24 0 1 0 0 1 1 0 0 1 R25 0 1 0 0 1 1 0 1 0 R26 0 1 0 0 1 1 0 1 1 R27 Scroll Fixed Area Width Register R/W FIXAW1 FIXAW0 0 1 0 0 1 1 1 0 0 R28 0 1 0 0 1 1 1 0 1 R29 0 1 0 0 1 1 1 1 0 R30 0 1 0 0 1 1 1 1 1 R31 Scroll Step Number Register R/W 0 1 0 1 0 0 0 0 0 R32 0 1 0 1 0 0 0 0 1 R33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 R34 R35 R36 R37 R38 R39 R40 R41 R42 R43 R44 R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 Blink/Reverse Setting Register Complementary Color Blink X Address Register Specified Color Blink Data Memory Register Specified Color Setting Register Reverse X Address Register Reverse Start Line Address Register Reverse End Line Address Register Reverse Data Memory Access Register R/W R/W R/W R/W W R/W R/W R/W W R/W R/W R/W R/W W Power System Control Register 1 Power System Control Register 2 Power System Control Register 3 Power System Control Register 4 Power System Control Register 5 Main Electronic Volume Register Sub-electronic Volume Register R/W R/W R/W R/W R/W R/W R/W RAM Test Mode Setting Register R/W 100 Complementary Color Blink Start Line Address Register Complementary Color Blink End Line Address Register Complementary Color Blink Data Memory Register Specified Color Blinking X Address Register Specified Color Blink Start Line Address Register Specified Color Blink End Line Address Register Data Sheet S15726EJ2V0DS MDT6 MDT5 MDT4 MDT3 MDT2 SSA6 SSA5 MID4 SID4 MID3 SID3 SSA2 MST6 MST5 MST4 MST3 MST2 SSA0 MST1 MST0 CBX2 CBS2 CBE2 D2 SBX2 SBS2 SBE2 D2 D2 IVX2 IVS2 IVE2 D2 BLD1 CBX1 CBS1 CBE1 D1 SBX1 SBS1 SBE1 D1 D1 IVX1 IVS1 IVE1 D1 BLD0 CBX0 CBS0 CBE0 D0 SBX0 SBS0 SBE0 D0 D0 IVX0 IVS0 IVE0 D0 D7 CBS6 CBS5 CBS4 CBE6 CBE5 CBE4 D6 D5 D4 D7 D7 SBS6 SBE6 D6 D6 SBS5 SBE5 D5 D5 SBS4 SBE4 D4 D4 D7 IVS6 IVE6 D6 IVS5 IVE5 D5 IVS4 IVE4 D4 INV CBX3 CBS3 CBE3 D3 SBX3 SBS3 SBE3 D3 D3 IVX3 IVS3 IVE3 D3 TCS2 VRR2 BIS2 MBT2 LCS0 MEV6 SEV6 TCS1 VRR1 BIS1 MBT1 LCC1 MEV5 SEV5 TCS0 VRR0 BIS0 MBT0 LCC0 MEV4 SEV4 OP3 OP2 SVR3 SVR2 SBIS2 SBT2 HPM1 HPM0 MEV3 MEV2 SEV3 SEV2 OP1 SVR1 SBIS1 SBT1 PSM1 MEV1 SEV1 OP0 SVR0 SBIS0 SBT0 PSM0 MEV0 SEV0 RTS2 RST1 RST0 VRR3 LCS1 µPD161401 (2/2) CS RS 6 Index Register 5 4 3 2 1 0 Register Name R/W 7 6 5 Data Bit 4 3 2 1 0 1 0 0 0 1 1 0 0 0 0 0 0 R64 IR Driving Mode Select Register 0 1 1 0 0 0 0 0 1 R65 Main R Grayscale Data Register 1 (0, 0, 0) MRG4 MRG3 MRG2 MRG1 MRG0 0 1 1 0 0 0 0 1 0 R66 Main R Grayscale Data Register 2 (0, 0, 1) MRG4 MRG3 MRG2 MRG1 MRG0 0 1 1 0 0 0 0 1 1 R67 Main R Grayscale Data Register 3 (0, 1, 0) MRG4 MRG3 MRG2 MRG1 MRG0 0 1 1 0 0 0 1 0 0 R68 Main R Grayscale Data Register 4 (0, 1, 1) MRG4 MRG3 MRG2 MRG1 MRG0 0 1 1 0 0 0 1 0 1 R69 Main R Grayscale Data Register 5 (1, 0, 0) MRG4 MRG3 MRG2 MRG1 MRG0 0 1 1 0 0 0 1 1 0 R70 Main R Grayscale Data Register 6 (1, 0, 1) MRG4 MRG3 MRG2 MRG1 MRG0 0 1 1 0 0 0 1 1 1 R71 Main R Grayscale Data Register 7 (1, 1, 0) MRG4 MRG3 MRG2 MRG1 MRG0 0 1 1 0 0 1 0 0 0 R72 Main R Grayscale Data Register 8 (1, 1, 1) MRG4 MRG3 MRG2 MRG1 MRG0 0 1 1 0 0 1 0 0 1 R73 Main G Grayscale Data Register 1 (0 ,0, 0) MGG4 MGG3 MGG2 MGG1 MGG0 0 1 1 0 0 1 0 1 0 R74 Main G Grayscale Data Register 2 (0, 0, 1) MGG4 MGG3 MGG2 MGG1 MGG0 0 1 1 0 0 1 0 1 1 R75 Main G Grayscale Data Register 3 (0, 1, 0) MGG4 MGG3 MGG2 MGG1 MGG0 0 1 1 0 0 1 1 0 0 R76 Main G Grayscale Data Register 4 (0, 1, 1) MGG4 MGG3 MGG2 MGG1 MGG0 0 1 1 0 0 1 1 0 1 R77 Main G Grayscale Data Register 5 (1, 0, 0) MGG4 MGG3 MGG2 MGG1 MGG0 0 1 1 0 0 1 1 1 0 R78 Main G Grayscale Data Register 6 (1, 0, 1) MGG4 MGG3 MGG2 MGG1 MGG0 0 1 1 0 0 1 1 1 1 R79 Main G Grayscale Data Register 7 (1, 1, 0) MGG4 MGG3 MGG2 MGG1 MGG0 0 1 1 0 1 0 0 0 0 R80 Main G Grayscale Data Register 8 (1, 1, 1) MGG4 MGG3 MGG2 MGG1 MGG0 0 1 1 0 1 0 0 0 1 R81 Main B Grayscale Data Register 1 (0, 0) MBG4 MBG3 MBG2 MBG1 MBG0 0 1 1 0 1 0 0 1 0 R82 Main B Grayscale Data Register 2 (0, 1) MBG4 MBG3 MBG2 MBG1 MBG0 0 1 1 0 1 0 0 1 1 R83 Main B Grayscale Data Register 3 (1, 0) MBG4 MBG3 MBG2 MBG1 MBG0 0 1 1 0 1 0 1 0 0 R84 Main B Grayscale Data Register 4 (1, 1) MBG4 MBG3 MBG2 MBG1 MBG0 0 1 1 0 1 0 1 0 1 R85 Sub R Grayscale Data Register 1 (0, 0, 0) SRG4 SRG3 SRG2 SRG1 SRG0 0 1 1 0 1 0 1 1 0 R86 Sub R Grayscale Data Register 2 (0, 0, 1) SRG4 SRG3 SRG2 SRG1 SRG0 0 1 1 0 1 0 1 1 1 R87 Sub R Grayscale Data Register 3 (0, 1, 0) SRG4 SRG3 SRG2 SRG1 SRG0 0 1 1 0 1 1 0 0 0 R88 Sub R Grayscale Data Register 4 (0, 1, 1) SRG4 SRG3 SRG2 SRG1 SRG0 0 1 1 0 1 1 0 0 1 R89 Sub R Grayscale Data Register 5 (1, 0, 0) SRG4 SRG3 SRG2 SRG1 SRG0 0 1 1 0 1 1 0 1 0 R90 Sub R Grayscale Data Register 6 (1, 0, 1) SRG4 SRG3 SRG2 SRG1 SRG0 0 1 1 0 1 1 0 1 1 R91 Sub R Grayscale Data Register 7 (1, 1, 0) SRG4 SRG3 SRG2 SRG1 SRG0 0 1 1 0 1 1 1 0 0 R92 Sub R Grayscale Data Register 8 (1, 1, 1) SRG4 SRG3 SRG2 SRG1 SRG0 0 1 1 0 1 1 1 0 1 R93 Sub G Grayscale Data Register 1 (0, 0, 0) SGG4 SGG3 SGG2 SGG1 SGG0 0 1 1 0 1 1 1 1 0 R94 Sub G Grayscale Data Register 2 (0, 0, 1) SGG4 SGG3 SGG2 SGG1 SGG0 0 1 1 0 1 1 1 1 1 R95 Sub G Grayscale Data Register 3 (0, 1, 0) SGG4 SGG3 SGG2 SGG1 SGG0 0 1 1 1 0 0 0 0 0 R96 Sub G Grayscale Data Register 4 (0, 1, 1) SGG4 SGG3 SGG2 SGG1 SGG0 0 1 1 1 0 0 0 0 1 R97 Sub G Grayscale Data Register 5 (1, 0, 0) SGG4 SGG3 SGG2 SGG1 SGG0 0 1 1 1 0 0 0 1 0 R98 Sub G Grayscale Data Register 6 (1, 0, 1) SGG4 SGG3 SGG2 SGG1 SGG0 0 1 1 1 0 0 0 1 1 R99 Sub G Grayscale Data Register 7 (1, 1, 0) SGG4 SGG3 SGG2 SGG1 SGG0 0 1 1 1 0 0 1 0 0 R100 Sub G Grayscale Data Register 8 (1, 1, 1) SGG4 SGG3 SGG2 SGG1 SGG0 0 1 1 1 0 0 1 0 1 R101 Sub B Grayscale Data Register 1 (0, 0) SBG4 SBG3 SBG2 SBG1 SBG0 0 1 1 1 0 0 1 1 0 R102 Sub B Grayscale Data Register 2 (0, 1) SBG4 SBG3 SBG2 SBG1 SBG0 0 1 1 1 0 0 1 1 1 R103 Sub B Grayscale Data Register 3 (1, 0) SBG4 SBG3 SBG2 SBG1 SBG0 0 1 1 1 0 1 0 0 0 R104 Sub B Grayscale Data Register 4 (1, 1) SBG4 SBG3 SBG2 SBG1 SBG0 0 1 1 1 0 1 0 0 1 R105 0 1 1 1 0 1 0 1 0 R106 0 1 1 1 0 1 0 1 1 R107 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 R108 R109 R110 R111 R112 R113 R114 R115 R116 R117 R118 R119 R120 R121 0 1 1 1 1 1 0 1 0 R122 0 1 1 1 1 1 0 1 1 R123 0 1 1 1 1 1 1 0 0 R124 0 1 1 1 1 1 1 0 1 R125 0 1 1 1 1 1 1 1 0 R126 0 1 1 1 1 1 1 1 1 R127 Data Sheet S15726EJ2V0DS FXOR 101 µPD161401 8. POWER SEQUENCE The µPD161401 has on-chip power circuits such as a booster circuit and a voltage follower circuit. Resetting by the /DISP pin should only be used to prevent malfunctioning due to noise. If charge remains in the smoothing capacitor connected between the LCD drive pins (VLCD, VLC1 to VLC4) and VSS, the display screen may momentarily blackout when power is turned ON or OFF. It is therefore recommended to turn ON/OFF power in the following sequence to avoid any trouble. 102 Data Sheet S15726EJ2V0DS µPD161401 8.1 Power ON Sequence (with Internal Power Supply, Power ON → Display ON) Power ON when /DISP pin = L ↓ Power supply is stabilized. ↓ /DISP pin = H Wait for 50 µs or more. ↓ Reset command R3 Initialization of registers R0 Display OFF. Internal operation stops. ↓ Control register 1 DISP = 0, HALT = 1 ↓ IC function setting by command input 1 Control register 1 (DISP = 0, HALT = 1) Control register 2 ↓ IC function setting by command input 2 Power system control register 1 (OP3, OP2, OP1, OP0 = 1, 1, 1, 1) Power system control registers 2, 3, and 4 Power system control register 5 (HPM1, HPM0 = 0, 1) Main electronic volume register Sub-electronic volume register Specify power ON mode 1 (master IC only). ↓ User setting by command input Setting of functions such as grayscale data ↓ Initialization complete ↓ Control register 1 (DIPS = 0, HALT = 0) R0 Display OFF. Internal operation starts. ↓ LCD display screen setting Display start line set Writing of screen data + Wait time ★ Wait time 1 Wait for 120 to 150 ms or more from when the internal operation starts until the LCD turns ON Note. ↓ Power system control register 5 (HPM1, HPM0 = 0, 0) (LCS1, LCS0 = 1,1) (LCC1, LCC0 = 1,1) ★ (PSM = 1) Change the operation mode of the operation amplifier to “normal mode” (master IC only). Segment output driving capability setting: x8 Common output driving capability setting: x16 Voltage follower bias current: x2 ↓ <A> in the next page Note The wait times1, 2 vary depending on the characteristics of the LCD panel and the capacitance of the boosting or smoothing capacitor. It is recommended to determine this value after thorough evaluation with the actual system (refer to 8.5 Flow of VOUT and VLCD Voltages from Power ON to Power OFF). Data Sheet S15726EJ2V0DS 103 µPD161401 ★ <A> Wait time 2 Wait for at least 250 ms from when the output mode of the operation amplifier is changed until the LCD turns ON Note. ↓ Power system control register 5 (HPM1, HPM0 = 0, 0) (LCS1, LCS0 = x,x) (LCC1, LCC0 = x,x) R0 The operation mode of the operation amplifier: normal mode Change the setting of the segment output driving capability, common output driving capability, and voltage follower bias current to the normal state. R0 Display ON. Internal operation starts. (PSM = x) ↓ Control register 1 (DIPS = 1, HALT = 0) x: 0 or 1 Note The wait times1, 2 vary depending on the characteristics of the LCD panel and the capacitance of the boosting or smoothing capacitor. It is recommended to determine this value after thorough evaluation with the actual system (refer to 8.5 Flow of VOUT and VLCD Voltages from Power ON to Power OFF). 104 Data Sheet S15726EJ2V0DS µPD161401 8.2 Power OFF Sequence (with Internal Power Supply) Operation status ↓ Control register 1 DISP = 0, HALT = 0 R0 Display OFF. Internal operation starts. R56 Change the operation mode of the operational amplifier to “power OFF mode”. R57 [MEV6, MEV5, MEV4, MEV3, MEV2, MEV1, MEV0] = [0, 0, 0, 0, 0, 0, 0] R58 [SEV6, SEV5, SEV4, SEV3, SEV2, SEV1, SEV0] = [0, 0, 0, 0, 0, 0, 0] ↓ Power system control register 5 (HPM1, HPM0 = 1, 0) ↓ Main electronic volume register setting ↓ Sub-electronic volume register setting ★ Wait time 1 Wait for at least 120 ms Note. ↓ Control register 1 (DISP = 0, HALT = 1) ★ ↓ R0 Display OFF. Internal operation stops. Wait time 2 Wait for at least 380 ms before turning power OFF Note. Power OFF Note The wait times 1, 2 vary depending on the characteristics of the LCD panel and the capacitance of the boosting or smoothing capacitor. It is recommended to determine this value after thorough evaluation with the actual system (refer to 8.5 Flow of VOUT and VLCD Voltages from Power ON to Power OFF). Data Sheet S15726EJ2V0DS 105 µPD161401 8.3 Power ON Sequence (with External Driving Power Supply, Power ON → Display ON) This is an example of inputting a reference voltage to the VRS pin and a driving voltage to the VOUT pin from an external power supply. VDD1 and VDD2 ON, VOUT = Hi-Z Logic power supply ON with /DISP pin = L ↓ Power supply stabilized. ↓ /DISP pin = H ↓ Reset command R3 Wait for 50 µs or more. Initialization of registers ↓ Control register 1 DISP = 0, HALT = 1 ↓ R0 Display OFF. Internal operation stops. IC function setting by command input 1 Control register 1 (DISP = 0, HALT = 1) Control register 2 ↓ IC function setting by command input 2 Power system control register 1 (OP3, OP2, OP1, OP0 = 1, 1, 1, 1) Power system control registers 2, 3, and 4 Power system control register 5 (HPM1, HPM0 = 0, 1) Main electronic volume register Sub-electronic volume register ↓ Specify power ON mode1 (master IC only). User setting by command input Setting of functions such as grayscale data ↓ Initialization complete ↓ Control register 1 (DISP = 0, HALT = 0) ↓ R0 Supply voltage to VOUT pin. Turn ON external driving power supply ↓ LCD screen setting Display start line setting Writing of screen data + Wait time ↓ ★ Wait for at least 300 ms from when the internal operation starts until the LCD turns ON Note. Change the operation mode of the operation amplifier to “normal mode” (master IC only). Power system control register 5 (HPM1, HPM0 = 0, 0) ↓ Control register 1 (DIPS = 1, HALT = 0) Display OFF. Internal operation starts. R0 Display ON. Internal operation starts. Note The time of 300 ms varies depending on the characteristics of the LCD panel and the capacitance of the smoothing capacitor. It is recommended to determine this value after thorough evaluation with the actual system (refer to 8.5 Flow of VOUT and VLCD Voltages from Power ON to Power OFF). 106 Data Sheet S15726EJ2V0DS µPD161401 8.4 Power OFF Sequence (with External Driving Power Supply) This is an example of inputting a reference voltage to the VRS pin and a driving voltage to the VOUT pin from an external power supply. Operation status ↓ Control register 1 DISP = 0, HALT = 0 R0 Display OFF. Internal operation starts. R56 Change the operation mode of the operational amplifier to “power OFF mode”. ↓ Power system control register 5 (HPM1, HPM0 = 1, 0) ★ ↓ Driving power supply OFF Wait for at least 300 ms until power is OFF Note. Turn OFF driving voltage VOUT after the levels of VLCD and VLC1 to VLC4 have completely dropped. ↓ Power OFF Note Power to VDD1 and VDD2 OFF The time of 300 ms varies depending on the characteristics of the LCD panel and the capacitance of the smoothing capacitor. It is recommended to determine this value after thorough evaluation with the actual system (refer to 8.5 Flow of VOUT and VLCD Voltages from Power ON to Power OFF). Data Sheet S15726EJ2V0DS 107 µPD161401 ★ 8.5 Flow of VOUT and VLCD Voltages from Power ON to Power OFF 0 VDD VOUT /DISP pin = L VDD ON /DISP pin = H RES = 1 DISP = 0, HALT = 1 TCS = 0,1,1(M) OP = 1,1,1,1 (M) LCS = 1,1 LCC = 1,1 HPM = 0,1 (M) HALT = 0 120 to 150 ms LCS = 1,1 LCC = 1,1 HPM = 0,0 (M) 250 ms LCS = X,X LCC = X,X HPM = 0,0 (M) DISP = 1 Main Duty Display DISP = 0 HPM = 1,0(M) DTY = 1 50 ms HPM = 0,1(M) HPM = 0,0(M) 150 ms DISP = 1 Sub Duty Display DISP = 0 HPM = 0,1(M) DTY = 0 160 ms HPM = 0,0(M) DISP = 1 Normal Duty Display DISP = 0 HPM = 1,0(M) EV = 0 PEV = 0(M) 120 ms HALT = 1 380 ms VDD OFF Dotted line: VOUT Solid line: VLCD x: 1 or 0 Test conditions: Supply voltage: VDD1 = VDD2 = 3.0 V Number of boosting stages: x5 (in normal display mode), x3 (in partial display mode) Capacitance: Between VLCn pin and Cn+/- pins = 1.0 µF Caution Connect a capacitor of 0.1 µF or less to the AMPOUTM and AMPOUTS pins. 108 Data Sheet S15726EJ2V0DS µPD161401 ★ 8.6 Flow of VOUT and VLCD Voltages in Display Output and HALT/Standby Modes 0 VDD VOUT Main Duty Display DISP = 0 HPM = 1,0(M) EV = 0 300 ms HALT = 1(STBY = 1) HALT(STBY) HPM = 0,1(M) EV = x,x(M) HALT = 0(STBY = 0) 160 ms HPM = 0,0(M) DISP = 1 Dotted line: VOUT Solid line: VLCD x: 1 or 0 Test conditions: Supply voltage: VDD1 = VDD2 = 3.0 V. Number of boosting stages: x5 (in normal display mode), x3 (in partial display mode) Capacitance: Between VLCn pin and Cn+/- pins = 1.0 µF Caution Connect a capacitor of 0.1 µF or less to the AMPOUTM and AMPOUTS pins. Data Sheet S15726EJ2V0DS 109 µPD161401 9. USING RAM TEST MODE The µPD161401 has a test mode in which seven types of screen data are written to the display RAM. When using this test mode, be sure to execute the following sequence. If the RAM test mode is executed in any other sequence, erroneous data may be displayed. Operating status ↓ Control register 1 DISP = 0, STBY = 1 R0 Display OFF. Standby setting R61 Select data to be written to RAM. R0 Display OFF. Standby cleared ↓ RAM test mode setting ↓ Control register 1 DISP = 0, STBY = 0 ↓ Wait for 200 ms or more from when the internal operation starts until the LCD turns OFF Note. Wait time ↓ Control register 1 DISP = 1 R0 Display ON. ↓ Setting complete Note The time of 200 ms varies depending on the characteristics of the LCD panel and the capacitance of the boosting or smoothing capacitor. It is recommended to determine this value after thorough evaluation with the actual system. Remark The set display data is always written to the display RAM in the RAM test mode. 110 Data Sheet S15726EJ2V0DS µPD161401 10. ELECTRICAL SPECIFICATIONS Absolute Maximum Ratings (TA = 25°°C, VSS = 0 V) Parameter Symbol Ratings Unit −0.3 to +4.0 V Logic supply voltage VDD1 Booster circuit supply voltage VDD2 −0.3 to +4.0 V Driver supply voltage VOUT −0.3 to +20.0 V Driver reference power input voltage VLCD,VLC1 to VLC4 −0.3 to VOUT + 0.3 V Logic input voltage VIN1 −0.3 to VDD1 + 0.3 V Logic output voltage VO1 −0.3 to VDD1 + 0.3 V Logic I/O voltage VI/O1 −0.3 to VDD1 + 0.3 V Driver input voltage VIN2 −0.3 to VOUT + 0.3 V Driver output voltage VO2 −0.3 to VOUT + 0.3 V Operating ambient temperature TA −40 to +85 °C Storage temperature Tstg −55 to +125 °C Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. Recommended Operating Range Parameter Symbol MIN. TYP. MAX. Unit Logic supply voltage VDD1 1.8 3.6 V Booster circuit supply voltage VDD2Note1 2.4 3.6 V Note2 Driver supply voltage VOUT 5.5 18.0 V Logic supply voltage VIN 0 VDD1 V Driver supply voltage VLCD, 0 VOUT V VOUT − 0.5 V VLC1 to VLC4Note2 Maximum LCD voltage setting range VLCDNote3 Notes 1. It is essential that VDD1 ≤ VDD2. 2. These conditions are recommended when the LCD is driven by an external power supply. 3. This condition is recommended when the LCD is driven by the internal power supply circuit. Cautions 1. Make sure that the relationship of VSS < VLC4 < VLC3 < VLC2 <VLC1 < VLCD ≤ VOUT is satisfied when the LCD is driven by an external power supply. 2. Make sure that the condition described in 8. POWER SEQUENCE are satisfied when turning power ON or OFF. 3. Keep the voltage at the VR and VRS pins to between 1.0 V and VDD1 when an external resistor is used (when the internal resistor is not used to adjust VLCD). Data Sheet S15726EJ2V0DS 111 µPD161401 Electrical Specifications (Unless otherwise specified, TA = −40 to +85°°C, VDD1 = 1.8 to 3.6 V, VDD2 = 2.4 to 3.6 V.) Parameter Symbol Input voltage, high VIH Input voltage, low VIL Conditions MIN. TYP.Notes1 MAX. 0.8 VDD1 Unit V 0.2 VDD1 V Input current, high IIH1 Other than D15 to D0 1 µA Input current, low IIL1 Other than D15 to D0 −1 µA Output voltage, high VOH IOUT = −1 mA. Other than OCSOUT Output voltage, low VOL IOUT = 1 mA. Other than OCSOUT 0.5 V Leakage current, high ILOH D15 to D8, D7(SI), D6(SCL), D5 to D0, 10 µA Leakage current, low ILOL −10 µA 4 kΩ 4 kΩ VDD1 − 0.5 V VIN/OUT = VDD1 D15 to D8, D7(SI), D6(SCL), D5 to D0, VIN/OUT = VSS Common output ON resistance RCOM VLCn → COMn, VOUT = 15 V, VLCD = 13 V, 1/9 bias, |IO| = 50 µA Segment output ON resistance RSEG VLCn → SEGn, VOUT = 15 V, VLCD = 13 V, Driver voltage (booster voltage) VOUT In 5-fold mode, VDD2 = 3.0 V, 1/9 bias, |IO| = 50 µA 13.8 V 16.6 V diced display In 6-fold mode, VDD2 = 3.0 V, diced display Regulated voltageNotes2 VREG TA = 85°C. 1.430 1.485 1.540 V 50 mV (TCS2, TCS1, TCS0) = (0,1,0) Temperature curve –0.15 %/°C Output voltage deflection ∆VLCn VLCn: VLCD, VLC1 to VLC4, −50 (OP3, OP2, OP1, OP0) = (0, 0, 0, 1) VDD1 = 2.5 V, VOUT = 15 V, AMPOUTM = 14 V, bias = 1/5 to 1/9, IRS pin = L, display OFF, no load Oscillation frequency Notes3 ∆AMPOUT IRS pin = H, 1+Rb/Ra = 10-fold fOSC VDD1 = 3.0 V, TA = 25°C, 1/80 duty, −100 100 mV 72 85 97 kHz 33 40 46 kHz 175 280 µA 72 120 µA 10 µA R = 360 kΩ (OSCIN1-OSCOUT) VDD1 = 3.0 V, TA = 25°C, 1/38 duty, R = 770 kΩ (OSCIN2-OSCOUT) Current consumption IDD11 Frame frequency = 70 Hz, all PWM display output, 1/80 duty, VDD1 = VDD2 = 3.0 V, VLCD = 13 V, in 5-fold mode, driving mode (segment x 1, common x 4) Frame frequency = 70 Hz, all PWM display output, 1/32 duty, VDD1 = VDD2 = 3.0 V, VLCD = 7.0 V, in 3-fold mode, driving mode (segment x 1, common x 4) Current consumption IDD22 VDD1 = VDD2 = 3.0 V (standby mode) Notes1 The TYP. values are reference values at TA = 25°C (except for regulated voltage (VREG)). 2 The TYP. values of Regulated voltage (VREG) at TA = 25°C are MIN. 1.580 V, TYP. 1.635 V, MAX. 1.690 V 3 Oscillation frequency is changed under the influence of the wiring capacity to the external resistor for oscillation. 112 Data Sheet S15726EJ2V0DS µPD161401 Timing Requirements (Unless otherwise specified, TA = −30 to +85°°C.) (1) i80 CPU interface RS tAS8 tf tr tAH8 /CS1 (CS2 = H) tCYC8 tCCLR, tCCLW /WR, /RD tDS8 tCCHR, tCCHW tDH8 D0 to D15(D7) (Write) tOH8 tACC8 D0 to D7 (Read) (VDD1 = 1.8 to 2.0 V) Parameter Symbol Conditions MIN. TYP.Note MAX. Unit Address hold time tAH8 RS 0 ns Address setup time tAS8 RS 0 ns System cycle time tCYC8 1000 ns Control L pulse width (/WR) tCCLW /WR 160 ns Control L pulse width (/RD) tCCLR /RD 430 ns Control H pulse width (/WR) tCCHW /WR 160 ns Control H pulse width (/RD) tCCHR /RD 160 ns Data setup time tDS8 D0 to D15 (D7) 160 ns Data hold time tDH8 D0 to D15 (D7) 0 ns /RD access time tACC8 D0 to D7, CL = 100 pF 0 470 ns Output disable time tOH8 D0 to D7, CL = 5 pF, RL = 3 kΩ 0 170 ns Note The TYP. values are reference values at TA = 25°C. (VDD1 = 2.0 to 2.5 V) Parameter Symbol Conditions MIN. TYP.Note MAX. Unit Address hold time tAH8 RS 0 ns Address setup time tAS8 RS 0 ns System cycle time tCYC8 600 ns Control L pulse width (/WR) tCCLW /WR 120 ns Control L pulse width (/RD) tCCLR /RD 240 ns Control H pulse width (/WR) tCCHW /WR 120 ns Control H pulse width (/RD) tCCHR /RD 120 ns Data setup time tDS8 D0 to D15 (D7) 120 ns Data hold time tDH8 D0 to D15 (D7) 0 /RD access time tACC8 D0 to D7, CL = 100 pF 0 280 ns Output disable time tOH8 D0 to D7 , CL = 5 pF, RL = 3 kΩ 0 170 ns ns Note The TYP. values are reference values at TA = 25°C. Data Sheet S15726EJ2V0DS 113 µPD161401 (VDD1 = 2.5 to 3.6 V) Parameter Symbol Conditions MIN. TYP.Note MAX. Unit Address hold time tAH8 RS 0 ns Address setup time tAS8 RS 0 ns System cycle time tCYC8 100 ns Control L pulse width (/WR) tCCLW /WR 40 ns Control L pulse width (/RD) tCCLR /RD 40 ns Control H pulse width (/WR) tCCHW /WR 40 ns Control H pulse width (/RD) tCCHR /RD 40 ns Data setup time tDS8 D0 to D15 (D7) 40 ns Data hold time tDH8 D0 to D15 (D7) 0 ns /RD access time tACC8 D0 to D7, CL = 100 pF 0 50 ns Output disable time tOH8 D0 to D7, CL = 5 pF, RL = 3 kΩ 0 50 ns Note The TYP. values are reference values at TA = 25°C. Cautions 1. The rise and fall times (tr and tf) of an input signal are 10 ns or less. 2. All timing data is specified at 20% and 80% of VDD1. 114 Data Sheet S15726EJ2V0DS µPD161401 (2) M68 CPU interface RS R,/W tAS6 tf tr tAH6 /CS1 (CS2 = H) tCYC6 tEWHR, tEWHW E tDS6 tEWLR, tEWLW tDH6 D0 to D15 (D7) (Write) tACC6 tOH6 D0 to D7 (Read) (VDD1 = 1.8 to 2.0 V) Parameter Symbol Conditions MIN. TYP.Note MAX. Unit Address hold time tAH6 RS 0 Address setup time tAS6 RS 0 ns ns System cycle time tCYC6 1000 ns Data setup time tDS6 D0 to D15 (D7) 160 ns Data hold time tDH6 D0 to D15 (D7) 0 ns Access time tACC6 D0 to D7, CL = 100 pF 0 470 ns Output disable time tOH6 D0 to D7, CL = 5 pF, R = 3 kΩ 0 170 ns Read tEWHR E 430 ns Write tEWHW E 160 ns Read tEWLR E 160 ns Write tEWLW E 160 ns Enable H pulse width Enable L pulse width Note The TYP. values are reference values at TA = 25°C. (VDD1 = 2.0 to 2.5 V) Parameter Symbol Conditions Address hold time tAH6 RS Address setup time tAS6 RS System cycle time tCYC6 MIN. TYP.Note MAX. 0 Unit ns 0 ns 600 ns ns Data setup time tDS6 D0 to D15 (D7) 120 Data hold time tDH6 D0 to D15 (D7) 0 Access time tACC6 D0 to D7, CL = 100 pF 0 280 ns 0 170 ns Output disable time ns tOH6 D0 to D7, CL = 5 pF, R = 3 kΩ tEWHR E 240 ns Write tEWHW E 120 ns Read tEWLR E 120 ns tEWLW E 120 ns Enable H pulse width Read Enable L pulse width Write Note The TYP. values are reference values at TA = 25°C. Data Sheet S15726EJ2V0DS 115 µPD161401 (VDD1 = 2.5 to 3.6 V) Parameter Symbol Conditions MIN. TYP.Note MAX. Unit Address hold time tAH6 RS 0 ns Address setup time tAS6 RS 0 ns System cycle time tCYC6 100 ns Data setup time tDS6 D0 to D15 (D7) 50 ns Data hold time tDH6 D0 to D15 (D7) 0 Access time tACC6 D0 to D7, CL = 100 pF 0 50 ns Output disable time tOH6 D0 to D7, CL = 5 pF, R = 3 kΩ 0 50 ns Read tEWHR E 40 ns Write tEWHW E 40 ns Read tEWLR E 40 ns Write tEWLW E 40 ns Enable H pulse width Enable L pulse width ns Note The TYP. values are reference values at TA = 25°C. Cautions 1. The rise and fall times (tr and tf) of an input signal are 10 ns or less. If the system cycle time is short, (tr + tf) ≤ (tCYC6 – tEWLW – tEWHW) or (tr + tf) ≤ (tCYC6 – tEWLR – tEWHR). 2. All timing data is specified at 20% and 80% of VDD1. 116 Data Sheet S15726EJ2V0DS µPD161401 (3) Serial interface tCSS tCSH /CS1 (CS2 = H) tSAS tSAH RS tSCYC tSLW SCL tSHW tf tr tSDS tSDH SI (VDD1 = 1.8 to 2.5 V) Parameter Symbol Condition MIN. TYP.Note MAX. Unit Serial clock cycle tSCYC SCL 250 ns SCL high-level pulse width tSHW SCL 100 ns SCL low-level pulse width tSLW SCL 100 ns Address hold time tSAH RS 150 ns Address setup time tSAS RS 150 ns Data setup time tSDS SI 100 ns Data hold time tSDH SI 100 ns CS - SCL time tCSS /CS1 (CS2 = H) 150 ns tCSH /CS1 (CS2 = H) 150 ns Note TYP. values are reference values when TA = 25°C. (VDD1 = 2.5 to 3.6 V) Parameter Symbol Condition MIN. TYP.Note MAX. Unit Serial clock cycle tSCYC SCL 150 ns SCL high-level pulse width tSHW SCL 60 ns SCL low-level pulse width tSLW SCL 60 ns Address hold time tSAH RS 90 ns Address setup time tSAS RS 90 ns Data setup time tSDS SI 60 ns Data hold time tSDH SI 60 ns CS - SCL time tCSS /CS1 (CS2 = H) 90 ns tCSH /CS1 (CS2 = H) 90 ns Note TYP. values are reference values when TA = 25°C. Cautions 1. The rise and fall times of input signal (tr and tf) are rated as 15 ns or less. 2. All timing is rated based on 20% and 80% of VDD1. Data Sheet S15726EJ2V0DS 117 µPD161401 (4) Common Parameter Symbol Clock input 1 fM Conditions TYP.Note MIN. OSCIN1. External clock is used in main MAX. Unit 85 kHz 40 kHz duty display mode,1/80 duty Clock input 2 fS OSCIN2. External clock is used in sub-duty display mode, 1/40 duty Note The TYP. values are reference value at a frame frequency = 70 Hz. Cautions 1. The rise time and fall time (tr and tf) of an input signal is 15 ns or less. 2. All timing data is specified at 20% and 80% of VDD1. (a) Timing of display control output OSC SYNC (OUT) tDFR FR (VDD1 = 1.8 to 2.5 V) Parameter FR delay time Symbol tDFR Conditions MIN. FR, CL = 50 pF TYP.Note MAX. Unit 50 200 ns TYP.Note MAX. Unit 20 80 ns Note The TYP. values are reference values at TA = 25°C. (VDD1 = 2.5 to 3.6 V) Parameter FR delay time Symbol tDFR Conditions FR, CL = 50 pF Note The TYP. values are reference values at TA = 25°C. Caution All timing data is specified at 20% and 80% of VDD1. 118 Data Sheet S15726EJ2V0DS MIN. µPD161401 (b) Reset timing tRW /DISP tR Reset Internal status End of reset (VDD1 = 1.8 to 2.5 V) Parameter Symbol Reset time tR Reset L pulse width tRW Conditions /DISP MIN. TYP.Note MAX. Unit 50 µs µs 50 Note The TYP. values are reference values at TA = 25°C. (VDD1 = 2.5 to 3.6 V) Parameter Symbol Reset time tR Reset L pulse width tRW Conditions /DISP MIN. 50 TYP.Note MAX. Unit 50 µs µs Note The TYP. values are reference values at TA = 25°C. Caution All timing data is specified at 20% and 80% of VDD1. Data Sheet S15726EJ2V0DS 119 µPD161401 11. CPU INTERFACE (Reference Example) The µPD161401 can be connected to both an i80 system CPU and a M68 system CPU. In addition, the number of signal lines can be reduced by using the serial interface. The display area can be expanded by using two or more µPD161401 chips. In this case, each IC is selected and accessed by a chip select signal. (1) M68 series CPU A0 RS VDD1 IFM0 A1 to A15 VIMA Decoder CPU D0 to D15 IFM1 /CS1 D0 to D15 E E R,/W R,/W /RES /DISP GND µ PD161401 VCC VSS /RES (2) i80 series CPU A0 RS IFM0 A1 to A7 /IORQ CPU VDD1 Decoder /CS1 IFM1 D0 to D15 D0 to D15 /RD /RD /WR /WR /RES µ PD161401 VCC /DISP GND VSS /RES (3) Serial interface in used A0 A1 to A7 RS Decoder Open CPU IFM0 IFM1 /CS1 D0 to D5, D8 to D15 Port1 SI(D7) /Port2 SCL(D6) /RES /DISP GND VSS /RES 120 VDD1 Data Sheet S15726EJ2V0DS µPD161401 VCC µPD161401 [MEMO] Data Sheet S15726EJ2V0DS 121 µPD161401 [MEMO] 122 Data Sheet S15726EJ2V0DS µPD161401 NOTES FOR CMOS DEVICES 1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it. 2 HANDLING OF UNUSED INPUT PINS FOR CMOS Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to V DD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices. 3 STATUS BEFORE INITIALIZATION OF MOS DEVICES Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function. Data Sheet S15726EJ2V0DS 123 µPD161401 • The information in this document is current as of June, 2002. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information. • No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document. • NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others. • Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information. • While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC semiconductor products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment, and anti-failure features. • NEC semiconductor products are classified into the following three quality grades: "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application. "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support) "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc. The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application. (Note) (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries. (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above). M8E 00. 4