NJU6820 Preliminary 40-common x 128RGB-Segment, in 4096-Color 4096-Color STN LCD DRIVER ■ GENERAL DESCRIPTION The NJU6820 is a STN LCD driver with 40common x 128RGB-segment in 4096-color. It consists of 384(128xRGB)-segment segment, 40common drivers, serial and parallel MPU interface circuits, internal power supply circuits, gradation palettes and 61,440-bit for graphic display data RAM. Each segment driver outputs 16-gradation level out of 32-gradation level of gradation palette. Since the NJU6820 provides a low operating voltage of 1.7V and low operating current, it is ideally suited for battery-powered handheld applications. ■ PACKAGE OUTLINE NJU6820CJ ■ FEATURES ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 4096-color STN LCD driver LCD drivers 40 commons, 128 RGB-segments, Display data RAM (DDRAM) 61,440-bit for graphic display Color display mode 16 gradation level out of 32 gradation level of gradation palette Black & white display mode 40 x 384 pixels in 16 gradation level or 40 x 384 pixels in B&W display 256-color driving mode 8/16bit Parallel interface directly-connective to 68/80 series MPU Programmable 8- or 16-bit data bus length for display data 3-/4-line Serial interface Programmable duty and bias ratios Programmable internal voltage booster (maximum 5-times) Programmable contrast control using 128-step EVR Various instructions Display data read/write, Display ON/OFF, Reverse display ON/OFF, All pixels ON/OFF, Column address, row address, N-line inversion, Initial display line, Initial COM line, Read-modify-write, Gradation mode control, Increment control, Data bus length, Discharge ON/OFF, Duty cycle ratio, LCD bias ratio, Boost level, EVR control, Power save ON/OFF, etc Internal voltage regulator Low operating current Low logic supply voltage 1.7V to 3.3V LCD driving supply voltage 5.0V to 18.0V C-MOS technology Rectangle out look for COG Package Bumped chip 02/11/22 -1- NJU6820 DMY100 DMY102 ■ PAD LOCATION 1 DMY1 DMY48 DMY49 D14 DMY50 DMY51 D15 DMY52 DMY53 VDD VDD DMY54 DMY55 CL DMY56 DMY57 FLM DMY58 DMY59 FR DMY60 DMY61 CLK DMY62 DMY63 OSC1 DMY64 OSC2 DMY65 VSS VSS DMY66 VLCD VLCD DMY67 V1 V1 V2 V2 DMY68 V3 V3 V4 V4 DMY69 VREG VREG DMY70 VREF VREF DMY71 VBA VBA DMY72 VSS VSS VOUT VOUT DMY73 VEE DMY99 DMY2 VSSA DMY3 SEL68 DMY4 VDDA DMY5 PS DMY6 VSSA DMY7 RESb DMY8 DMY9 DMY10 CSb DMY11 DMY12 DMY13 RS DMY14 DMY15 DMY16 WRb DMY17 DMY18 DMY19 RDb DMY20 VDDA DMY21 D0 DMY22 DMY23 D1 DMY24 DMY25 D2 DMY26 DMY27 D3 DMY28 DMY29 D4 DMY30 DMY31 D5 DMY32 DMY33 D6 DMY34 DMY35 D7 DMY36 VSSA DMY37 D8 DMY38 DMY39 D9 DMY40 DMY41 D10 DMY42 DMY43 D11 DMY44 DMY45 D12 DMY46 DMY47 D13 DMY97 COM39 COM38 COM37 COM36 25µm 50µm 25µm 50µm COM24 COM23 COM21 COM20 DMY96 DMY94 SEGC127 SEGB127 SEGA127 Alignment mark 2 Alignment mark coordinates (9062µm, -990µm) 50µm Y Alignment mark 3 Alignment mark coordinates (-9062µm, -990µm) X 20µm VEE DMY74 C1+ C1+ DMY75 C1- 50µm SEGC0 SEGB0 SEGA0 DMY93 C1DMY76 C2+ DMY91 COM0 COM1 COM2 COM3 C2+ DMY77 C2C2DMY78 C3+ C3+ DMY79 C3C3DMY80 C4+ C4+ DMY81 C4- COM16 COM17 COM18 COM19 DMY90 C4DMY82 DMY83 DMY84 DMY88 DMY87 DMY85 -2- Alignment mark 1 Alignment mark coordinates (-9248µm, 1013µm) ( 9248µm, -1013µm) Chip Center Chip Size Chip Thickness Bump Pitch Bump Size Bump hight Bump Material :X=0um, Y=0um :X=18.86mm, Y= 2.39mm :625um + 25um :42um(Min) :24um x 140um :17.5um(Typ) :Au NJU6820 ■ PAD COORDINATES 1 Chip Size 18860µm x 2390µm (Chip Center 0µm x 0µm ) PAD No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Terminal DMY0 DMY1 DMY2 VSSA VSSA DMY3 SEL68 SEL68 DMY4 VDDA VDDA DMY5 PS PS DMY6 VSSA VSSA DMY7 RESb RESb DMY8 DMY9 DMY10 CSb CSb DMY11 DMY12 DMY13 RS RS DMY14 DMY15 DMY16 WRb WRb DMY17 DMY18 DMY19 RDb RDb DMY20 VDDA VDDA DMY21 D0 D0 DMY22 DMY23 D1 D1 X(µm) Y(µm) -8967 -8925 -8883 -8841 -8799 -8757 -8715 -8673 -8631 -8589 -8547 -8505 -8463 -8421 -8379 -8337 -8295 -8253 -8211 -8169 -8127 -8085 -8043 -8001 -7959 -7917 -7875 -7833 -7791 -7749 -7707 -7665 -7623 -7581 -7539 -7497 -7455 -7413 -7371 -7329 -7287 -7245 -7203 -7077 -7035 -6993 -6951 -6825 -6783 -6741 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 PAD No. 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 Terminal DMY24 DMY25 D2 D2 DMY26 DMY27 D3 D3 DMY28 DMY29 D4 D4 DMY30 DMY31 D5 D5 DMY32 DMY33 D6 D6 DMY34 DMY35 D7 D7 DMY36 VSSA VSSA DMY37 D8 D8 DMY38 DMY39 D9 D9 DMY40 DMY41 D10 D10 DMY42 DMY43 D11 D11 DMY44 DMY45 D12 D12 DMY46 DMY47 D13 D13 X(µm) -6699 -6573 -6531 -6489 -6447 -6321 -6279 -6237 -6195 -6069 -6027 -5985 -5943 -5817 -5775 -5733 -5691 -5565 -5523 -5481 -5439 -5313 -5271 -5229 -5187 -5061 -5019 -4893 -4851 -4809 -4767 -4641 -4599 -4557 -4515 -4389 -4347 -4305 -4263 -4137 -4095 -4053 -4011 -3885 -3843 -3801 -3759 -3633 -3591 -3549 Y(µm) -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 PAD No. 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 Terminal DMY48 DMY49 D14 D14 DMY50 DMY51 D15 D15 DMY52 DMY53 VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD DMY54 DMY55 CL CL DMY56 DMY57 FLM FLM DMY58 DMY59 FR FR DMY60 DMY61 CLK CLK DMY62 DMY63 OSC1 OSC1 DMY64 OSC2 OSC2 DMY65 VSS VSS VSS VSS VSS X(µm) -3507 -3381 -3339 -3297 -3255 -3129 -3087 -3045 -3003 -2877 -2835 -2793 -2751 -2709 -2667 -2625 -2583 -2541 -2499 -2457 -2415 -2289 -2163 -2121 -2079 -2037 -1911 -1869 -1827 -1785 -1659 -1617 -1575 -1533 -1407 -1365 -1323 -1281 -1155 -1113 -1071 -1029 -903 -861 -735 -693 -651 -609 -567 -525 Y(µm) -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -3- NJU6820 ■ PAD COORDINATES 2 Chip Size 18860µm x 2390µm (Chip Center 0µm x 0µm ) PAD No. 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 -4- Terminal VSS VSS VSS VSS VSS VSS DMY66 VLCD VLCD VLCD VLCD VLCD VLCD VLCD VLCD VLCD DMY67 V1 V1 V1 V1 V1 V1 V1 V1 V1 V2 V2 V2 V2 V2 V2 V2 V2 V2 DMY68 V3 V3 V3 V3 V3 V3 V3 V3 V3 V4 V4 V4 V4 V4 X(µm) Y(µm) -483 -441 -399 -357 -315 -273 -147 -21 21 63 105 147 189 231 273 315 357 399 441 483 525 567 609 651 693 735 861 903 945 987 1029 1071 1113 1155 1197 1239 1281 1323 1365 1407 1449 1491 1533 1575 1617 1743 1785 1827 1869 1911 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 PAD No. 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 Terminal V4 V4 V4 V4 DMY69 VREG VREG VREG VREG VREG VREG VREG VREG VREG VREG DMY70 VREF VREF VREF VREF VREF VREF VREF VREF VREF VREF DMY71 VBA VBA VBA VBA VBA VBA VBA VBA VBA VBA DMY72 VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VOUT VOUT X(µm) 1953 1995 2037 2079 2121 2163 2205 2247 2289 2331 2373 2415 2457 2499 2541 2583 2625 2667 2709 2751 2793 2835 2877 2919 2961 3003 3045 3087 3129 3171 3213 3255 3297 3339 3381 3423 3465 3507 3549 3591 3633 3675 3717 3759 3801 3843 3885 3927 4095 4137 Y(µm) -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 PAD No. 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 Terminal VOUT VOUT VOUT VOUT VOUT VOUT VOUT VOUT DMY73 VEE VEE VEE VEE VEE VEE VEE VEE VEE VEE DMY74 C1+ C1+ C1+ C1+ C1+ C1+ C1+ C1+ C1+ C1+ DMY75 C1C1C1C1C1C1C1C1C1C1DMY76 C2+ C2+ C2+ C2+ C2+ C2+ C2+ C2+ X(µm) 4179 4221 4263 4305 4347 4389 4431 4473 4641 4683 4725 4767 4809 4851 4893 4935 4977 5019 5061 5187 5229 5271 5313 5355 5397 5439 5481 5523 5565 5607 5649 5691 5733 5775 5817 5859 5901 5943 5985 6027 6069 6111 6153 6195 6237 6279 6321 6363 6405 6447 Y(µm) -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 NJU6820 ■ PAD COORDINATES 3 Chip Size 18860µm x 2390µm (Chip Center 0µm x 0µm ) PAD No. 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 Terminal C2+ C2+ DMY77 C2C2C2C2C2C2C2C2C2C2DMY78 C3+ C3+ C3+ C3+ C3+ C3+ C3+ C3+ C3+ C3+ DMY79 C3C3C3C3C3C3C3C3C3C3DMY80 C4+ C4+ C4+ C4+ C4+ C4+ C4+ C4+ C4+ C4+ DMY81 C4C4C4- X(µm) Y(µm) 6489 6531 6573 6615 6657 6699 6741 6783 6825 6867 6909 6951 6993 7035 7077 7119 7161 7203 7245 7287 7329 7371 7413 7455 7497 7539 7581 7623 7665 7707 7749 7791 7833 7875 7917 7959 8001 8043 8085 8127 8169 8211 8253 8295 8337 8379 8421 8463 8505 8547 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 PAD No. 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 Terminal C4C4C4C4C4C4C4DMY82 DMY83 DMY84 DMY85 DMY86 DMY86 DMY86 DMY87 DMY88 DMY89 DMY90 COM19 COM18 COM17 COM16 COM15 COM14 COM13 COM12 COM11 COM10 COM9 COM8 COM7 COM6 COM5 COM4 COM3 COM2 COM1 COM0 DMY91 DMY92 DMY93 SEGA0 SEGB0 SEGC0 SEGA1 SEGB1 SEGC1 SEGA2 SEGB2 SEGC2 X(µm) 8589 8631 8673 8715 8757 8799 8841 8883 8925 8967 9225 9225 9225 9225 9225 9135 9093 9051 9009 8967 8925 8883 8841 8799 8757 8715 8673 8631 8589 8547 8505 8463 8421 8379 8337 8295 8253 8211 8169 8127 8085 8043 8001 7959 7917 7875 7833 7791 7749 7707 Y(µm) -990 -990 -990 -990 -990 -990 -990 -990 -990 -990 -910 -868 -826 -784 -742 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 PAD No. 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 Terminal SEGA3 SEGB3 SEGC3 SEGA4 SEGB4 SEGC4 SEGA5 SEGB5 SEGC5 SEGA6 SEGB6 SEGC6 SEGA7 SEGB7 SEGC7 SEGA8 SEGB8 SEGC8 SEGA9 SEGB9 SEGC9 SEGA10 SEGB10 SEGC10 SEGA11 SEGB11 SEGC11 SEGA12 SEGB12 SEGC12 SEGA13 SEGB13 SEGC13 SEGA14 SEGB14 SEGC14 SEGA15 SEGB15 SEGC15 SEGA16 SEGB16 SEGC16 SEGA17 SEGB17 SEGC17 SEGA18 SEGB18 SEGC18 SEGA19 SEGB19 X(µm) 7665 7623 7581 7539 7497 7455 7413 7371 7329 7287 7245 7203 7161 7119 7077 7035 6993 6951 6909 6867 6825 6783 6741 6699 6657 6615 6573 6531 6489 6447 6405 6363 6321 6279 6237 6195 6153 6111 6069 6027 5985 5943 5901 5859 5817 5775 5733 5691 5649 5607 Y(µm) 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 -5- NJU6820 ■ PAD COORDINATES 4 Chip Size 18860µm x 2390µm (Chip Center 0µm x 0µm ) PAD No. 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 -6- Terminal SEGC19 SEGA20 SEGB20 SEGC20 SEGA21 SEGB21 SEGC21 SEGA22 SEGB22 SEGC22 SEGA23 SEGB23 SEGC23 SEGA24 SEGB24 SEGC24 SEGA25 SEGB25 SEGC25 SEGA26 SEGB26 SEGC26 SEGA27 SEGB27 SEGC27 SEGA28 SEGB28 SEGC28 SEGA29 SEGB29 SEGC29 SEGA30 SEGB30 SEGC30 SEGA31 SEGB31 SEGC31 SEGA32 SEGB32 SEGC32 SEGA33 SEGB33 SEGC33 SEGA34 SEGB34 SEGC34 SEGA35 SEGB35 SEGC35 SEGA36 X(µm) Y(µm) 5565 5523 5481 5439 5397 5355 5313 5271 5229 5187 5145 5103 5061 5019 4977 4935 4893 4851 4809 4767 4725 4683 4641 4599 4557 4515 4473 4431 4389 4347 4305 4263 4221 4179 4137 4095 4053 4011 3969 3927 3885 3843 3801 3759 3717 3675 3633 3591 3549 3507 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 PAD No. 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 Terminal SEGB36 SEGC36 SEGA37 SEGB37 SEGC37 SEGA38 SEGB38 SEGC38 SEGA39 SEGB39 SEGC39 SEGA40 SEGB40 SEGC40 SEGA41 SEGB41 SEGC41 SEGA42 SEGB42 SEGC42 SEGA43 SEGB43 SEGC43 SEGA44 SEGB44 SEGC44 SEGA45 SEGB45 SEGC45 SEGA46 SEGB46 SEGC46 SEGA47 SEGB47 SEGC47 SEGA48 SEGB48 SEGC48 SEGA49 SEGB49 SEGC49 SEGA50 SEGB50 SEGC50 SEGA51 SEGB51 SEGC51 SEGA52 SEGB52 SEGC52 X(µm) 3465 3423 3381 3339 3297 3255 3213 3171 3129 3087 3045 3003 2961 2919 2877 2835 2793 2751 2709 2667 2625 2583 2541 2499 2457 2415 2373 2331 2289 2247 2205 2163 2121 2079 2037 1995 1953 1911 1869 1827 1785 1743 1701 1659 1617 1575 1533 1491 1449 1407 Y(µm) 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 PAD No. 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 Terminal SEGA53 SEGB53 SEGC53 SEGA54 SEGB54 SEGC54 SEGA55 SEGB55 SEGC55 SEGA56 SEGB56 SEGC56 SEGA57 SEGB57 SEGC57 SEGA58 SEGB58 SEGC58 SEGA59 SEGB59 SEGC59 SEGA60 SEGB60 SEGC60 SEGA61 SEGB61 SEGC61 SEGA62 SEGB62 SEGC62 SEGA63 SEGB63 SEGC63 SEGA64 SEGB64 SEGC64 SEGA65 SEGB65 SEGC65 SEGA66 SEGB66 SEGC66 SEGA67 SEGB67 SEGC67 SEGA68 SEGB68 SEGC68 SEGA69 SEGB69 X(µm) 1365 1323 1281 1239 1197 1155 1113 1071 1029 987 945 903 861 819 777 735 693 651 609 567 525 483 441 399 357 315 273 231 189 147 105 63 21 -21 -63 -105 -147 -189 -231 -273 -315 -357 -399 -441 -483 -525 -567 -609 -651 -693 Y(µm) 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 NJU6820 ■ PAD COORDINATES 5 Chip Size 18860µm x 2390µm (Chip Center 0µm x 0µm ) PAD No. 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 Terminal SEGC69 SEGA70 SEGB70 SEGC70 SEGA71 SEGB71 SEGC71 SEGA72 SEGB72 SEGC72 SEGA73 SEGB73 SEGC73 SEGA74 SEGB74 SEGC74 SEGA75 SEGB75 SEGC75 SEGA76 SEGB76 SEGC76 SEGA77 SEGB77 SEGC77 SEGA78 SEGB78 SEGC78 SEGA79 SEGB79 SEGC79 SEGA80 SEGB80 SEGC80 SEGA81 SEGB81 SEGC81 SEGA82 SEGB82 SEGC82 SEGA83 SEGB83 SEGC83 SEGA84 SEGB84 SEGC84 SEGA85 SEGB85 SEGC85 SEGA86 X(µm) Y(µm) -735 -777 -819 -861 -903 -945 -987 -1029 -1071 -1113 -1155 -1197 -1239 -1281 -1323 -1365 -1407 -1449 -1491 -1533 -1575 -1617 -1659 -1701 -1743 -1785 -1827 -1869 -1911 -1953 -1995 -2037 -2079 -2121 -2163 -2205 -2247 -2289 -2331 -2373 -2415 -2457 -2499 -2541 -2583 -2625 -2667 -2709 -2751 -2793 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 PAD No. 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 Terminal SEGB86 SEGC86 SEGA87 SEGB87 SEGC87 SEGA88 SEGB88 SEGC88 SEGA89 SEGB89 SEGC89 SEGA90 SEGB90 SEGC90 SEGA91 SEGB91 SEGC91 SEGA92 SEGB92 SEGC92 SEGA93 SEGB93 SEGC93 SEGA94 SEGB94 SEGC94 SEGA95 SEGB95 SEGC95 SEGA96 SEGB96 SEGC96 SEGA97 SEGB97 SEGC97 SEGA98 SEGB98 SEGC98 SEGA99 SEGB99 SEGC99 SEGA100 SEGB100 SEGC100 SEGA101 SEGB101 SEGC101 SEGA102 SEGB102 SEGC102 X(µm) -2835 -2877 -2919 -2961 -3003 -3045 -3087 -3129 -3171 -3213 -3255 -3297 -3339 -3381 -3423 -3465 -3507 -3549 -3591 -3633 -3675 -3717 -3759 -3801 -3843 -3885 -3927 -3969 -4011 -4053 -4095 -4137 -4179 -4221 -4263 -4305 -4347 -4389 -4431 -4473 -4515 -4557 -4599 -4641 -4683 -4725 -4767 -4809 -4851 -4893 Y(µm) 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 PAD No. 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 Terminal SEGA103 SEGB103 SEGC103 SEGA104 SEGB104 SEGC104 SEGA105 SEGB105 SEGC105 SEGA106 SEGB106 SEGC106 SEGA107 SEGB107 SEGC107 SEGA108 SEGB108 SEGC108 SEGA109 SEGB109 SEGC109 SEGA110 SEGB110 SEGC110 SEGA111 SEGB111 SEGC111 SEGA112 SEGB112 SEGC112 SEGA113 SEGB113 SEGC113 SEGA114 SEGB114 SEGC114 SEGA115 SEGB115 SEGC115 SEGA116 SEGB116 SEGC116 SEGA117 SEGB117 SEGC117 SEGA118 SEGB118 SEGC118 SEGA119 SEGB119 X(µm) -4935 -4977 -5019 -5061 -5103 -5145 -5187 -5229 -5271 -5313 -5355 -5397 -5439 -5481 -5523 -5565 -5607 -5649 -5691 -5733 -5775 -5817 -5859 -5901 -5943 -5985 -6027 -6069 -6111 -6153 -6195 -6237 -6279 -6321 -6363 -6405 -6447 -6489 -6531 -6573 -6615 -6657 -6699 -6741 -6783 -6825 -6867 -6909 -6951 -6993 Y(µm) 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 -7- NJU6820 ■ PAD COORDINATES 6 Chip Size 18860µm x 2390µm (Chip Center 0µm x 0µm ) PAD No. 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 -8- Terminal SEGC119 SEGA120 SEGB120 SEGC120 SEGA121 SEGB121 SEGC121 SEGA122 SEGB122 SEGC122 SEGA123 SEGB123 SEGC123 SEGA124 SEGB124 SEGC124 SEGA125 SEGB125 SEGC125 SEGA126 SEGB126 SEGC126 SEGA127 SEGB127 SEGC127 DMY94 DMY95 DMY96 COM20 COM21 COM22 COM23 COM24 COM25 COM26 COM27 COM28 COM29 COM30 COM31 COM32 COM33 COM34 COM35 COM36 COM37 COM38 COM39 DMY97 DMY98 X(µm) -7035 -7077 -7119 -7161 -7203 -7245 -7287 -7329 -7371 -7413 -7455 -7497 -7539 -7581 -7623 -7665 -7707 -7749 -7791 -7833 -7875 -7917 -7959 -8001 -8043 -8085 -8127 -8169 -8211 -8253 -8295 -8337 -8379 -8421 -8463 -8505 -8547 -8589 -8631 -8673 -8715 -8757 -8799 -8841 -8883 -8925 -8967 -9009 -9051 -9093 Y(µm) 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 990 PAD No. 801 802 803 804 805 806 801 802 803 804 805 806 801 802 Terminal DMY99 DMY100 DMY101 DMY101 DMY101 DMY102 DMY99 DMY100 DMY101 DMY101 DMY101 DMY102 DMY99 DMY100 X(µm) -9135 -9225 -9225 -9225 -9225 -9225 -9135 -9225 -9225 -9225 -9225 -9225 -9135 -9225 Y(µm) 990 -742 -784 -826 -868 -910 990 -742 -784 -826 -868 -910 990 -742 PAD No. Terminal X(µm) Y(µm) NJU6820 COM39 COM0 VSS SEGA126 SEGB126 SEGC126 SEGA127 SEGB127 SEGC127 VSSH SEGA1 SEGB1 SEGC1 SEGA0 SEGB0 SEGC0 ■ BLOCK DIAGRAM VSSA VDDA VDD Common Driver Gradation Circuit Shift Register Data Latch Circuit VBA VREG Display Data RAM (DD RAM) 128x40x(4+4+4)bit D15 Initial Display Line Register VREF Line Address Decoder Voltage regulator Row Address Decoder VEE Row Address Counter C4+ C4VOUT Voltage booster Row Address Register C1+ C1C2+ C2C3+ C3- Line Counter VLCD, V1 -V4 Segment Driver 5 Column Address Decoder D14 RAM Interface D13 D12 Display Timing Generator Column Address Counter D11 FR FLM CL D10 D8 D7 Column Address Register I/O Buffer D9 CLK Oscillator OSC2 OSC1 D6 D5 D4/SPOL D3/SMODE D2 Bus Holder Pole Control Instruction Decoder Register Read Control Internal Bus D1/SDA D0/SCL RESET MPU Interface CSb RS RDb WRb P/S SEL68 RESb -9- NJU6820 ! POWER SUPPLY CIRCUITS BLOCK DIAGRAM VBA Reference Voltage Generator - Voltage regulator VREG VREF + + Gain Control (1x-5x) E.V.R 1/2VREG EVR register Boost level register C1+ C1C2+ C2C3+ Voltage Booster C3C4+ C4VEE - 10 - VOUT + - VLCD + - V1 + - V2 + - V3 + - V4 NJU6820 ■ TERMINAL DESCRIPTION 1 No. 111-121 146-156 239-248 10,11, 42,43, Symbol VDD VSS VSSH VDDA I/O Power Power Power Power 4,5, 16,17, 76,77, VSSA Power 158-166 168-176 177-185 187-195 196-204 VLCD V1 V2 V3 V4 Power/O 271-280 282-291 293-302 304-313 315-324 326-335 337-346 348-357 228-237 217-226 260-269 C1+ C1C2+ C2C3+ C3C4+ C4VBA VREF VEE O Function Power supply for logic circuits GND for logic circuits GND for high voltage circuits This terminal is internally connected to the VDD level. •This terminal is used to fix the selection terminals to the VDD level. Note) Do not use this terminal for a main power supply. This terminal is internally connected to the VSS level. •This terminal is used to fix the selection terminals to the VSS level. Note) Do not use this terminal for a main GND. LCD driving voltages •When the internal voltage booster is not used, external LCD driving voltages (V1 to V4 and VLCD) must be supplied on these terminals. The external voltages must be maintained with the following relation. VSS<V4<V3<V2<V1<VLCD • When the internal voltage booster is used, the LCD driving voltages (V1 to V4 and VLCD) are enabled by the “Power control” instruction. The capacitors between the VSS and these terminals are necessary. Capacitor connection terminals for the voltage booster O Capacitor connection terminals for the voltage booster O Capacitor connection terminals for the voltage booster O Capacitor connection terminals for the voltage booster O I Power 249-258 VOUT Power/O 206-215 19,20 VREG RESb O I 7,8 SEL68 I Output of the reference-voltage generator Input of the voltage regulator Input of the voltage booster •This terminal is normally connected to the VDD level. Output of the voltage booster Input for high voltage circuits in using external power supply Output of the voltage regulator Reset Active “0” MPU interface type select SEL68 H L Status 68 series 80 series - 11 - NJU6820 ■ TERMINAL DESCRIPTION 2 No. 45,46 Symbol D0/SCL I/O I/O 49,50 D1/SDA I/O 57,58 D3/SMODE I/O 61,62 D4/SPOL I/O 53,54 65,66 69,70 73,74 D2 D5 D6 D7 I/O 79,80 83,84 87,88 91,92 95,96 99,100 103,104 107,108 24,25 D8 D9 D10 D11 D12 D13 D14 D15 I/O 29,30 CSb RS I I Function Parallel interface: D7 to D0 : 8-bit bi-directional bus •In the parallel interface mode (P/S=“1”), these terminals connect to 8-bit bi-directional MPU bus. Serial interface: SDA : serial data SCL : serial clock SMODE : 3-/4-line serial interface mode selection SPOL : RS polarity selection (in the 3-line serial interface mode) •In the 3-/4-line serial interface mode (P/S=“0”), the D0 terminal is assigned to the SCL and the D1 terminal to the SDA. •In the 3-line serial interface mode, the D4 terminal is assigned to the SPOL. •Serial data on the SDA is fetched at the rising edge of the SCL signal in the order of the D7, D6…D0, and the fetched data is converted into 8-bit parallel data at the falling edge of the 8th SCL signal. •The SCL signal must be set to “0” after data transmissions or during non-access. 8-bit bi-directional bus •In the 16-bit data bus mode, these terminals are assigned to the upper 8-bit data bus. •In the serial interface mode or 8-bit data bus mode of the parallel interface, these terminals must be fixed to “1” or “0”. Chip select Active “0” Resister select •This signal distinguishes transferred data as an instruction or display data as follows. RS Distinct. 39,40 34,35 RDb (E) WRb (R/W) I I H Instruction L Display data 80 series MPU interface (P/S=“1”, SEL68=“0”) RDb signal. Active “L”. 68 series MPU interface (P/S=“1”, SEL68=“1”) Enable signal. Active “H”. 80 series MPU interface (P/S=“1”, SEL68=“0”) WRb signal. Active “L”. 68 series MPU interface (P/S=“1”, SEL68=“1”) R/W signal. R/W H L Status Read Write - 12 - NJU6820 ■ TERMINAL DESCRIPTION 3 No. 13,14 Symbol P/S I/O I Function Parallel / serial interface mode selection Chip Data/ Data P/S Instruction Select H CSb RS D0 ~ D7 Read/Write Serial clock RDb, WRb - L 124,125 CL O 128,129 132,133 136,137 140,141 143,144 FLM FR CLK OSC1 OSC2 O O O I O RS SDA (D1) Write only SCL (D0) CSb •Since the D15 to D5 and D2 terminals are in the high impedance in the serial inter face mode (P/S=”0”), they must be fixed to “1” or “0”. The RDb and WRb terminals also must be “1” or “0”. This terminal must be opened. This terminal must be opened. This terminal must be opened. This terminal must be opened. OSC •When the internal oscillator clock is used, OSC1 terminal must be fixed to “1” or “0”, and the OSC2 terminal must be opened. When the oscillation frequency from the internal oscillator is adjusted by an external resistor between OSC1 terminal and OSC2. •When an external oscillator is used, external clock is input to the OSC1 terminal or an external resistor is connected between the OSC1 and OSC2 terminals. - 13 - NJU6820 ■ TERMINAL DESCRIPTION 4 No. 392-775 Symbol SEGA0 - SEGA127, SEGB0 - SEGB127, SEGC0 - SEGC127 I/O O Function Segment output REV Mode Normal Reverse Turn-off 0 1 Turn-on 1 0 •These terminals output LCD driving waveforms in accordance with the combination of the FR signal and display data. In the B/W mode FR signal Display data Normal display mode Reverse mode 369-388, 779-798, COM0 -COM39 O display V2 VLCD V3 VSS VLCD V2 VSS V3 Common output # These terminals output LCD driving waveforms in accordance with the combination of the FR signal and scanning data. Data H L H L FR H H L L Output level VSS V1 VLCD V4 Terminal No. 1-3, 12, 18, 21-23, 26-28, 31-33, 36-38, 41, 47, 48, 51, 52, 55, 56, 59, 60, 63, 64, 67, 68, 71, 72, 75, 81, 82, 85, 86, 89, 90, 93, 94, 97, 98, 101, 102, 105, 106, 109, 110, 122, 123, 126, 127, 130, 131, 134, 135, 138, 139, 142, 145, 157, 167, 186, 205, 216, 227, 238, 259, 270, 281, 292, 314, 325, 336, 347, 358-368, 389-391, 776-778, 799-806 are dummy.) - 14 - NJU6820 ■ Functional Description (1) MPU Interface (1-1) Selection of Parallel / serial interface mode select The P/S terminal is used to select parallel or serial interface mode as shown in the following table. In the serial interface mode, it is possible to read out display data from the DDRAM and status from the internal registers. Table1 P/S P/S mode CSb RS H Parallel I/F CSb RS L Serial I/F CSb RS Note 1) “ -” : Fix to “1” or “0”. RDb RDb - WRb WRb - SEL68 SEL68 - SDA SCL SDA SCL Data D7-D0 (D15-D0) - (1-2) Selection of MPU interface type In the parallel interface mode, the SEL68 terminal is used to select 68- or 80-series MPU interface type as shown in the following table. Table2 SEL68 MPU type H 68 series MPU L 80 series MPU CSb CSb CSb RS RS RS RDb E RDb WRb R/W WRb Data D7-D0 (D15-D0) D7-D0 (D15-D0) (1-3) Data distinction In the parallel interface mode, the combination of RS, RDb, and WRb (R/W) signals distinguishes transferred data between the LSI and MPU as instruction or display data, as shown in the following table. Table3 RS H H L L 68 series R/W H L H L 80 series RDb WRb L H H L L H H L Function Read out instruction data Write instruction data Read out display data Write display data (1-4) Selection of serial interface mode In the serial interface mode, the SMODE terminal is used to select the 3- or 4-line serial interface mode as shown in the following table. Table4 SMODE H L Serial interface mode 3-line 4-line - 15 - NJU6820 (1-5) 4-line serial interface mode In the 4-line serial interface mode, when during the chip select is active (CSb=“0”), the SDA and the SCL are enabled. When During the chip select is not active (CSb=“1”), the SDA and the SCL are disabled and the internal shift register and the counter are being initialized. The 8-bit serial data on the SDA is fetched at the rising edge of the SCL signal (serial clock) in order of the D7, D6…D0, and the fetched data is converted into the 8-bit parallel data at the rising edge of the 8th SCL signal. In the 4-line serial interface mode, the transferred data on the SDA is distinguished as display data or instruction data in accordance with the condition of the RS signal. RS H L Table5 Data distinction Instruction data Display data Since the serial interface operation is sensitive to external noises, the SCL should be set to “0” after data transmissions or during non-access. To release a mal-function caused by the external noises, the chip-selected status should be released (CSb=“1”) after each of the 8-bit data transmissions. The following figure illustrates the interface timing for the 4-line serial interface operation. CSb RS SDA VALID D7 D6 D5 D4 D3 D2 D1 D0 1 2 3 4 5 6 7 8 SCL Fig1 - 16 - 4-line serial interface timing NJU6820 (1-6) 3-line serial interface mode In the 3-line serial interface mode, when the chip select is active (CSb=“0”), the SDA and SCL are enabled. When the chip select is not active (CSb=“1”), the SDA and SCL are disabled and the internal shift register and counter are being initialized. 9-bit serial data on the SDA is fetched at the rising edge of the SCL signal in order of the RS, D7, D6…D0, and the fetched data is converted into the 9-bit parallel data at the rising edge of the 9th SCL signal. In the 3-line serial interface mode, data on the SDA is distinguished as display data or instruction data in accordance with the condition of the RS bit of SDA data and the status of the SPOL, as follows. Table6 RS L H SPOL=L Data distinction Display data Instruction data SPOL=H Data distinction Instruction data Display data RS L H Since the serial interface operation is sensitive to external noises, the SCL must be set to “0” after data transmissions or during non-access. To release a mal-function caused by the external noises, the chip-selected status should be released (CSb=“1”) after each of 9-bit data transmissions. The following figure illustrates the interface timing of the 3-line serial interface operation. CSb SDA RS D7 D6 D5 D4 1 2 3 4 5 D3 D2 D1 D0 SCL Fig2 6 7 8 9 3-line serial interface timing - 17 - NJU6820 (2) Access to the DDRAM When the CSb signal is ”0”, the transferred data from MPU is written into the DDRAM or instruction register in accordance with the condition of the RS signal. When the RS signal is “1”, the transferred data is distinguished as display data. After the “column address” and “row address” instructions are executed, the display data can be written into the DDRAM by the “display data write” instruction. The display data is written at the rising edge of the WRb signal in the 80 series MPU mode, or at the falling edge of the E signal in the 68 series MPU mode. Table6 RS Data L Display RAM Data H Internal Command Register In the sequence of the “display data read” operation, the transferred data from MPU is temporarily held in the internal bus-holder and then transferred to the internal data-bus. When the “display data read” operation is executed just after the “column address” and “row address” instructions or “display data write” instruction, unexpected data on the bus-holder is read out at the 1st execution, then the data of designated DDRAM address is read out from the 2nd execution. For this reason, a dummy read cycle must be executed to avoid the unexpected 1st data read. Display data write operation D0 to D15 n n+1 n+2 n+3 n+4 Internal WRb n Bus Holder n+1 n+2 n+3 n+4 WRb Display data read operation WRb D0 to D7(D0 to D15) n Address Set n n Dummy Read Data Read n Address n+1 Data Read n+1 Address n+2 Data Read n+2 Address RDb Fig3 Note) In the16-bit data bus mode, instruction data must be 16-bit as well as the display data. - 18 - NJU6820 (3) Access to the instruction register Each instruction resisters is assigned to each address between 0H and FH, and the content of the instruction register can be read out by the combination of the “Instruction resister address” and ”Instruction resister read”. WRb D0 to D7 M m N n Instruction resister address set Instruction resister contents read Instruction resister address set Instruction resister contents read RDb Fig4 (4) 8-/16-bit data bus length for display data (in the parallel interface mode) The 8- or 16-bit data bus length for display data is determined by the “WLS” of the “Data bus length” instruction. In the 16-bit data bus mode, not only the display data but also the instruction data is required to be transferred by 16-bit data (D15 to D0). However, for the access to the instruction register, the only lower 8bit data (D7 to D0) of the 16-bit data is valid. For the access to the DDRAM, all of the 16-bit data (D15 to D0) is valid. Table8 WLS 0 1 Data bus length mode 8-bit 16-bit (5) Initial display line register The initial display line resister specifies the line address, corresponding to the initial COM line, by the “Initial display line” instruction. The initial COM line signifies the common driver, starting scanning the display data in the DDRAM, and specified by the “Initial COM line” instruction. The line address, established in the initial display line resister, is preset into the line counter whenever the FLM signal becomes “1”. At the rising edge of the CL signal, the line counter is counted-up and addressed 384-bit display data corresponding to the counted-up line address, is latched into the data latch circuit. At the falling edge of the CL signal, the latched data outputs to the segment drivers. - 19 - NJU6820 (6) DDRAM mapping The DDRAM is capable of 1,536-bit (12-bit x 128-segment) for the column address and 40-bit for the row address. In the gradation mode, each pixel for RGB corresponds to successive 3-segment drivers, and each segment driver has 16-gradation. Therefore, the LSI can drive up to 128x40 pixels in 4096-color display (16-gradation x 16-gradation x 16-gradation). # In the 8-bit data bus length mode column-address 0H 0H 7bit 1H 5bit FEH 7bit FFH 5bit 27H 7bit 5bit 7bit 5bit row-address column-address 0H 0H 4bit 1H 8bit FEH 4bit FFH 8bit 27H 4bit 8bit 4bit 8bit 0H 0H 8bit 1H 8bit BEH 8bit BFH 8bit 27H 8bit 8bit 8bit 8bit 0H 0H 8bit 1H 8bit 7EH 8bit 7FH 8bit 27H 8bit 8bit 8bit 8bit ABS=’1’ row-address column-address HSW=’1’ row-address column-address C256=’1’ row-address - 20 - NJU6820 # In the 16-bit data bus length mode column-address 0H 0H 12bit 27H 12bit 7FH 12bit row-address 12bit Fig6 In the B&W mode, only MSB data from each 4-bit display data group in the DDRAM is used. Therefore, 384 x 40 pixels in the B&W and 128 x 40 pixels in the 8-gradation are available. The range of the column address varies depending on data bus length. The range between 00H and FFH is used in the 8-bit data bus length and the range between 00H and 7FH is in the 16-bit data bus length. The increments for the column address and row address are set to the auto-increment mode by programming the “AXI” and “AYI” registers of the “Increment control” instruction. In this mode, the contents of the column address and row address counters automatically increment whenever the DDRAM is accessed. The column address and row address counters, independent of the line counter. They are used to designate the column and row addresses for the display data transferred from MPU. On the other hand, the line counter is used to generate the line address, and output display data to the segment drivers, being synchronized with the display control timing of the FLM and CL signals. - 21 - NJU6820 0 0 1 1 1 1 1 0 0 1 1 0 0 X 0 X X 0 0 0 0 1 1 0 1 0 1 0 1 0 1 0 1 X 0 X 1 0 0 0 0 0 0 0 0 0 0 SEG0 Palette B X=7FH X=00H Palette C Palette A SEG1 Palette B X=01H X=7EH X=01H Palette C D15 D14 D13 D12 D10 D9 D8 D7 D4 D3 D2 D1 D15 D14 D13 D12 D10 D9 D8 D7 D4 D3 D2 D1 X=7FH X=7EH D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 X=00H X=01H X=02H X=03H D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 X=FEH X=FFH X=FCH X=FDH D7 D6 D5 D4 D2 D1 D0 D7 D4 D3 D2 D1 D7 D6 D5 D4 D2 D1 D0 D7 D4 D3 D2 D1 X=00H X=01H X=02H X=03H D7 D6 D5 D4 D2 D1 D0 D7 D4 D3 D2 D1 D7 D6 D5 D4 D2 D1 D0 D7 D4 D3 D2 D1 X=FEH X=FFH X=FCH X=FDH D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 X=00H X=01H X=02H D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 X=BFH X=BDH X=BEH(H) D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 X=BEH(L) Palette B SEG0 Palette C SEG1 Palette B Palette C - D7 D6 D5 D4 D3 D2 D1 D0 - D7 D6 D5 D4 D3 D2 D1 D0 X=7EH X=01H - - - Palette A D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 Palette A - D7 D6 D5 D4 D3 D2 D1 D0 - Palette A A0 SEG126 Palette B X=7EH Palette C Palette A A0 SEG126 Palette B X=FDH X=03H X=FDH X=03H X=02H Palette C X=BEH - D7 D6 D5 D4 D3 D2 D1 D0 X=01H X=7EH - D7 D6 D5 D4 D3 D2 D1 D0 - - - - Palette A X=FEH X=00H X=FEH X=00H X=00H SEG127 Palette B X=7FH X=00H X=7FH X=00H SEG127 Palette B Palette C X=FFH X=01H X=FFH X=01H X=BFH X=01H(H) Palette C - D7 D6 D5 D4 D3 D2 D1 D0 X=00H X=7FH - D7 D6 D5 D4 D3 D2 D1 D0 - - - - - - Palette A D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 X=01H(L) D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 X=BDH D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 X=02H D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 X=FCH D7 D6 D5 D4 D2 D1 D0 D7 D4 D3 D2 D1 D7 D6 D5 D4 D2 D1 D0 D7 D4 D3 D2 D1 X=02H D7 D6 D5 D4 D2 D1 D0 D7 D4 D3 D2 D1 D7 D6 D5 D4 D2 D1 D0 D7 D4 D3 D2 D1 X=FCH D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 X=01H D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 X=7EH D15 D14 D13 D12 D10 D9 D8 D7 D4 D3 D2 D1 D15 D14 D13 D12 D10 D9 D8 D7 D4 D3 D2 D1 X=01H D15 D14 D13 D12 D10 D9 D8 D7 D4 D3 D2 D1 D15 D14 D13 D12 D10 D9 D8 D7 D4 D3 D2 D1 A1 Note1) In the 256-color mode, the vacant LSB bit is filled with "1". Note2) The function of 256-color mode is different from that of fixed 8-gradation mode (fixed 256-color mode). Note3) The written data in the DD RAM in "C256"=0 in not compatible with the data in "C256"=1. Note4) In the 256-color mode, only 8-bit length mode is available, but 16-bit is not. - D7 D6 D5 D4 D3 D2 D1 D0 X=7FH X=00H - - A2 Palette A X=00H A0 D15 D14 D13 D12 D10 D9 D8 D7 D4 D3 D2 D1 D15 D14 D13 D12 D10 D9 D8 D7 D4 D3 D2 D1 A0 RAM Map 1 Mode 16bit 8bit 0 X 1 A1 - Palette C SEGCx SEGAx C0 C0 0 0 1 X 1 X X 0 X Palette B SEGBx SEGBx C1 C1 RAM Map 2 (256 Color Mode) Mode 8bit 0 Palette A SEGAx SEGCx C2 C2 C0 C0 C3 C3 C1 C1 B0 B0 C2 C2 B1 B1 C3 C3 B2 B2 B0 B0 B3 B3 A0 B1 B1 A1 A1 B2 B2 A2 A2 B3 B3 A0 A3 A3 A1 A1 C0 C0 A2 A2 C1 C1 A3 A3 C2 C2 C0 C0 C3 C3 C1 C1 B0 B0 C2 C2 B1 B1 C3 C3 B2 B2 B0 B0 B3 B3 B3 B3 A3 A0 B1 B1 C0 A1 B2 B2 C1 A2 A2 A0 C2 256 256 B3 A3 A3 B2 REF A0 A1 C3 REF HSW A1 A2 B0 ABS HSW ABS A3 A3 B1 WLS WLS A2 SWAP 0 0 1 1 0 1 0 1 - 22 - REF SWAP NJU6820 (7) Window addressing mode In addition to the above usual DDRAM addressing, it is possible to access some part of DDRAM in using the window addressing mode, in which the start and end points are designated. The start point is determined by the “column address” and “row address” instructions, and the end point is determined by the “Window end column address” and “Window end row address” instructions, The setting example of the window addressing is listed, as follows. 1. Set WIN=1, AXI=1 and AYI=1 by the “Increment control” instruction 2. Set the start point by the “column address” and “row address” instructions 3. Set the end point by the “Window end column address” and “Window end row address” instructions 4. Enable to access to the DDRAM in the window addressing mode In the window addressing mode (WIN=1, AXI=1, AYI=1), the read-modify-write operation is available by setting “0” to the “AIM” register of the ”Increment control” instruction. And in the window addressing mode, the following start and end point must be maintained to abide a malfunction. AX (column address of start point)< EX (column address of end point)< Maximum of column address AY (row address of start point)< EY (row address of end point)< Maximum of row address column address row address (X, Y) Start point Window display area End point (X, Y) Whole DDRAM area Fig7 (8) Reverse display ON/OFF The “Reverse display ON/OFF” function is used to reverse the display data without changing the contents of the DDRAM. Table9 REV Display 0 Normal 1 Reverse DDRAM data → Display data 0 0 1 1 0 1 1 0 (9) Segment direction The “Segment direction” function is used to reverse the assignment for the segment drivers and column address, and it is possible to reduce the restrictions for the placement of the LSI on the LCD modules. - 23 - - 24 - palette C SEGA127 $% palette B $% Column address / bit / segment assign $% $% D0 D1 D0 D1 D2 palette C D2 SEGC127 D3 D3 D5 D4 X=7FH X=00H D4 palette B Column address / bit / segment assign $% $% D5 SEGB127 SEGA127 SEGB127 palette C palette B palette A SEGC127 D1 D2 D3 D4 D7 D8 D9 D10 D12 D13 D14 D15 Column address / bit / segment assign $% $% D6 D7 D8 D9 D10 D1 D2 D3 SEGC127 SEGB127 palette C palette B palette A palette C SEGC0 SEGA127 palette B SEGB0 D1 D2 D3 D4 D7 D8 D9 D10 D12 D13 D14 D1 D2 D3 D4 D7 D8 D9 D10 D12 D13 D14 D15 Column address / bit / segment assign $% $% D6 D7 D8 palette A SEGA127 $% D9 $% D11 palette C SEGA0 $% D10 D0 D1 D2 $% D11 palette C SEGC0 D4 D7 D8 D9 $% SEGB127 D0 D1 X=00H X=7FH D2 X=00H X=7FH $% palette A palette C SEGA0 palette B SEGB0 X=00H X=7FH D3 D4 D5 D6 D10 D12 D13 palette A $% SEGA0 D15 X=00H X=7FH D3 ABS REF SWAP 1 0 1 1 1 0 D4 palette B SEGB0 ABS REF SWAP 1 0 0 1 1 1 D5 D7 D8 D9 palette A $% SEGC0 ABS REF SWAP 0 0 1 0 1 0 D6 palette A $% SEGA0 D14 D15 ABS REF SWAP 0 0 0 0 1 1 SEGC127 palette B $% SEGB0 D7 D8 D9 HSW * * palette A D11 HSW * * D10 HSW * * SEGC0 D11 HSW * * D10 NJU6820 (10) The relationship among the DDRAM column address, display data and segment drivers In the color mode, and 16-bit data bus mode X=7FH X=00H X=7FH X=00H X=7FH X=00H palette C SEGA127 $% palette B $% D0 D1 SEGC127 palette C D0 D1 D2 D3 SEGA127 palette C palette B SEGB127 D1 D2 D3 D4 D7 D0 D1 D2 D4 D5 D6 D7 Column address / bit / segment assign $% X=01H X=FEH $% X=FFH X=00H D2 Column address / bit / segment assign $% X=01H X=FEH $% X=FFH X=00H D4 D5 palette A SEGC127 D1 D2 D3 palette C palette B SEGB127 SEGC127 palette A palette C SEGC0 SEGA127 palette B SEGB0 D1 D2 D3 D4 D7 D0 D1 D1 D2 D3 D4 D7 D0 D1 D2 D4 D5 D6 D7 Column address / bit / segment assign $% X=01H X=FEH $% X=FFH X=00H D3 palette B SEGB127 D6 D7 D0 D1 D2 Column address / bit / segment assign $% X=01H X=FEH $% X=FFH X=00H D4 D5 D6 D7 D0 palette A SEGA127 $% D1 $% D3 palette C SEGA0 $% D2 D0 D1 D2 $% D3 palette C SEGC0 D4 D7 D0 D1 $% SEGB127 D0 D1 D2 D3 palette B SEGB0 D2 D4 D5 D6 $% palette A palette C SEGA0 X=00H X=FEH D4 D5 D6 X=00H X=FEH D3 palette B SEGB0 X=00H X=FEH D4 D5 D6 D2 D4 D5 palette A $% SEGA0 D7 X=00H X=FEH SEGC127 palette B $% SEGB0 D7 D0 D1 palette A $% SEGC0 ABS REF SWAP 0 0 1 0 1 0 D7 palette A $% SEGA0 D6 D7 ABS REF SWAP 0 0 0 0 1 1 D0 D1 ABS REF SWAP 1 0 1 1 1 0 palette A HSW 0 0 ABS REF SWAP 1 0 0 1 1 1 SEGC0 HSW 0 0 D2 D3 HSW 0 0 D2 HSW 0 0 D3 NJU6820 In the color mode, and 8-bit data bus mode X=FFH X=01H X=FFH X=01H X=FFH X=01H X=FFH X=01H - 25 - NJU6820 Palette B D2 SEGA 126 D1 Palette C D2 D3 SEGB 127 D1 Palette B D2 D2 D3 Palette C D5 D4 X=01H X=01H SEGA 127 SEGA 127 Palette C D2 D1 D0 D2 D1 Palette B D6 D5 D4 D3 SEGC 127 Palette C D2 D1 D0 X=BFH D7 D5 Palette A X=BFH D7 D5 D7 SEGB 127 D5 D4 D6 D0 D6 D0 D6 D1 D3 D7 Palette B D2 D4 SEGA 127 D1 D0 D6 Palette C D0 SEGB 127 D1 Palette B X=BEH D4 Palette A X=00H D2 D5 D3 X=BEH D3 Palette A D4 SEGC 126 D5 D7 D5 D5 D7 D6 D7 SEGC 127 D6 D0 D4 D6 Palette A D7 D0 SEGC 127 D7 SEGA 126 D0 D0 D6 D1 D0 SEGB 126 D1 D2 X=BDH D5 D3 Palette C SEGB 126 Palette C Column-address / bit / segment assign D6 D4 SEGA 126 D1 D3 D5 X=02H D4 X=02H D2 D4 - 26 - Palette B D5 D6 D3 SEGC 1 X=01H D5 X=00H Palette C SEGB 126 X=02H SEGC 127 Palette A D6 X=BDH D0 D7 D7 D6 D3 Palette B D1 D1 D0 SEGC 126 X=00H Palette A D2 D2 Palette B D4 Column-address / bit / segment assign D3 SEGC 126 Palette C SEGB 1 D5 X=02H D4 X=01H D1 D5 X=BEH D2 Palette C Column-address / bit / segment assign D5 SEGA 1 D1 D7 D6 D3 D6 D2 D0 D7 SEGA 1 Palette A D7 D7 D4 SEGB 127 Palette B D5 D0 D4 X=01H Palette A SEGB 1 D1 D6 D3 SEGA 1 D1 D0 X=BEH SEGA 127 D2 D1 D4 D2 D0 D6 0 Palette B Palette A X=BDH SEGB 1 D1 SEGC 1 D5 D3 D2 D3 Palette C D6 D4 0 Palette A * D5 1 D3 Palette C X=01H D7 D2 D7 SEGC 0 D5 D7 D4 SEGC 126 Palette C D4 SEGC 1 Palette B D0 D6 D0 D6 SEGB 0 D1 D0 D7 Palette B D1 D5 D3 D2 D7 SEGA 0 D6 D4 D0 D2 HSW ABS REF SWAP Palette C Palette B X=BFH D1 D0 SEGB 126 D5 D3 SEGA 0 SEGB 0 Palette A X=00H Palette B D6 D4 D2 D3 Palette A 1 D5 D4 SEGA 126 X=BEH SEGB 0 Column-address / bit / segment assign Palette C 0 0 D6 SEGA 0 D5 D3 X=BDH SEGC 1 Palette A D7 D3 Palette B SEGC 0 D7 D4 SEGB 1 D1 D7 D6 D4 X=BFH Palette A X=BEH SEGA 1 Palette A D7 D0 D3 Palette C SEGC 0 D2 D0 D4 SEGC 0 * 1 1 Palette B D1 1 * 1 SEGB 0 Palette A D3 HSW ABS REF SWAP 1 * SEGA 0 D2 HSW ABS REF SWAP 1 HSW ABS REF SWAP D3 NJU6820 In the color mode, 8-bit data bus mode, and C256 mode (C256=1) D0 D1 D1 SEGB127 SEGC127 palette C D2 D2 D3 palette B D4 D0 palette C SEGA127 D3 palette B SEGB127 D4 D6 palette A D5 D5 X=7FH X=00H palette A D6 X=7FH X=00H SEGC127 $% D7 D0 D1 palette C SEGA0 D2 D3 palette B $% SEGB0 D4 $% palette A D5 Column address / bit / segment assign $% $% SEGC0 D6 X=00H X=7FH SEGA127 $% D7 D0 D1 palette C SEGC0 D3 palette B SEGB0 D4 palette A $% SEGA0 D5 Column address / bit / segment assign $% $% $% ABS REF SWAP * 0 1 * 1 0 D7 HSW * * D6 X=00H X=7FH D2 ABS REF SWAP * 0 0 * 1 1 D7 HSW * * - 27 - - 28 $% $% $% Column address / bit / segment assign $% $% SEGC127 Column address / bit / segment assign $% $% SEGB127 SEGA127 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 SEGC127 SEGA127 SEGB127 Column address / bit / segment assign $% $% SEGA127 X=00H X=7FH $% SEGC127 SEGB127 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 $% SEGA127 SEGC0 SEGB0 SEGA0 Column address / bit / segment assign $% $% SEGB127 ABS REF SWAP 1 0 1 1 1 0 $% SEGC127 X=00H X=7FH D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 ABS REF SWAP 1 0 0 1 1 1 SEGA0 X=00H X=7FH SEGC0 $% SEGB0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 ABS REF SWAP 0 0 1 0 1 0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 HSW * * X=00H X=7FH SEGA0 HSW * * $% SEGC0 HSW * * ABS REF SWAP 0 0 0 0 1 1 SEGB0 SEGA0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 HSW * * SEGB0 SEGC0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 NJU6820 In the B&W mode, and 16-bit data bus mode X=7FH X=00H X=7FH X=00H X=7FH X=00H X=7FH X=00H NJU6820 In the B&W mode, and 8-bit data bus mode D2 D1 D1 D3 D2 D3 D4 SEGA127 D2 D1 D0 D2 D1 D0 D3 SEGC127 D3 SEGA127 D4 D5 D6 D7 X=FFH X=01H SEGB127 D0 D1 D2 D3 $% SEGC127 D0 D1 D2 D3 D4 D5 $% D4 D5 D6 D7 X=FFH X=01H SEGB127 D0 D1 D2 D3 $% SEGA127 D0 D1 D2 D3 SEGC0 D4 $% D7 D0 D1 D2 SEGB127 D4 D5 D6 D7 SEGC127 D1 D2 $% D4 SEGC127 D7 D0 D1 D2 SEGB127 D4 D5 D6 D7 SEGA127 D1 D2 D3 D3 D4 SEGA0 D7 D0 D5 D6 D6 D7 SEGB0 D0 D1 D2 $% X=FFH X=01H Column address / bit / segment assign $% X=01H X=FEH $% X=FFH X=00H X=00H X=FEH D3 D4 SEGC0 D7 D0 D1 D1 SEGB0 D7 SEGB0 D0 D1 D2 SEGA0 ABS REF SWAP 1 0 1 1 1 0 $% Column address / bit / segment assign $% X=01H X=FEH $% X=FFH X=00H X=00H X=FEH SEGC0 HSW 0 0 D2 D4 D5 D6 SEGC0 ABS REF SWAP 1 0 0 1 1 1 $% X=FFH X=01H Column address / bit / segment assign $% X=01H X=FEH $% X=FFH X=00H X=00H X=FEH D3 HSW 0 0 D2 SEGB0 D4 D5 D6 SEGA0 ABS REF SWAP 0 0 1 0 1 0 D7 HSW 0 0 Column address / bit / segment assign $% X=01H X=FEH $% X=FFH X=00H X=00H X=FEH SEGA0 ABS REF SWAP 0 0 0 0 1 1 D7 HSW 0 0 - 29 - NJU6820 1 * 0 0 1 D4 SEGB 0 D3 D2 D5 D5 D1 D1 SEGA 0 D3 X=BFH D3 D4 D0 SEGA 0 D0 SEGC 0 D7 D7 D6 D6 D1 D1 D5 D5 D0 D0 D4 SEGC 1 SEGC 1 D7 D3 D4 SEGA 1 D3 D6 D6 D2 D2 D5 D5 D1 D1 SEGB 1 D3 X=BDH D3 D4 D0 SEGB 1 D0 SEGB 1 D7 D7 D6 D6 D1 D1 D5 D5 D0 D0 D4 SEGA 1 D2 D1 D1 D0 SEGC 126 D7 D6 D5 D3 D2 D1 D0 SEGA 126 D7 D6 D5 D4 SEGB 126 D3 SEGB 126 D7 SEGB 126 D7 SEGB 126 D3 D6 D6 D2 D2 D5 D5 D1 D1 D4 SEGA 126 D3 X=02H SEGC 126 D3 X=02H D4 D0 D0 SEGA 126 D7 SEGC 126 D7 D6 D6 D1 D5 D5 D0 D0 D4 SEGA 127 D7 SEGC 127 D7 SEGC 127 D3 D6 D6 D2 D2 D5 D5 D1 D1 D4 SEGB 127 D3 X=00H SEGB 127 D3 X=00H D4 D4 SEGA 127 D3 D0 D0 SEGB 127 D7 SEGB 127 D7 D6 D6 D1 D5 D5 D0 D0 D4 SEGC 127 D7 SEGA 127 D7 SEGA 127 D3 D4 D6 D5 D4 X=01H D5 X=01H D6 D4 SEGC 127 D3 D2 D2 D1 D1 D0 D0 X=BFH D2 D1 X=BFH D2 X=BEH D2 D1 X=BEH D2 X=BDH D4 X=BDH D0 D2 D4 SEGC 1 Column-address / bit / segment assign SEGC 126 D3 D3 Column-address / bit / segment assign D0 D4 X=01H D1 X=01H D2 D5 X=BEH SEGA 126 D3 D6 Column-address / bit / segment assign X=BEH D4 Column-address / bit / segment assign D5 SEGA 1 D7 X=02H D2 X=02H D2 D7 X=01H D2 X=01H D2 D7 X=00H X=00H D3 HSW ABS REF SWAP 0 D5 D2 D6 - 30 - D6 D5 D6 X=BDH SEGC 1 SEGB 0 D7 D6 D4 D7 SEGA 0 D7 D6 D4 SEGB 1 SEGB 0 X=BFH SEGA 1 D0 D7 D4 SEGC 0 * SEGB 0 X=BEH D1 1 0 X=BEH D2 D0 SEGC 0 D3 HSW ABS REF SWAP 1 1 D1 * 1 D2 1 * SEGC 0 D3 HSW ABS REF SWAP 1 HSW ABS REF SWAP SEGA 0 NJU6820 Bit assignments between write and read data (in the 16-bit data bus mode) ABS=0 Write data D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 Read data D15 D14 D13 D12 * D10 D9 D8 D7 * * D4 D3 D2 D1 * Write data D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 Read data * * * * D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 ABS=1 Examples of write and read data (In the 8 bit bus mode) ABS=0, HSW=0, C256=0 (Address; 00, 02……FC,FEH) Write data D7 D6 D5 D4 D3 D2 D1 D0 Read data D7 D6 D5 D4 1 D2 D1 D0 ABS=0, HSW=0, C256=0 (Address; 01,03……FD,FFH) Write data D7 D6 D5 D4 D3 D2 D1 D0 Read data D7 1 1 D4 D3 D2 D1 1 ABS=1, HSW=0, C256=0 (Address; 00, 02……FC,FEH) Write data D7 D6 D5 D4 D3 D2 D1 D0 Read data 1 1 1 1 D3 D2 D1 D0 ABS=1, HSW=0, C256=0 (Address; 01,03……FD,FFH) Write data D7 D6 D5 D4 D3 D2 D1 D0 Read data D7 D6 D5 D4 D3 D2 D1 D0 ABS=0, HSW=1, C256=0 (Address; 00, 01……BE,BFH) Write data D7 D6 D5 D4 D3 D2 D1 D0 Read data D7 D6 D5 D4 D3 D2 D1 D0 ABS=0, HSW=0, C256=1 (Address; 00, 01…… 7E ,7FH) Write data D7 D6 D5 D4 D3 D2 D1 D0 Read data D7 D6 D5 D4 D3 D2 D1 D0 * : Invalid data - 31 - NJU6820 (11) Gradation palette In the gradation mode, either variable or fixed gradation mode is selected by programming the “PWM” register of the “Gradation control” instruction. PWM=0: Variable gradation mode (Select 16 gradation levels out of 32-gradation level of the gradation palette) PWM=1: Fixed gradation mode (Fixed 8-gradation levels) In these mode, each of the gradation palettes Aj, Bj and Cj can select 16-gradation level out of 32gradation level by setting 5-bit data to the “PA” registers in the “Gradation palette j” instructions (j=0 to Fh). For instance, the gradation palettes Aj correspond to the SEGAi, the Bj to SEGBi and the Cj to SEGCi (j=0 to 15, i=0 to 127). Correspondence between display data and gradation palettes Table 10 (Palette Aj, Palette Bj, Palette Cj (j=0 to 15)) 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 (MSB) Display data (LSB) 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 Gradation palette Palette 0 Palette 1 Palette 2 Palette 3 Palette 4 Palette 5 Palette 6 Palette 7 Palette 8 Palette 9 Palette10 Palette11 Palette12 Palette13 Palette14 Palette15 Default palette value 00000 00011 00101 00111 01001 01011 01101 01111 10001 10011 10101 10111 11001 11011 11101 11111 Gradation palette table (Variable gradation mode, PWM=”0”, MON=”0”) Table 11 (Palette Aj, Palette Bj, Palette Cj (j=0 to 15)) - 32 - Palette value Gradation level Gradation palette 00000 00001 00010 00011 00100 00101 00110 00111 01000 01001 01010 01011 01100 01101 01110 01111 0 1/31 2/31 3/31 4/31 5/31 6/31 7/31 8/31 9/31 10/31 11/31 12/31 13/31 14/31 15/31 Palette 0(default) Palette 1(default) Palette 2(default) Palette 3(default) Palette 4(default) Palette 5(default) Palette 6(default) Palette 7(default) Palette value 10000 10001 10010 10011 10100 10101 10110 10111 11000 11001 11010 11011 11100 11101 11110 11111 Gradation level 16/31 17/31 18/31 19/31 20/31 21/31 22/31 23/31 24/31 25/31 26/31 27/31 28/31 29/31 30/31 31/31 Gradation palette Palette 0(default)8 Palette 9(default) Palette 10(default) Palette 11(default) Palette 12(default) Palette 13(default) Palette 14(default) Palette 15(default) NJU6820 Gradation palette table (Fixed gradation mode, PWM=”1”, MON=”0”) Table 12 8-gradation segment drivers (MSB) Display data (LSB) 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 * * * * * * * * Gradation level 0/7 (MSB) Display data (LSB) Gradation level 0 0 * * 1/7 2/7 3/7 4/7 5/7 6/7 7/7 0 0 0 1 1 1 1 0 1 1 0 0 1 1 * * * * * * * * * * * * * * 0/7 3/7 5/7 7/7 Correspondence between display data and gradation level (B&W mode, MON=”1”) Table 13 (MSB) Display data (LSB) 0 1 * * * * * * Gradation level 0 1 *:Don’t care (12) Gradation control and display data (12-1) Gradation mode In the graduation mode, each pixel for RGB corresponds to successive 3 segment drivers, and each segment driver provides 16-gradation PWM output by controlling 4 bit display data of the DDRAM. Accordingly, the LSI can drive up to 128x40 pixels in 4096-color (16-gradation x 16gradation x 16-gradation = 4-bit x 4-bit x 4-bit). In addition, the LSI can transfer the display data for the RGB by 16-bit at once or 8-bit two-times. The data assignment between gradation palettes and segment drivers varies in accordance with setting for the “SWAP” and “REF” registers of the "Display control (2)" instruction. (REF, SWAP)=(0, 0) or (1, 1) SEGAi SEGBi Paltte Aj Palette Bj (i=0 to 127) SEGCi Gradation palette j=0 to 15 Palette Cj Gradation control circuit 0 MSB 0 0 0 0 LSB MSB 0 0 0 D7 0 D6 0 D5 0 D4 ABS=1 (D3 D2 D1 HSW=1 (D7 D6 C256=1 (D7 D6 1 1 LSB MSB 1 1 0 D2 0 D1 0 D0 1 D7 D0 D7 D6 D5 D5 D4 D3 D2 D5 * D4 D3 1 D4 1 D3 1 D2 1 D1 D4 D3 D2 D1 D0 ) D1 D0 D7 D6 D5 D4 ) D2 * D1 D0 * *) :2nH ,2nH+1H :FEH -2nH , FFH-(2nH+1H) HSW=1; 00H to BFH, C256=1; 00H to 7FH Note) DDRAM column address 1 LSB Display data in DDRAM Display data from MPU Column address:2nH:2n+1H (REF=”0”) (REF=”1”) - 33 - NJU6820 (REF, SWAP)=(0, 1) or (1, 0) SEGAi SEGBi SEGCi Palette Aj Palette Bj (i=0 to 127) Gradation palette j=0 to 15 Palette Cj Gradation control circuit 1 LSB 1 1 1 1 MSB LSB 0 D7 ABS=1 (D3 HSW=1 (D7 C256=1 (D7 0 D6 D2 D6 D6 0 D5 D1 D5 D5 0 D4 D0 D4 * 0 D2 D7 D3 D4 0 0 0 0 MSB LSB 0 D1 D6 D2 D3 0 D0 D5 D1 D2 1 D7 D4 D0 * : 2nH ,2nH+1H : FEH -2nH , FFH-(2nH+1H) HSW=1; 00H to BFH, C256=; 00H to 7FH Note) DDRAM column address 1 D4 D3 D7 D1 Display data in DDRAM 0 MSB 0 0 1 D3 D2 D6 D0 1 D2 D1 D5 * 1 D1 D0 ) D4 ) *) Display data from MPU Column address:2nH:2n+1H (REF=”0”) (REF=”1”) In the 16-bit data bus mode, the data assignments between the gradation palettes and the segment drivers vary in accordance with setting for the “SWAP” and “REF” bit of the "Display control (2)" instruction as well as the assignment in the 8-bit data bus mode. (REF, SWAP)=(0, 0) or (1, 1) SEGAi SEGBi Palette Aj SEGCi Palette Bj (i=0 to 127) Gradation palette j=0 to 15 Palette Cj Gradation control circuit ABS=1 0 MSB 0 0 0 D15 0 D14 0 D13 0 D12 D9 D8 (D11 D10 0 0 LSB MSB Note) DDRAM column address - 34 - 0 0 1 1 LSB MSB 0 D10 0 D9 0 D8 1 D7 D7 D6 D5 D4 (REF=”0”) :nH :7FH - nH (REF=”1”) 1 1 1 LSB 1 D4 1 D3 1 D2 1 D1 D3 D2 D1 D0 ) Display data in DDRAM Display data from MPU Column address; nH NJU6820 (REF, SWAP)=(0, 1) or (1, 0) SEGAi SEGBi Palette Aj Palette Bj SEGCi (i=0 to 127) Gradation palette j=0 to 15 Palette Cj Gradation control circuit ABS=1 1 LSB 1 1 0 0 0 0 D13 D9 D12 D8 D15 D14 (D11 D10 1 1 MSB LSB Note) DDRAM column address 0 0 0 0 MSB LSB 0 0 0 1 D10 D7 D9 D6 D8 D5 D7 D4 Display data in DDRAM 0 MSB 0 0 1 1 1 1 D4 D3 D3 D2 D2 D1 D1 D0 ) Display data from MPU Column address ; nH (REF=”0”) :nH :7FH -nH (REF=”1”) - 35 - NJU6820 (12-2) B&W mode (MON=”1”) In the B&W mode, 3 bits of the MSB data are used in both of the 16-bit and 8-bit data bus modes. In the 16-bit data bus mode (Similarly 8-bit data bus access) (REF, SWAP)=(0, 0) or (1, 1) SEGAi SEGBi SEGCi Palette Aj Palette Bj (i=0 to 127) Gradation palette j=0 to 15 Palette Cj Gradation control circuit ABS=1 0 MSB 0 0 0 0 0 0 D15 D14 D13 D9 (D11 D10 0 0 LSB MSB 0 0 0 0 0 1 D12 D10 D9 D8 D8 D7 D6 D5 Note) DDRAM column address 1 1 LSB MSB 1 1 1 1 1 1 D7 D4 D3 D2 D1 D4 D3 D2 D1 D0 ) SEGBi Palette Aj Display data in DDRAM Display data in DDRAM Column address; nH (REF=”0”) (REF=”1”) : nH : 7FH-nH (REF, SWAP)=(0, 1) or (1, 0) SEGAi 1 LSB SEGCi Palette Bj (i=0 to 127) Gradation palette j=0 to 15 Palette Cj Gradation control circuit ABS=1 1 LSB 1 1 0 0 0 0 D15 D14 D13 D9 (D11 D10 1 1 MSB LSB 0 0 0 0 0 1 D12 D10 D9 D8 D8 D7 D6 D5 Note ) DDRAM column address - 36 - : nH : 7FH-nH 0 0 MSB LSB Display data in DDRAM 0 MSB 0 0 1 1 1 1 D7 D4 D3 D2 D1 D4 D3 D2 D1 D0 ) (REF=”0”) (REF=”1”) Display data in DDRAM Column address; nH NJU6820 (13) Display timing generator The display-timing generator creates the timing pulses such as the CL, the FLM, the FR and the CLK by dividing the oscillation frequency oscillate an external or internal resister mode. The each of timing pulses is outputted through the each output terminals by “SON” = 1. (14) LCD line clock (CL) The LCD line clock (CL) is used as a count-up signal for the line counter and a latch signal for the data latch circuit. At the rising edge of the CL signal, the line counter is counted-up and the 384-bit display data, corresponding to this line address, is latched into the data latch circuit. And at the falling edge of the CL signal, this latched data output on the segment drivers. Read out timing of the display data, from DDRAM to the latch circuits is completely independent of the access timing to the MPU. For this reason, the MPU can access to the LSI regardless of an internal operation. (15) LCD alternate signal (FR) and LCD synchronous signal (FLM) The FR and FLM signals are created from the CL signal. The FR signal is used to alternate the crystal polarization on a LCD panel. It is programmed that the FR signal is toggle on every frame in the default setting or once every N lines in the N-line inversion mode. The FLM signal is used to indicate a start line of a new display frame. It presets an initial display line address of the line counter when the FLM signal becomes ”1”. (16) Data latch circuit The data latch circuit is used temporarily store the display data that will output to the segment drivers. The display data in this circuit is updated in synchronization of the CL signal. The “All pixels ON/OFF”, “Display ON/OFF” and “Reverse display ON/OFF” instructions change the display data in this circuit but do not change the display data of the DDRAM. (17) Common and segment drivers The LSI includes 384-segment drivers and 40-common drivers. The common drivers generate the LCD driving waveforms composed of the VLCD, V1, V4 and VSS in accordance with the FR signal and scanning data. The segment drivers generate waveforms composed of the VLCD, V2, V3 and VSS in accordance with the FR signal and display data. - 37 - NJU6820 LCD Driving waveforms (In the B&W mode, Reverse display OFF, 1/41 duty) COM0 41 1 2 3 4 5 41 1 2 3 4 5 41 1 COM1 SEG2 SEG1 SEG0 CL FLM FR COM0 VLCD V1 V2 V3 V4 VSS COM1 VLCD V1 V2 V3 V4 VSS VLCD V1 V2 V3 V4 VSS SEG0 VLCD V1 V2 V3 V4 VSS SEG1 Fig 8 - 38 - NJU6820 (18) Oscillator The oscillator generates internal clocks for the display timing and the voltage booster. Since the LSI has internal capacitor (C) and resistor (R) for the oscillation, external capacitor and resistor are not usually required. However, in case that an external resistor is used, the resister is connected between the OSC1 and OSC2 terminals. The external resistor becomes enabled by setting “1” to the “CKS” register of “Data bus length” instruction. When the internal oscillator is not used, the external clocks with 50% duty cycle ratio must be input to the OSC1 terminal. In addition, the feed back resister for the oscillation is varied by programming the “Rf” register of the “Frequency control” instruction, so that it is possible to optimize the frame frequency for a LCD panel. Setting examples of the MON (B&W /Gradation) and the PWM (Variable gradation /Fixed gradation) are described, as follows. (18-1) Internal oscillation mode (CKS=0) Symbol f1 f2 f3 MON 0 0 1 PWM 0 1 * Display mode Variable gradation mode Fixed gradation mode B&W mode *: Don’t care (18-2) External resistor oscillation mode(CKS=1) The internal clocks must be adjusted to the same frequency as the one in using the internal oscillation mode, and the “MON” and “PWM” registers must be set as well. (18-3) External clock input mode (CKS=1) The external clocks must be adjusted to the same frequency as the one in using the internal oscillation mode, and the “MON” and “PWM” registers must be set as well. (19) Power supply circuits The internal power supply circuits are composed of the voltage booster, the electrical variable resister (EVR), the voltage regulator, reference voltage generator and the voltage followers. The condition of the power supply circuits is arranged by programming the “DCON” and “AMPON” registers on the “Power control” instruction. For this arrangement, same parts of the internal power supply circuits are activated in using an external power supply, as shown in the following table. Table 14 DCON AMPON Voltage booster 0 0 1 0 1 1 Disable Disable Enable Voltage followers Voltage regulator EVR Disable Enable Enable External voltage Note VOUT, VLCD, V1, V2, V3, V4 VOUT − 1, 3 2, 3 − Note1) The internal power circuits are not used. The external VOUT is required and the C1+, C1-, C2+, C2-, C3+, C3-, C4+, C4-, VOUT, VREF, VREG and VEE terminals must be open. Note2) The internal power circuits except the voltage booster are used. The external VOUT is required and the C1+, C1-, C2+, C2-, C3+, C3-, C4+, C4- and VEE terminals must be open. The reference voltage is required to VREF terminal. Note3) The relation among the voltages should be maintained as follows. VOUT ≥ VLCD ≥ V1 ≥ V2 ≥ V3 ≥ V4 ≥ VSS - 39 - NJU6820 (20) Voltage booster The voltage booster generates maximum 5x voltage of the VEE level. It is programmed so that the boost level is selected out of 1x, 2x, 3x, 4x, and 5x by the “Boost level select” instruction. The boosted voltage VOUT must not exceed beyond the value of 18.0V, otherwise the voltage stress may cause a permanent damage to the LSI. Boosted voltages VOUT=15V VOUT=9V VEE=3V VEE=3V VSS=0V VSS=0V 5-time boost 3-time boost Capacitor connections for the voltage Booster 5-time boost C1+ C1C2+ C2C3+ C3C4+ C4VOUT VSS 4-time boost C1+ C1C2+ C2C3+ C3C4+ C4- + + + + VOUT VSS + 3-time boost C1+ C1C2+ C2C3+ C3C4+ C4VOUT VSS + + + 2-time boost C1+ C1C2+ C2C3+ C3C4+ C4- + + VOUT VSS + Fig 9 - 40 - + + + NJU6820 (21) Reference voltage generator The reference voltage generator is used to produce the reference voltage (VBA), which is output from the VBA terminal and should be input to the VREF terminal. VBA = VEE x 0.9 (22) Voltage regulator The voltage regulator, composed of the gain control circuit and an operational amplifier, and is used to gain the reference voltage (VREF) and to create the regulated voltage (VREG). The VREG is used as an input voltage to the EVR circuits, which is programmed by the “VU” register of the “Boost level” instruction. VREG = VREF x N (N: register value for the boost level) (23) Electrical variable resister (EVR) The EVR, variable within 128-step, and is used to fine-tune the LCD driving voltage (VLCD) by programming the “DV” register in the “EVR control” instruction, so that it is possible to optimize the contrast level for a LCD panels. VLCD = 0.5 x VREG + M (VREG - 0.5 x VREG) / 127 (M: register value for the EVR) (24) LCD driving voltage generation circuit LCD driving voltage generation circuit generates the VLCD voltage levels as VLCD, V1, V2, V3 and V4 with internal E.V.R and the Bleeder resistors. The bias ratio of LCD driving voltage can be selected out of 1/4, 1/5, 1/6, 1/7 and 1/8. In using the internal power supply, the capacitors CA2 must be connected to the VLCD, V1, V2, V3 and V4 terminals, and the CA2 value must be determined by the evaluation with actual LCD modules. In using the external power supply, the external LCD driving voltages such as the VLCD, V1, V2, V3 and V4 are supplied and the internal power supply circuits must be set to “OFF” by DCON = AMPON = "0". In this mode, voltage booster terminals such as C1+, C1-, C2+, C2-, C3+, C3-, C4+, C4-, VEE, VREF and VREG must be opened. In case that the voltage booster is not used but only some parts of internal power supply circuits (Voltage followers, Voltage regulator and EVR) are used, the C1+, C1-, C2+, C2-, C3+, C3-, C4+ and C4terminals must be opened. And, the external power supply is input to the VOUT terminal, and the reference voltage to the VREF terminal. The capacitor CA3 must connect to the VREG terminal for voltage stabilization. - 41 - NJU6820 Connections of the capacitor for the voltage booster Using all of the internal power supply circuits (5-time boost) VDD VDD VDD CA1 VEE CA1 CA3 VSS Using only external power supply circuits CA3 VSS VBA VBA VREF VREF VREG VREG C1- C1- CA1 C1+ C1+ C2- C2- CA1 C2+ C2+ C3- C3- CA1 C3+ C3+ C4- CA1 C4+ C4C4+ NJU6820 NJU6820 VOUT CA1 VSS CA1 CA2 CA2 CA2 CA2 VSS VDD VEE CA2 VLCD VLCD VOUT VLCD V1 V3 V1 External Power V2 circuit V3 V4 V4 V4 V1 V2 Fig 10 Reference values 1.0 to 4.7uF CA1 CA2 1.0 to 2.2uF CA3 0.1uF V2 V3 CA2 CA2 CA2 Fig11 CA2 Note1) B grade capacitor is recommended for CA1-CA3. Testing actual samples with an LCD panel is recommended to decide an optimum value of these capacitors. Note2) Parasitic resistance on the power supply lines (VDD, VSS, VEE, VSSH, VOUT, VLCD, V1, V2, V3 and V4) reduces the step-up efficiency of the voltage booster, and may have an impact on the LSI’s operation and display quality. To minimize this impact, use the shortest possible wires and place the capacitors to be as close as possible to the LSI. - 42 - NJU6820 Using internal power supply circuit Without the reference voltage generator(2) (5-time boost) Using internal power supply circuits Without the reference voltage generator(1) (5-time boost) VDD VEE CA1 VBA VREF VREF Thermistor VBA C1- CA1 CA3 VSS CA1 C1+ C2- CA1 CA1 C2+ C3- CA1 CA1 C3+ C4- CA1 C4+ CA2 CA2 CA2 CA2 CA2 CA1 NJU6820 VOUT CA1 VSS VDD VEE CA1 VREG CA3 VSS VSS VDD VDD CA1 VSS VREG C1C1+ C2C2+ C3C3+ C4- VOUT VLCD CA2 VLCD V1 CA2 V1 V2 CA2 V2 V3 CA2 V3 V4 VSS Fig 12 NJU6820 C4+ CA2 V4 Fig 13 Reference value CA1 1.0 to 4.7µF CA2 1.0 to 2.2µF CA3 0.1µF Note1) B grade capacitor is recommended for CA1-CA3. Testing actual samples with an LCD panel is recommended to decide an optimum value of these capacitors. Note2) Parasitic resistance on the power supply lines (VDD, VSS, VEE, VSSH, VOUT, VLCD, V1, V2, V3 and V4) reduces the step-up efficiency of the voltage booster, and may have an impact on the LSI’s operation and display quality. To minimize this impact, use the shortest possible wires and place the capacitors to be as close as possible to the LSI. - 43 - NJU6820 Using internal power supply circuits Without the voltage booster VDD VDD VEE CA1 VBA CA3 VSS VREF CA3 VREG VSS C1C1+ C2C2+ C3C3+ C4C4+ External power circuit CA1 CA2 CA2 CA2 NJU6820 VOUT VLCD V1 V2 CA2 V3 VSS CA2 V4 Fig 14 Reference value CA1 1.0 to 4.7µF CA2 1.0 to 2.2µF CA3 0.1µF Note1) B grade capacitor is recommended for CA1-CA3. Testing actual samples with an LCD panel is recommended to decide an optimum value of these capacitors. Note2) Parasitic resistance on the power supply lines (VDD, VSS, VEE, VSSH, VOUT, VLCD, V1, V2, V3 and V4) reduces the step-up efficiency of the voltage booster, and may have an impact on the LSI’s operation and display quality. To minimize this impact, use the shortest possible wires and place the capacitors to be as close as possible to the LSI. - 44 - NJU6820 (25) Partial display function The partial display function is used to partially specify some parts of display area on LCD panels. By using this function, LCD modules can work in lower duty cycle ratio, lower LCD bias ratio, lower boost level and lower LCD driving voltage. It is usually used to display a time and calendar, and is also used to optimize the LSI condition in accordance with the display size. It can be programmed to select the duty cycle ratio (1/5, 1/9, 1/13, 1/17, 1/21, 1/25, 1/29, 1/33, 1/37, 1/41 in case “DSE” is “0”), the LCD bias ratio, the boost level and the EVR value by the instructions. Partial display image NJRC LCD DRIVER Low Power and Low Voltage LCD DRIVER Normal display Partial display Partial display sequence Optional status Display OFF (ON/OFF=”0”) Internal Power supply OFF (DCON=”0”, AMPON=”0”) WAIT Setting for LCD driving voltage-related functions - Boost level - EVR value - LCD bias ratio Internal Power supply ON (DCON=”1”, AMPON=”1”) WAIT Setting for display-related functions - Duty cycle ratio - Initial display line - Initial COM line - Other instructions Display ON (ON/OFF =”1”) Partial display Status - 45 - NJU6820 (26) Discharge circuit Discharge circuit is used to discharge the electric charge of the capacitors on the V1 to V4 and VLCD terminals. This circuit is activated by setting “0” to the “DIS” register of the “Discharge” instruction or by setting “RESb” terminal to ”0” level. The “Discharge ON/OFF” instruction is usually required just after the internal power supply is turned off by setting “0” into the “DCON” and “AMPON” registers, or just after the external power supply is turned off. During the discharge operation, the internal or external power supply must not be turned on. (27) Reset circuit The reset circuit initializes the LSI into the following default status. It is activated by setting the RESb terminal to “0”. The RESB terminal is usually required to connect to MPU reset terminal in order that the LSI can be initialized at the same timing of the MPU. ● Default status 1. DDRAM display data 2. column address 3. row address 4. Initial display line 5. Display ON/OFF 6. Reverse display ON/OFF 7. Duty cycle ratio 8. N-line Inversion ON/OFF 9. COM scan direction 10. Increment mode 11. Reverse SEG direction 12. SWAP mode 13. EVR value 14. Internal power supply 15. Display mode 16. LCD bias ratio 17. Gradation Palette 0 18. Gradation Palette 1 19. Gradation Palette 2 20. Gradation Palette 3 21. Gradation Palette 4 22. Gradation Palette 5 23. Gradation Palette 6 24. Gradation Palette 7 25. Gradation Palette 8 26. Gradation Palette 9 27. Gradation Palette 10 28. Gradation Palette 11 29. Gradation Palette 12 30. Gradation Palette 13 31. Gradation Palette 14 32. Gradation Palette 15 33. Gradation mode control 34. Data bus length 35. Discharge circuit - 46 - :Undefined :(00)H :(00)H :(0)H (1st line) :OFF :OFF (normal) :1/41 duty(DSE=0) :OFF :COM0 → COM39 :OFF :OFF (normal) :OFF (normal) :(0, 0, 0, 0, 0, 0, 0) :OFF :Gradation display mode :1/8 bias :(0, 0, 0, 0, 0) :(0, 0, 0, 1, 1) :(0, 0, 1, 0, 1) :(0, 0, 1, 1, 1) :(0, 1, 0, 0, 1) :(0, 1, 0, 1, 1) :(0, 1, 1, 0, 1) :(0, 1, 1, 1, 1) :(1, 0, 0, 0, 1) :(1, 0, 0, 1, 1) :(1, 0, 1, 0, 1) :(1, 0, 1, 1, 1) :(1, 1, 0, 0, 1) :(1, 1, 0, 1, 1) :(1, 1, 1, 0, 1) :(1, 1, 1, 1, 1) :Variable gradation mode :8-bit data bus length :(DIS/DIS2) : ”0” NJU6820 (28) Power supply ON/OFF sequences The following paragraphs describe power supply ON/OFF sequences, which are to protect the LSI from over current. (28-1) Using an external power supply # Power supply ON sequence Logic voltage (VDD) must be always input first, and next the LCD driving voltages (V1 to V4 and VLCD) are turned on. In using the external VOUT, the VDD must be input first, next the reset operation must be performed, and finally the VOUT can be input. # Power supply OFF sequence Either the reset operation, cutting off the V1 to V4 and VLCD from the LSI by the RESb terminal or the “Power control” instruction must be performed first, and next the VDD is turned off. It is recommended that a series-resister between 50 Ω and 100 Ω is added on the VLCD line (or VOUT line in using only the external VOUT voltage) in order to protect the LSI from the over current. (28-2) Using the internal power supply circuits # Power supply ON sequence The VDD must be input first, next the reset operation must be performed, and finally the V1 to V4 and VLCD can be turned on by setting “1” to the “DCON” and “AMPON” registers of the “Power control” instruction. # Power supply OFF sequence Either the reset operation by the RESb terminal or the “Power control” instruction must be performed first, and next the input voltage for the voltage booster (VEE) and the VDD can be turned off. If the VEE is supplied from different power sources for VDD, the VEE is turned off first, and next the VDD is turned off. - 47 - NJU6820 (29) Referential instruction sequences (29-1) Initialization in using the internal power supply circuits VDD, VEE power ON Wait for power-ON stabilization RESET Input WAIT Setting for LCD driving voltage-related functions - EVR value - LCD bias ratio - Power control (DCON=”1”, AMPON=”1”) End of initialization (29-2) Display data writing End of Initialization Setting for display-related functions - Initial display line - Increment mode - column address - row address Display data write Display ON (ON/OFF =”1”) (29-3) Power OFF Optional status Power save or reset operation Discharge ON WAIT VEE, VDD power OFF - 48 - - All COM/SEG output VSS level. NJU6820 (30) Instruction table Instruction Table (1) Code (80 series MPU I/F) Instructions Code CSb RS RDb WRb RE2 RE1 RE0 D7 D6 D5 D4 Functions D3 D2 D1 D0 Display data write 0 0 1 0 0/1 0/1 0/1 Write Data Write display data to DDRAM Display data read 0 0 0 1 0/1 0/1 0/1 Read Data Read display data from DDRAM column address (Lower) [0H] 0 1 1 0 0 0 0 0 0 0 0 AX3 AX2 AX1 AX0 DDRAM column address column address (Upper) [1H] 0 1 1 0 0 0 0 0 0 0 1 AX7 AX6 AX5 AX4 DDRAM column address row address (Lower) [2H] 0 1 1 0 0 0 0 0 0 1 0 AY3 AY2 AY1 AY0 DDRAM row address row address (Upper) [3H] 0 1 1 0 0 0 0 0 0 1 1 * * AY5 AY4 DDRAM row address Initial display line (Lower) [4H] 0 1 1 0 0 0 0 0 1 0 0 LA3 LA2 LA1 LA0 Row address for an initial COM line (Scan start line) Initial display line (Upper) [5H] 0 1 1 0 0 0 0 0 1 0 1 * * LA5 LA4 Row address for an initial COM line (Scan start line) N-line inversion (Lower) [6H] 0 1 1 0 0 0 0 0 1 1 0 N3 N2 N1 N0 The number of N-line inversion N-line inversion (Upper) [7H] 0 1 1 0 0 0 0 0 1 1 1 * * N5 N4 The number of N-line inversion 0 1 1 0 0 0 0 1 0 0 0 SHIFT: Common direction Display control (1) [8H] Display control (2) [9H] Increment control [AH] Power control [BH] Duty cycle ratio [CH] Boost level [DH] LCD bias ratio [EH] RE register [FH] Note 1) Note 2) Note 3) SHIFT MON ALL ON ON/ MON: Gradation or B/W display mode OFF ALLON: All pixels ON/OFF ON/OFF: Display ON/OFF REV: Reverse display ON/OFF NLIN: N-line inversion ON/OFF, NLIN SWAP REF SWAP: SWAP mode ON/OFF REF: Segment direction WIN: Window addressing mode ON/OFF AIM: Read-modify-write ON/OFF AIM AYI AXI AYI: Row auto-increment mode ON/OFF AXI: column auto-increment mode ON/OFF AMPON: Voltage followers ON/OFF HALT: Power save ON/OFF DC HALT ACL ON DCON: Voltage booster ON/OFF ACL: Reset 0 1 1 0 0 0 0 1 0 0 1 REV 0 1 1 0 0 0 0 1 0 1 0 WIN 0 1 1 0 0 0 0 1 0 1 1 AMP ON 0 1 1 0 0 0 0 1 1 0 0 DS3 DS2 DS1 DS0 Sets LCD duty cycle ratio 0 1 1 0 0 0 0 1 1 0 1 * VU2 VU1 VU0 Sets boost level 0 1 1 0 0 0 0 1 1 1 0 * B2 B1 B0 0 1 1 0 1 1 1 1 TST0 RE2 RE1 0/1 0/1 0/1 Sets LCD bias ratio RE0 RE flag set * : Don’t care. [ NH ] : Address of instruction register The dual instructions including upper and lower bytes is enabled after either upper or lower bytes are set into the register. The only “EVR control” instruction is enabled after both of the upper and lower bytes are set. - 49 - NJU6820 Instruction Table (2) Code (80 series MPU I/F) Instructions Code CSb RS RDb WRb RE2 RE1 RE0 D7 D6 D5 D4 Gradation palette A0/A8 (Lower) [0H] 0 1 1 0 0 0 1 0 0 0 0 Gradation palette A0/A8 (Upper) [1H] 0 1 1 0 0 0 1 0 0 0 1 Gradation palette A1/A9 (Lower) [2H] 0 1 1 0 0 0 1 0 0 1 0 Gradation palette A1/A9 (Upper) [3H] 0 1 1 0 0 0 1 0 0 1 1 Gradation palette A2/A10 (Lower) [4H] 0 1 1 0 0 0 1 0 1 0 0 Gradation palette A2/A10 (Upper) [5H] 0 1 1 0 0 0 1 0 1 0 1 Gradation palette A3/A11 (Lower) [6H] 0 1 1 0 0 0 1 0 1 1 0 Gradation palette A3/A11 (Upper) [7H] 0 1 1 0 0 0 1 0 1 1 1 Gradation palette A4/A12 (Lower) [8H] 0 1 1 0 0 0 1 1 0 0 0 Gradation palette A4/A12 (Upper) [9H] 0 1 1 0 0 0 1 1 0 0 1 Gradation palette A5/A13 (Lower) [AH] 0 1 1 0 0 0 1 1 0 1 0 Gradation palette A5/A13 (Upper) [BH] 0 1 1 0 0 0 1 1 0 1 1 Gradation palette A6/A14 (Lower) [CH] 0 1 1 0 0 0 1 1 1 0 0 Gradation palette A6/A14 (Upper) [DH] 0 1 1 0 0 0 1 1 1 0 1 0 1 1 0 1 1 1 1 RE register [FH] Note 1) Note 2) Note 3) - 50 - 0/1 0/1 0/1 D3 Functions D2 D1 D0 PA03/ PA02/ PA01/ PA00/ PA83 PA82 PA81 PA80 Sets palette values to gradation palette A0(PS=0)/A8(PS=1) * PA04/ PA84 Sets palette values to gradation palette A0(PS=0)/A8(PS=1) PA11/ PA91 PA10/ PA90 Sets palette values to gradation palette A1(PS=0)/A9(PS=1) * PA14/ PA94 Sets palette values to gradation palette A1(PS=0)/A9(PS=1) PA23/ PA22/ PA21/ PA20/ PA103 PA102 PA101 PA100 Sets palette values to gradation palette A2(PS=0)/A10(PS=1) PA24/ PA104 Sets palette values to gradation palette A2(PS=0)/A10(PS=1) PA33/ PA32/ PA31/ PA30/ PA113 PA112 PA111 PA110 Sets palette values to gradation palette A3(PS=0)/A11(PS=1) PA34/ PA114 Sets palette values to gradation palette A3(PS=0)/A11(PS=1) PA43/ PA42/ PA41/ PA40/ PA123 PA122 PA121 PA120 Sets palette values to gradation palette A4(PS=0)/A12(PS=1) PA44/ PA124 Sets palette values to gradation palette A4(PS=0)/A12(PS=1) PA53/ PA52/ PA51/ PA50/ PA133 PA132 PA131 PA130 Sets palette values to gradation palette A5(PS=0)/A13(PS=1) PA54/ PA134 Sets palette values to gradation palette A5(PS=0)/A13(PS=1) PA63/ PA62/ PA61/ PA60/ PA143 PA142 PA141 PA140 Sets palette values to gradation palette A6(PS=0)/A14(PS=1) PA64/ PA144 Sets palette values to gradation palette A6(PS=0)/A14(PS=1) * * PA13/ PA12/ PA93 PA92 * * * * * * * * * * * * TST0 RE2 * * * * * RE1 RE0 RE flag set * : Don’t care. [ NH ] : Address of Instruction register The dual instructions including upper and lower bytes is enabled after either upper or lower bytes are set into the register. The only “EVR control” instruction is enabled after both of the upper and lower bytes are set. NJU6820 Instruction Table (3) Code (80 series MPU I/F) Instructions Code CSb RS RDb WRb RE2 RE1 RE0 D7 D6 D5 D4 Gradation palette A7/A15 (Lower) [0H] 0 1 1 0 0 1 0 0 0 0 0 Gradation palette A7/A15 (Upper) [1H] 0 1 1 0 0 1 0 0 0 0 1 Gradation palette B0/B8 (Lower) [2H] 0 1 1 0 0 1 0 0 0 1 0 Gradation palette B0/B8 (Upper) [3H] 0 1 1 0 0 1 0 0 0 1 1 Gradation palette B1/B9 (Lower) [4H] 0 1 1 0 0 1 0 0 1 0 0 Gradation palette B1/B9 (Upper) [5H] 0 1 1 0 0 1 0 0 1 0 1 Gradation palette B2/B10 (Lower) [6H] 0 1 1 0 0 1 0 0 1 1 0 Gradation palette B2/B10 (Upper) [7H] 0 1 1 0 0 1 0 0 1 1 1 Gradation palette B3/B11 (Lower) [8H] 0 1 1 0 0 1 0 1 0 0 0 Gradation palette B3/B11 (Upper) [9H] 0 1 1 0 0 1 0 1 0 0 1 Gradation palette B4/B12 (Lower) [AH] 0 1 1 0 0 1 0 1 0 1 0 Gradation palette B4/B12 (Upper) [BH] 0 1 1 0 0 1 0 1 0 1 1 Gradation palette B5/B13 (Lower) [CH] 0 1 1 0 0 1 0 1 1 0 0 Gradation palette B5/B13 (Upper) [DH] 0 1 1 0 0 1 0 1 1 0 1 0 1 1 0 1 1 1 1 RE register [FH] Note 1) Note 2) Note 3) 0/1 0/1 0/1 D3 Functions D2 D1 D0 PA73/ PA72/ PA71/ PA70/ PA153 PA152 PA151 PA150 Sets palette values to gradation palette A7(PS=0)/A15(PS=1) PA74/ PA154 Sets palette values to gradation palette A7(PS=0)/A15(PS=1) PB03/ PB02/ PB01/ PB00/ PB83 PB82 PB81 PB80 Sets palette values to gradation palette B0(PS=0)/B8(PS=1) PB04/ PB84 Sets palette values to gradation palette B0(PS=0)/B8(PS=1) PB13/ PB12/ PB11/ PB10/ PB93 PB92 PB91 PB90 Sets palette values to gradation palette B1(PS=0)/B9(PS=1) PB14/ PB94 Sets palette values to gradation palette B1(PS=0)/B9(PS=1) PB23/ PB22/ PB21/ PB20/ PB103 PB102 PB101 PB100 Sets palette values to gradation palette B2(PS=0)/B10(PS=1) PB24/ PB104 Sets palette values to gradation palette B2(PS=0)/B10(PS=1) PB33/ PB32/ PB31/ PB30/ PB113 PB112 PB111 PB110 Sets palette values to gradation palette B3(PS=0)/B11(PS=1) PB34/ PB114 Sets palette values to gradation palette B3(PS=0)/B11(PS=1) PB43/ PB42/ PB41/ PB40/ PB123 PB122 PB121 PB120 Sets palette values to gradation palette B4(PS=0)/B12(PS=1) PB44/ PB124 Sets palette values to gradation palette B4(PS=0)/B12(PS=1) PB53/ PB52/ PB51/ PB50/ PB133 PB132 PB131 PB130 Sets palette values to gradation palette B5(PS=0)/B13(PS=1) PB54/ PB134 Sets palette values to gradation palette B5(PS=0)/B13(PS=1) * * * * * * * * * * * * * * TST0 RE2 * * * * * * * RE1 RE0 RE flag set * : Don’t care. [ NH ] : Address of Instruction register The dual instructions including upper and lower bytes is enabled after either upper or lower bytes are set into the register. The only “EVR control” instruction is enabled after both of the upper and lower bytes are set. - 51 - NJU6820 Instruction Table (4) Code (80 series MPU I/F) Instructions Code CSb RS RDb WRb RE2 RE1 RE0 D7 D6 D5 D4 D3 Functions D2 Gradation palette B6/B14 (Lower) [0H] 0 1 1 0 0 1 1 0 0 0 0 Gradation palette B6/B14 (Upper) [1H] 0 1 1 0 0 1 1 0 0 0 1 Gradation palette B7/B15 (Lower) [2H] 0 1 1 0 0 1 1 0 0 1 0 Gradation palette B7/B15 (Upper) [3H] 0 1 1 0 0 1 1 0 0 1 1 * * Gradation palette C0/C8 (Lower) [4H] 0 1 1 0 0 1 1 0 1 0 0 PC03/ PC83 Gradation palette C0/C8 (Upper) [5H] 0 1 1 0 0 1 1 0 1 0 1 Gradation palette C1/C9 (Lower) [6H] 0 1 1 0 0 1 1 0 1 1 Gradation palette C1/C9 (Upper) [7H] 0 1 1 0 0 1 1 0 1 Gradation palette C2/C10 (Lower) [8H] 0 1 1 0 0 1 1 1 Gradation palette C2/C10 (Upper) [9H] 0 1 1 0 0 1 1 Gradation palette C3/C11 (Lower) [AH] 0 1 1 0 0 1 Gradation palette C3/C11 (Upper) [BH] 0 1 1 0 0 Gradation palette C4/C12 (Lower) [CH] 0 1 1 0 Gradation palette C4/C12 (Upper) [DH] 0 1 1 0 0 1 1 0 RE register [FH] Note 1) Note 2) Note 3) - 52 - D1 D0 PB63/ PB62/ PB61/ PB60/ PB143 PB142 PB141 PB140 Sets palette values to gradation palette B6(PS=0)/B14(PS=1) PB64/ PB144 Sets palette values to gradation palette B6(PS=0)/B14(PS=1) PB73/ PB72/ PB71/ PB70/ PB153 PB152 PB151 PB150 Sets palette values to gradation palette B7(PS=0)/B15(PS=1) * PB74/ PB154 Sets palette values to gradation palette B7(PS=0)/B15(PS=1) PC02/ PC82 PC01/ PC81 PC00/ PC80 Sets palette values to gradation palette C0(PS=0)/C8(PS=1) * * * PC04/ PC84 Sets palette values to gradation palette C0(PS=0)/C8(PS=1) 0 PC13/ PC93 PC12/ PC92 PC11/ PC91 PC10/ PC90 Sets palette values to gradation palette C1(PS=0)/C9(PS=1) 1 1 * * * PC14/ PC94 Sets palette values to gradation palette C1(PS=0)/C9(PS=1) 0 0 0 PC23/ PC22/ PC21/ PC20/ PC103 PC102 PC101 PC100 Sets palette values to gradation palette C2(PS=0)/C10(PS=1) 1 0 0 1 PC24/ PC104 Sets palette values to gradation palette C2(PS=0)/C10(PS=1) 1 1 0 1 0 PC33/ PC32/ PC31/ PC30/ PC113 PC112 PC111 PC110 Sets palette values to gradation palette C3(PS=0)/C11(PS=1) 1 1 1 0 1 1 PC34/ PC114 Sets palette values to gradation palette C3(PS=0)/C11(PS=1) 0 1 1 1 1 0 0 PC43/ PC42/ PC41/ PC40/ PC123 PC122 PC121 PC120 Sets palette values to gradation palette C4(PS=0)/C12(PS=1) 0 1 1 1 1 0 1 PC44/ PC124 Sets palette values to gradation palette C4(PS=0)/C12(PS=1) 1 1 1 1 0/1 0/1 0/1 * * * * * * * * TST0 RE2 * * * * RE1 RE0 RE flag set * : Don’t care. [ NH ] : Address of Instruction register The dual instructions including upper and lower bytes is enabled after either upper or lower bytes are set into the register. The only “EVR control” instruction is enabled after both of the upper and lower bytes are set. NJU6820 Instruction Table (5) Code (80 series MPU I/F) Instructions Code CSb RS RDb WRb RE2 RE1 RE0 D7 D6 D5 D4 Functions D3 D2 D1 D0 Gradation palette C5/C13 (Lower) [0H] 0 1 1 0 1 0 0 0 0 0 0 Gradation palette C5/C13 (Upper) [1H] 0 1 1 0 1 0 0 0 0 0 1 Gradation palette C6/C14 (Lower) [2H] 0 1 1 0 1 0 0 0 0 1 0 Gradation palette C6/C14 (Upper) [3H] 0 1 1 0 1 0 0 0 0 1 1 Gradation palette C7/C15 (Lower) [4H] 0 1 1 0 1 0 0 0 1 0 0 Gradation palette C7/C15 (Upper) [5H] 0 1 1 0 1 0 0 0 1 0 1 * * 0 1 1 0 1 0 0 0 1 1 0 SC3 SC2 Display control Signal/ Duty Select [7H] 0 1 1 0 1 0 0 0 1 1 1 * * Gradation mode control [8H] 0 1 1 0 1 0 0 1 0 0 0 PWM C256 0 1 1 0 1 0 0 1 0 0 1 HSW ABS CKS WLS HSW : High speed access ON/OFF ABS : ABS mode ON/OFF CKS : Internal/external oscilation WLS : Display data Length EVR control (Lower) [AH] 0 1 1 0 1 0 0 1 0 1 0 DV3 DV2 DV1 DV0 Sets EVR level (Lower bit) EVR control (Upper) [BH] 0 1 1 0 1 0 0 1 0 1 1 * DV6 DV5 DV4 Sets EVR level (Upper bit) 0 1 1 0 1 0 0 1 1 0 1 * RF2 RF1 RF0 Oscillation frequency 0 1 1 0 1 0 0 1 1 1 0 * * 0 1 1 0 1 1 1 1 0 1 1 0 1 1 0 0 Reading address Sets instruction register address 0 1 0 1 * * * * Read Data Read out instruction register data Initial COM line [6H] Data bus length [9H] Frequency control [DH] Discharge ON/OFF [EH] RE register [FH] Instruction register address [CH] Instruction register read 0/1 0/1 0/1 1 0 0 0/1 0/1 0/1 PC53/ PC52/ PC51/ PC50/ PC133 PC132 PC131 PC130 Sets palette values to gradation palette C5(PS=0)/C13(PS=1) PC54/ PC134 Sets palette values to gradation palette C5(PS=0)/C13(PS=1) PC63/P PC62/ PC61/ PC60/ C143 PC142 PC141 PC140 Sets palette values to gradation palette C6(PS=0)/C14(PS=1) PC64/ PC144 Sets palette values to gradation palette C6(PS=0)/C14(PS=1) PC73/ PC72/ PC71/ PC70/ PC153 PC152 PC151 PC150 Sets palette values to gradation palette C7(PS=0)/C15(PS=1) * PC74/ PC154 Sets palette values to gradation palette C7(PS=0)/C15(PS=1) SC1 SC0 * * * * TST0 RE2 * * DSE SON * * DIS2 DIS RE1 Sets scan-starting common driver SON : Display clock ON/OFF DSE : Duty-1 ON/OFF PWM : Variable/Fixed gradation mode C256 : 256-Color Mode ON/OFF Discharge the electric charge in capacitors on V1 to V4 and VLCD RE0 RE flag Note 1) Note 2) Note 3) * : Don’t care. [ NH ] : Address of Instruction register The dual instructions including upper and lower bytes is enabled after either upper or lower bytes are set into the register. The only “EVR control” instruction is enabled after both of the upper and lower bytes are set. Note 4) CKS=0: Internal oscillation mode (default) CKS=1: External oscillation mode - 53 - NJU6820 Instruction Table (6) Code (80 series MPU I/F) Instructions Code CSb RS RDb WRb RE2 RE1 RE0 Window end column address (Lower) [0H] Window end column address (Upper) [1H] Functions D7 D6 D5 D4 D3 D2 D1 D0 0 1 1 0 1 0 1 0 0 0 0 EX3 EX2 EX1 EX0 Sets column address for end point 0 1 1 0 1 0 1 0 0 0 1 EX7 EX6 EX5 EX4 Sets column address for end point Window end row address (Lower) [2H] 0 1 1 0 1 0 1 0 0 1 0 EY3 EY2 EY1 EY0 Sets row address for end point Window end row address (Upper) [3H] 0 1 1 0 1 0 1 0 0 1 1 * * EY5 EY4 Sets row address for end point Initial reverse line (Lower) [4H] 0 1 1 0 1 0 1 0 1 0 0 LS3 LS2 LS1 LS0 Sets address for reverse line Initial reverse line (Upper) [5H] 0 1 1 0 1 0 1 0 1 0 1 * * LS5 LS4 Sets address for reverse line Last reverse line (Lower) [6H] 0 1 1 0 1 0 1 0 1 1 0 LE3 LE2 LE1 LE0 Sets address for reverse line Last reverse line (Upper) [7H] 0 1 1 0 1 0 1 0 1 1 1 * * LE5 LE4 Sets address for reverse line 0 1 1 0 1 0 1 1 0 0 0 * * BT LREV 1 1 0 1 0 1 1 0 0 1 * * * PS 0 1 1 0 1 0 1 1 0 1 0 PWM PWM PWM PWM S A B C 0 1 1 0 1 1 1 1 TST0 RE2 Reverse line display ON/OFF [8H] Gradation palette setting control / Icon SEG address set [9H] PWM control [AH] RE register [FH] Note 1) Note 2) Note 3) - 54 - 0 0/1 0/1 0/1 RE1 BT : Blink type setting LREV : Reverse line display ON/OFF PS : gradation setting Sets PWM mode RE0 RE flag * : Don’t care. [ NH ] : Address of Instruction register The dual instructions including upper and lower bytes is enabled after either upper or lower bytes are set into the register. The only “EVR control” instruction is enabled after both of the upper and lower bytes are set. NJU6820 (31) Instruction descriptions This chapter provides detail descriptions and instruction registers. Nonexistent instruction codes must not be set into the LSI. (31-1) Display data write The “Display data write” instruction is used to write 8-bit display data into the DDRAM. CSB RS 0 0 RDb WRb RE2 1 0 0/1 RE1 RE0 0/1 0/1 D7 D6 D5 D4 D3 D2 D1 D0 Display data (31-2) Display data read The “Display data read” instruction is used to read out 8-bit display data from the DDRAM, where the column address and row address must be specified beforehand by the “column address” and “row address” instructions. The dummy read is required just after the “column address” and “row address” instructions. CSB RS 0 0 RDb WRb 0 1 RE2 RE1 RE0 0/1 0/1 0/1 D7 D6 D5 D4 D3 D2 D1 D0 Display data (31-3) Column address The “column address” instruction is used to specify the column address for the display data’s reading and writing operations. It requires dual bytes for lower 4-bit and upper 4-bit data. The instruction for the lower 4-bit data must be executed first, next the instruction for the upper 4-bit. CSB RS RDb WRb 0 1 1 CSB RS RDb 0 1 1 0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 0 0 0 AX3 AX2 AX1 AX0 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 0 1 AX7 AX6 AX5 AX4 WRb RE2 0 0 (31-4) Row address The “row address” instruction is used to specify the row address for the display data read and write operations. It requires dual bytes for lower 4-bit and upper 2-bit data. The instruction for the lower 4bit data must be executed first, next the instruction for upper 2-bit. The row address is specified in between 00H and 27H. The setting for nonexistent row address between 28H and 3FH is prohibited. CSb RS RDb WRb 0 1 1 CSb RS RDb 0 1 1 0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 0 1 0 AY3 AY2 AY1 AY0 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 1 1 * * AY5 AY4 WRb RE2 0 0 - 55 - NJU6820 (31-5) Initial display line The “Initial display line” instruction is used to specify the line address corresponding to the initial COM line. The initial COM line specified by the “Initial COM line” instruction and indicates the common driver that starts scanning data. CSb RS RDb WRb 0 1 1 CSb RS RDb 0 1 1 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 1 0 0 LA3 LA2 LA1 LA0 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 1 0 1 * * LA5 LA4 0 WRb RE2 0 0 LA5 LA4 LA3 LA2 LA1 LA0 Line Address 0 0 0 0 0 0 0 0 0 0 0 0 1 1 : : 1 0 : : 0 1 1 1 39 (31-6) N-line inversion The “N-line inversion” instruction is used to control the alternate rates of the liquid crystal direction. It is programmed to select the N value between 2 and 39, and the FR signal toggles once every N lines by setting “1” into the “NLIN” register of the “Display control (2)” instruction. When the N-line inversion is disabled by setting “0” into the “NLIN” register, the FR signal toggles by the frame. CSb RS RDb 0 1 1 CSb RS 0 1 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 1 1 0 N3 N2 N1 N0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 1 1 1 * * N5 N4 WRb RE2 0 RDb WRb 1 0 LA5 LA4 LA3 LA2 LA1 LA0 N value 0 0 0 0 0 0 Inhibited* 0 0 0 0 0 1 2 : : 1 - 56 - 0 0 : : 1 1 0 39 NJU6820 ! N-line Inversion Timing (1/41 duty cycle ratio) N-line inversion OFF 1st line 3rd line 40th line 2nd line 1st line 41th line CL FLM FR N-line inversion ON N-line control 1st line 3rd line N line 2nd line 2nd line 1st line CL FR (31-7) Display control (1) The “Display control (1)” instruction is used to control display conditions by setting the “Display ON/OFF”, “All pixels ON/OFF”, Display mode” and “Common direction” registers. CSb RS RDb 0 1 1 WRb RE2 0 0 RE1 RE0 D7 D6 D5 D4 D3 D2 0 0 1 0 0 0 SHIFT MON D1 D0 ALLON ON/OFF ! ON/OFF register ON/OFF=0 ON/OFF=1 : Display OFF (All COM/SEG output Vss level.) : Display ON ! All ON register The “All pixels ON/OFF” register is used to turn on all pixels without changing display data of the DDRAM. The setting for the “All pixels ON/OFF” register has a priority over the “Reverse display ON/OFF” register. ALLON=0 ALLON=1 : Normal : All pixels turn on. ! MON register MON=0 MON=1 : Gradation mode : B&W mode ! SHIFT register SHIFT=0 SHIFT=1 : COM0 → COM39 : COM39 → COM0 - 57 - NJU6820 (31-8) Display control (2) The “Display control (2)” instruction is used to control display conditions by setting “Segment direction”, “SWAP mode ON/OFF”, “N-line inversion ON/OFF” and “Reverse display ON/OFF” registers. CSb RS RDb WRb RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 1 0 0 0 0 1 0 0 1 REV NLIN SWAP REF # REF register The “REF” register is used to reverse the assignment between segment drivers and column address, and it is possible to reduce restrictions for placement of the LSI on the LCD modules. For more information, see (10) “The relation among the DDRAM column address, display data and segment drivers”. # SWAP register The “SWAP” register is used to reverse the arrangement of the display data in the DDRAM. SWAP=0 SWAP=1 : SWAP mode OFF : SWAP mode ON (Normal) SWAP=”0” SWAP=”1” Write data D7 D 6 D 5 D 4 D 3 D 2 D 1 D 0 D7 D6 D5 D4 D3 D2 D1 D0 RAM data D7 d6 d5 d4 d3 d2 d1 d0 d0 d1 d2 d3 d4 d5 d6 d7 Read data D 7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 # NLIN register The “NLIN” is used to enable or disable the N-line inversion. NLIN=0 NLIN=1 : N-line inversion OFF : N-line inversion ON (The FR signal toggles by the flame.) (The FR signal toggles once every N frames.) # REV register The “REV” register is used to enable or disable the reverse display mode that reverses the polarity of the display data without changing the display data of the DDRAM. REV=0 REV=1 - 58 - : Reverse display mode OFF : Reverse display mode ON REV Display 0 Normal 1 Reverse DDRAM data → Display data 0 0 1 1 0 1 1 0 NJU6820 (31-9) Increment control The “Increment control” instruction is used for the increment mode. In using the auto-increment mode, DDRAM address automatically increments (+1) whenever the DDRAM is accessed by the “Display data write” or “Display data read” instruction. Therefore, once “Display data write” or “Display data read” instruction is established, it is possible to continuously access to the DDRAM without the “column address” and “row address” instructions. The settings for the “AIM”, “AXI” and “AYI” registers are listed in the following tables. CSb RS 0 1 RDb WRb 1 0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 1 0 1 0 WIN AIM AYI AXI # AIM, AYI and AXI registers AIM 0 1 Increment mode Auto-increment for both of the display data read and write operations Auto-increment for the display write operation (Read modify write) Note 1 2 Note 1) It is effective for usual operations accessing successive addresses. Note 2) It is effective for the read-modify-write operation. AYI 0 0 1 AXI 0 1 0 1 1 Increment mode No auto-increment Auto-increment for the column address Auto-increment for the row address Auto-increment for the column address and row address Note 1 2 3 4 Note 1) Auto-increment is disabled regardless of the “AIM” register. Note 2) Auto-increment is of the column address is enabled in accordance with the “AIM” register. 00H MAXH MAXH in the 8-bit data bus mode MAXH in the 16-bit data bus mode : FFH : 7FH Note 3) Auto-increment of the row address is enabled in accordance with the “AIM” register. 00H 27H Note 4) Auto-increment of the column address and the row address are enabled. The row address increments whenever the column address reaches to the MAXH. 00H MaxH column address MAXH in the 8-bit data bus mode MAXH in the 16-bit data bus mode 00H 7FH row address : FFH : 7FH - 59 - NJU6820 # WIN register The “WIN” register is used to access to the DDRAM for the window display area, where the start point is determined by the “column address” and “row address” instructions, and the end point by the “Window end column address “and ”Window end row address” instructions. The setting sequence for the window display area is listed as follows. For more detail, see (7) “Window addressing mode”. WIN=0 WIN=1 :Window addressing mode OFF :Window addressing mode ON 1. Set WIN=1, AXI=1, and AYI=1 by “Increment control” instruction. 2. Set the start point by the “column address” and “row address” instructions 3. Set the end point by the “Window end column address” and “Window end row address” instructions 4. Enable to access to the DDRAM in the window addressing mode START Address END Address column address - 60 - START Address END Address row address NJU6820 (31-10) Power control CSb RS 0 1 RDb WRb RE2 1 0 0 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 0 1 1 AMPON HALT DCON ACL # ACL register The “ACL” register is used to initialize the internal power supply circuits. ACL=0 ACL=1 : Initialization OFF (Normal) : Initialization ON When the data of the “ACL register” is read out by the “Instruction register read” instruction, the read-out data is “1” during the initialization and “0” after the initialization. This initialization is performed by using the signal produced by 2 clocks on the OSC1. For this reason, the wait time for 2 clocks of the OSC1 necessary until next instruction. # DCON register The “DCON” register is used to enable or disable the voltage booster. DCON=0 DCON=1 : Voltage booster OFF : Voltage booster ON # HALT register The “HALT” register is used to enable or disable the power save mode. It is possible reduce operating current down to stand-by level. The internal status in the power save mode is listed below. HALT=0 HALT=1 : Power save OFF (Normal) : Power save ON Internal status in the power save mode • The oscillation circuits and internal power supply circuits are halted. • All segment and common drivers output VSS level. • The clock input into the OSC1 is inhibited. • The display data in the DDRAM is maintained. • The operational modes before the power save mode are maintained. • The V1 to V4 and VLCD are in the high impedance. As a power save ON sequence, the “Display OFF” must be executed first, next the “Power save ON” instruction, and then all common and segment drivers output the VSS level. And as power save OFF sequence, the “Power save OFF” instruction is executed first, next the “Display ON” instruction. If the “Power save OFF” instruction is executed in the display ON status, unexpected pixels may instantly turn on. # AMPON register The “AMPON” register is used to enable or disable the voltage followers, voltage regulator and EVR. AMPON=0 AMPON=1 : The voltage followers, voltage regulator the EVR OFF : The voltage followers, voltage regulator the EVR ON - 61 - NJU6820 (31-11) Duty cycle ratio The “Duty cycle ratio” instruction is used to select LCD duty cycle ratio for the partial display function. The partial display function specifies some parts of display area on a LCD panel in the condition of lower duty cycle ratio, lower LCD bias ratio, lower boost level and lower LCD driving voltage. Therefore, it is possible to optimize the LSI’s conditions with extremely low power consumption. CSb RS 0 1 RDb WRb RE2 1 0 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 1 0 0 DS3 DS2 DS1 DS0 0 DS3 DS2 DS1 DS0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Row way displays 40 commons 37 commons 33 commons 29 commons 25 commons 21 commons 17 commons 13 commons 9 commons 5 commons Duty cycle ratio DSE=0 DSE=1 1/41 1/40 1/37 1/36 1/33 1/32 1/29 1/28 1/25 1/24 1/21 1/20 1/17 1/16 1/13 1/12 1/9 1/8 1/4 1/5 Inhibited Inhibited Inhibited Inhibited Inhibited Inhibited The duty cycle ratio is controlled by the “DS3 to DS0” registers of the “Duty cycle ratio” instruction and the “DSE” register of the “Display Clock / Duty-1” instruction. DSE=”0” DSE=”1” : The number of commons + 1 (Duty cycle ratio in the default setting) : The number of commons (Duty-1) When the “DSE” is “0”, all common drivers output non-selective levels in period of last common. And the segment drivers output the same data for the last line as the data for previous line: th th For instance they output the same data for the 40 and 41 lines when the duty cycle ratio is set to 1/41. For the setting of the “DSE” register, see (31-17) “Display clock / Duty-1”. (31-12) Boost level The “Boost level” is used to select the multiple of the voltage booster for the partial display function. CSB RS 0 1 RDB WRB RE2 1 0 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 1 0 1 * VU2 VU1 VU0 0 VU2 0 0 0 0 1 1 1 1 - 62 - RE1 VU1 0 0 1 1 0 0 1 1 VU0 0 1 0 1 0 1 0 1 Boost level 1-time (No boost) 2-time 3-time 4-time 5-time Inhibited Inhibited Inhibited NJU6820 (31-13) LCD bias ratio The “LCD bias ratio” is used to select the LCD bias ratio for the partial display function. CSb RS 0 1 RDb WRb 1 0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 1 1 1 0 * B2 B1 B0 B2 0 0 0 0 1 1 1 1 B1 0 0 1 1 0 0 1 1 B0 0 1 0 1 0 1 0 1 LCD bias ratio 1/8 1/7 1/6 1/5 1/4 Inhibited Inhibited Inhibited (31-14) RE flag The “RE flag” registers are used to determine the contents for the RE registers (RE2, RE1 and RE0) and it is possible to access to the instruction registers. The data in the “TST0” register must be “0”, and it is used maker tests only. CSb RS 0 1 RDb WRb 1 0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0/1 0/1 0/1 1 1 1 1 TST0 RE2 RE1 RE0 - 63 - NJU6820 (31-15) Gradation palette A, B and C CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 - 64 - RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 0 0 0 0 PA03/ PA83 PA02/ PA82 PA01/ PA81 PA00/ PA80 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 0 0 0 1 * * * PA04/ PA84 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 0 0 1 0 PA13/ PA93 PA12/ PA92 PA11/ PA91 PA10/ PA90 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 0 0 1 1 * * * PA14/ PA94 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 0 1 0 0 PA23/ PA103 PA22/ PA102 PA21/ PA101 PA20/ PA100 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 0 1 0 1 * * * PA24/ PA104 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 0 1 1 0 PA33/ PA113 PA32/ PA112 PA31/ PA111 PA30/ PA110 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 0 1 1 1 * * * PA34/ PA114 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 1 0 0 0 PA43/ PA123 PA42/ PA122 PA41/ PA121 PA40/ PA120 NJU6820 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 1 0 0 1 * * * PA44/ PA124 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 1 0 1 0 PA53/ PA133 PA52/ PA132 PA51/ PA131 PA50/ PA130 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 1 0 1 1 * * * PA54/ PA134 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 1 1 0 0 PA63/ PA143 PA62/ PA142 PA61/ PA141 PA60/ PA140 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 1 1 0 1 * * * PA64/ PA144 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 0 0 0 0 PA73/ PA153 PA72/ PA152 PA71/ PA151 PA70/ PA150 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 0 0 0 1 * * * PA74/ PA154 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 0 0 1 0 PB03/ PB83 PB02/ PB82 PB01/ PB81 PB00/ PB80 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 0 0 1 1 * * * PB04/ PB84 - 65 - NJU6820 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 - 66 - RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 0 1 0 0 PB13/ PB93 PB12/ PB92 PB11/ PB91 PB10/ PB90 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 0 1 0 1 * * * PB14/ PB94 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 0 1 1 0 PB23/ PB103 PB22/ PB102 PB21/ PB101 PB20/ PB100 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 0 1 1 1 * * * PB24/ PB104 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 0 0 0 PB33/ PB113 PB32/ PB112 PB31/ PB111 PB30/ PB110 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 0 0 1 * * * PB34/ PB114 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 0 1 0 PB43/ PB123 PB42/ PB122 PB41/ PB121 PB40/ PB120 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 0 1 1 * * * PB44/ PB124 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 1 0 0 PB53/ PB133 PB52/ PB132 PB51/ PB131 PB50/ PB130 NJU6820 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 1 0 1 * * * PB54/ PB134 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 1 0 0 0 0 PB63/ PB143 PB62/ PB142 PB61/ PB141 PB60/ PB140 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 1 0 0 0 1 * * * PB64/ PB144 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 1 0 0 1 0 PB73/ PB153 PB72/ PB152 PB71/ PB151 PB70/ PB150 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 1 0 0 1 1 * * * PB74/ PB154 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 1 0 1 0 0 PC03/ PC83 PC02/ PC82 PC01/ PC81 PC00/ PC80 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 1 0 1 0 1 * * * PC04/ PC84 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 1 0 1 1 0 PC13/ PC93 PC12/ PC92 PC11/ PC91 PC10/ PC90 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 1 0 1 1 1 * * * PC14/ PC94 - 67 - NJU6820 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 - 68 - RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 1 1 0 0 0 PC23/ PC103 PC22/ PC102 PC21/ PC101 PC20/ PC100 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 1 1 0 0 1 * * * PC24/ PC104 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 1 1 0 1 0 PC33/ PC113 PC32/ PC112 PC31/ PC111 PC30/ PC110 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 1 1 0 1 1 * * * PC34/ PC114 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 1 1 1 0 0 PC43/ PC123 PC42/ PC122 PC41/ PC121 PC40/ PC120 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 1 1 1 0 1 * * * PC44/ PC124 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 0 0 0 0 0 PC53/ PC133 PC52/ PC132 PC51/ PC131 PC50/ PC130 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 0 0 0 0 1 * * * PC54/ PC134 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 0 0 0 1 0 PC63/ PC143 PC62/ PC142 PC61/ PC141 PC60/ PC140 NJU6820 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 0 0 0 1 1 * * * PC64/ PC144 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 0 0 1 0 0 PC73/ PC153 PC72/ PC152 PC71/ PC151 PC70/ PC150 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 0 0 1 0 1 * * * PC74/ PC154 Gradation Palette Table (Variable gradation mode, PWM=”0” and MON=”0”) (Palette Aj, Palette Bj, Palette Cj, (j=0 to 15)) Palette Value Gradation Level Note 0 0 0 0 0 0/31 Gradation Palette 0 Initial Value 0 0 0 0 1 Gradation Level Palette Value 1 0 0 0 0 16/31 1/31 1 0 0 0 1 17/31 0 0 0 1 0 2/31 1 0 0 1 0 18/31 0 0 0 1 1 3/31 1 0 0 1 1 19/31 0 0 1 0 0 4/31 1 0 1 0 0 20/31 0 0 1 0 1 5/31 1 0 1 0 1 21/31 0 0 1 1 0 6/31 1 0 1 1 0 22/31 0 0 1 1 1 7/31 1 0 1 1 1 23/31 0 1 0 0 0 8/31 1 1 0 0 0 24/31 0 1 0 0 1 9/31 1 1 0 0 1 25/31 0 1 0 1 0 10/31 1 1 0 1 0 26/31 0 1 0 1 1 11/31 1 1 0 1 1 27/31 0 1 1 0 0 12/31 1 1 1 0 0 28/31 0 1 1 0 1 13/31 1 1 1 0 1 29/31 0 1 1 1 0 14/31 1 1 1 1 0 30/31 0 1 1 1 1 15/31 1 1 1 1 1 31/31 Gradation Palette 1 Initial Value Gradation Palette2 Initial Value Gradation Palette 3 Initial Value Gradation Palette 4 Initial Value Gradation Palette 5 Initial Value Gradation Palette 6 Initial Value Gradation Palette 7 Initial Value Note Gradation Palette 8 Initial Value Gradation Palette 9 Initial Value Gradation Palette 10 Initial Value Gradation Palette 11 Initial Value Gradation Palette 12 Initial Value Gradation Palette 13 Initial Value Gradation Palette 14 Initial Value Gradation Palette 15 Initial Value - 69 - NJU6820 (31-16) Initial COM line The “Initial COM line” instruction is used to specify the common driver that starts scanning the display data. The line address, corresponding to the initial COM line, is specified by the “Initial display line” instruction. CSb RS 0 1 SC3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 RDb WRb 1 0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 0 0 1 1 0 SC3 SC2 SC1 SC0 SC2 SC1 SC0 Initial COM line (SHIFT=0) Initial COM line (SHIFT=1) 0 0 0 COM0 COM39 0 0 1 COM4 COM31 0 1 0 COM8 COM27 0 1 1 COM16 COM23 1 0 0 COM20 COM19 1 0 1 COM24 COM15 1 1 0 COM28 COM11 1 1 1 COM32 COM7 0 0 0 COM36 COM3 0 0 1 Inhibited Inhibited 0 1 0 Inhibited Inhibited 0 1 1 Inhibited Inhibited 1 0 0 Inhibited Inhibited 1 0 1 Inhibited Inhibited 1 1 0 Inhibited Inhibited 1 1 1 Inhibited Inhibited SHIFT=0: Positive scan direction (for instance, COM0 → COM39) SHIFT=1: Negative scan direction (for instance, COM39 → COM0) (31-17) Display clock / Duty-1 The “Display clock / Duty-1” instruction is used to enable or disable the display clocks (CL, FLM, FR, and CLK), and to control ON/OFF of the “Duty-1”. For more detail about the “Duty-1”, see (31-11) “Duty cycle ratio”. CSb RS 0 1 - 70 - RDb WRb 1 0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 0 0 1 1 1 * * DSE SON SON=0: SON=1: CL, FLM, FR, and CLK outputs level “0”. CL, FLM, FR, and CLK outputs are active. DSE=0: DSE=1: Duty -1 OFF Duty -1 ON NJU6820 (31-18) Gradation mode control The “Gradation mode control” is used select display mode as follows. CSb RS 0 1 RDb WRb 1 0 RE2 RE1 RE0 D7 D6 D5 D4 1 0 0 1 0 0 0 D3 D2 PWM C256 D1 D0 * * # PWM register PWM=0: Variable gradation mode (Variable 16-gradation levels out of 32-gradation level of the gradation palette) PWM=1: Fixed gradation mode (Fixed 8-gradation levels) # C256 register C256=0 256-color mode OFF (4,096-color in the default setting) C256=1 256-color mode ON (31-19) Data bus length The “Data bus length” instruction is used to select the 8- or 16- bit data bus length and determine the internal or external oscillation. In the 16-bit data bus mode, instruction data must be 16-bit (D15 to D0) as well as display data. However, for the access to the instruction registers, the lower 8-bit data (D7 to D0) of the 16-bit data is valid. For the access to the DDRAM, all of the 16-bit data (D15 to D0) is valid. CSb RS 0 1 RDb WRb 1 0 RE2 RE1 RE0 D7 D6 D5 D4 1 0 0 1 0 0 1 D3 D2 HSW ABS D1 D0 CKS WLS # HSW register HSW =0: High Speed access mode OFF HSW=1: High Speed access mode ON (only in the 8-bit data bus length) # ABS register ABS=0: ABS mode OFF (normal) ABS=1: ABS mode ON # WLS register WLS=0: 8-bit data bus length WLS =1: 16-bit data bus length # CKS register CKS =0: CKS =1: Internal oscillation (The OSC1 terminal must be fixd “1” or “0”.) External oscillation (By the external clock into the OSC1 or external resister between the OSC1 and OSC2. OSC2 should be open when clock is inputted from OSC1.) - 71 - NJU6820 (31-20) EVR control The “EVR control” instruction is used to fine-tune the LCD driving voltage (VLCD) so that it is possible to optimize the contrast level for a LCD panel. This instruction must be programmed by upper 3-bit data first, next lower 4-bit data. And it becomes enabled when the lower 4-bit data is programmed, so that it can prevent unexpected high voltage for the VLCD from being generated. CSb RS 0 1 CSb RS 0 1 RDb WRb RE2 1 0 1 RDb WRb RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 0 1 0 DV3 DV2 DV1 DV0 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 1 * DV6 DV5 DV4 1 0 1 0 DV6 0 0 DV5 0 0 DV4 0 0 1 1 1 DV3 0 0 : : 1 DV2 0 0 DV1 0 0 DV0 0 1 1 1 1 VLCD Low : : : High The formula of the VLCD is shown below. VLCD [V] = 0.5 x VREG + M (VREG – 0.5 x VREG) / 127 VBA = VEE x 0.9 VREG = VREF x N - 72 - VBA VREF VREG N M : Output voltage of the reference voltage generator : Input voltage of the voltage regulator : Output voltage of the voltage regulator : Register value for the voltage booster : Register value for the EVR NJU6820 (31-21) Frequency control The “Frequency control” instruction is used to control the frame frequency for a LCD panel. CSb RS 0 1 RDb WRb 1 0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 0 1 1 0 1 * Rf2 Rf1 Rf0 # Rfx register (x=0, 1, 2) The “Rfx” register is used to determine the feed back resister value for the internal oscillator and it is possible to adjust the frame frequency for the LCD modules. Rf 2 0 0 0 0 1 1 1 1 Rf 1 0 0 1 1 0 0 1 1 Rf 0 0 1 0 1 0 1 0 1 Feedback resistor value Reference value 0.8 x reference value 0.9 x reference value 1.1 x reference value 1.2 x reference value 0.7 x reference value 1.3 x reference value Inhibited (31-22) Discharge ON/OFF Discharge circuit is used to discharge the electric charge of the capacitors on the V1 to V4 and the VLCD terminals. The “Discharge ON/OFF” instruction is usually required just after the internal power supply is turned off by setting “0” into the “DCON” and “AMPON” registers, or just after the external power supply is turned off. During the discharge operation, the internal or external power supply must not be turned on. CSb RS 0 1 RDb WRb 1 0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 0 1 1 1 0 * * DIS2 DIS DIS=0: DIS=1: Discharge OFF Discharge ON (Capacitors on the VLCD, V1, V2, V3 and V4) (Capacitors on the VLCD, V1, V2, V3 and V4) DIS2=0: DIS2=1: Discharge OFF Discharge ON (Resistance between VOUT and VEE) (Resistance between VOUT and VEE) Note ) VOUT and VEE are internally connected with the resistor (100kΩ typical) in the power-ON. - 73 - NJU6820 (31-23) Instruction register address The “Instruction register address” is used to specify the instruction register address, so that it is possible to read out the contents of the instruction registers in combination with the “Instruction register read” instruction. CSB RS 0 1 RDB WRB RE2 1 0 1 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 1 0 0 RA3 RA2 RA1 RA0 (31-24) Instruction register read The “Instruction register read” instruction is used to read out the contents of the instruction register in combination with the “Instruction register address” instruction. CSb RS 0 1 RDb WRb 0 1 RE2 RE1 RE0 D7 D6 D5 D4 0/1 0/1 0/1 * * * * D3 D2 D1 D0 Internal register data read (31-25) Window end column address The “Window end column address” is used to specify the column address for the window end point. The lower 4-bit data is required to be programmed first and then the upper 4-bit data can be programmed. CSb RS 0 1 CSb RS 0 1 RDb WRb 1 0 RDb WRb 1 0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 1 0 0 0 0 EX3 EX2 EX1 EX0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 1 0 0 0 1 EX7 EX6 EX5 EX4 (31-26) Window end row address set The “Window end row address” is used to specify the row address for the window end point. The lower 4-bit data is required to be programmed first and then the upper 2-bit data can be programmed. CSb RS 0 1 CSb RS 0 1 - 74 - RDb WRb 1 0 RDb WRb 1 0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 1 0 0 1 0 EY3 EY2 EY1 EY0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 1 0 0 1 1 * * EY5 EY4 NJU6820 (31-27) Initial reverse line The “Initial reverse line” instruction is used to specify the initial reverse line address for the reverse line display. Lower 4-bit data must be programmed first, next upper 2-bit data. It is programmed in between 00H and 27H and the line address beyond 27H is inhibited. The address relation: LSi < LEi (i=7 to 0) must be maintained in the reverse line display. CSb RS 0 1 CSb RS 0 1 RDb WRb 1 0 RDb WRb 1 0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 1 0 1 0 0 LS3 LS2 LS1 LS0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 1 0 1 0 1 * * LS5 LS4 (31-28) Last reverse line The “Last reverse line” instruction is used to specify the last reverse line address for the reverse line display. Lower 4-bit must be programmed first, next upper 2-bit data. It is programmed in between 00H and 27H and the line address beyond 27H is inhibited. The address relation: LSi < LEi (i=7 to 0) must be maintained in the reverse line display. CSb RS 0 1 CSb RS 0 1 RDb WRb 1 0 RDb WRb 1 0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 1 0 1 1 0 LE3 LE2 LE1 LE0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 1 0 1 1 1 * * LE5 LE4 (31-29) Reverse line display ON/OFF The “Reverse line display ON/OFF” is used to enable or disable the reverse line display for the blink operation and determine the reverse line display mode. CSb RS 0 1 RDb WRb 1 0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 1 1 0 0 0 * * BT LREV # LREV register The “LREV” register is used to enable or disable the reverse line display. LREV =0: LREV =1: Reverse line display OFF (Normal) Reverse line display ON - 75 - NJU6820 # BT register The “BT” register is used to determine the reverse line display mode in the reverse line display ON (LREV=1) status. BT =0: BT =1: Normal reverse line display Blink once every 32 frames Display examples in the LREV=”1” and BT=”1” !"""! "!!!" "!!!! !"""! !!!!" "!!!" !"""! !!!!! "!!!" !"""! !"""" "!!!" """"! !"""! "!!!" """"" Blink once every 32 frames NJRC LCD DRIVER Low Power and Low Voltage Blink once every 32 frames NJRC ←Initial reverse line address LCD DRIVER ←Last reverse line address Low Power and Low Voltage (31-30) Gradation Palette setting control CSb RS 0 1 RDb WRb 1 # PS register PS=0: PS=1: - 76 - 0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 1 1 0 0 1 * * * PS Lower 8 Gradation setting Upper 8 Gradation setting NJU6820 (31-31) PWM control The “PWM control” is used to determine the PWM type for the segment waveforms, where the type can be specified for each of the SEGAi, SEGBi and SEGCi (i=0-127) drivers. CSb RS 0 1 RDb WRb 1 0 RE2 RE1 RE0 D7 D6 D5 D4 1 0 1 1 0 1 0 D3 D2 D1 D0 PWMS PWMA PWMB PWMC # PWMS register PWMS=0: Type 1 PWMS=1: Type 2 # PWMA, B and C registers The “PWMA, PWMB and PWMC” registers are used to select the type 1-O or type 1-E. PWMZ=0 (Z=A, B and C): Type 1-O PWMZ=1 (Z=A, B and C): Type 1-E PWM type1 (PWMS=”0”) “H” CL Odd line Even line “L” VLCD Type-O → ← V2 SEG VLCD Type-E → ← V2 PWM type2 (PWMS=”1”) CL “H” “L” SEG VLCD → → V2 - 77 - NJU6820 (32) The relationship between Common drivers and row addresses Row address assignment of common drivers is programmed by the “ SHIFT ” register of the “ Display control (1) ” , “ Duty cycle ratio ”, “ Internal display line ” and “ Initial COM line ” instructions. # When initial display line is “0” If the “ SHIFT “ is “ 0 “, the scan direction is normal. When the “ LA0 to LA6 ” registers of the “ Initial display line “instruction is “ 0 “, the “ MY “ corresponding to the initial COM line is “ 0 “ and is increasing during display. # When initial display line is not “0” If the “ SHIFT “ is “ 1 “, the scan direction is inversed. When the “ LA0 to LA6 ” registers of the “ Initial display line “instruction is not “ 0 “, the “ MY “ corresponding to the initial COM line is this setting value and is increasing during display. The following are examples of setting the start-line 0 or 5 at 1/41, 1/17, or 1/17 duty. - 78 - NJU6820 (32-1) Initial display line “0”, 1/41 duty cycle (Common forward scan, DSE=”0”) SC3 SC2 SC1 SC0 COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11 COM12 COM13 COM14 COM15 COM16 COM17 COM18 COM19 COM20 COM21 COM22 COM23 COM24 COM25 COM26 COM27 COM28 COM29 COM30 COM31 COM32 COM33 COM34 COM35 COM36 COM37 COM38 COM39 (40rd COM period) *1 0000 0 SHIFT=”0”(Common forward scan), DS3, 2, 1, 0=”0000”, LA5….LA0=”00000000”(Initial display line 0) 0001 0010 0011 0100 0101 0110 0111 1000 1001 Inhibited Inhibited Inhibited Inhibited Inhibited Inhibited 36 32 28 24 20 16 12 8 4 39 0 39 0 39 0 39 0 39 0 39 0 39 0 39 0 39 0 39 39 35 39 31 39 27 39 23 39 19 39 15 39 11 39 7 39 3 39 DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line *1 : 40th COM period is not selected. (32-2) Initial display line “0”, 1/41 duty cycle (Common backward scan, DSE=”0”) SC3 SC2 SC1 SC0 0000 SHIFT=”1”(Common forward scan), DS3, 2, 1, 0=”0000”, LA5….LA0=”00000000”(Initial display line 0) 0001 0010 0011 0100 0101 0110 0111 1000 1001 Inhibited Inhibited Inhibited Inhibited Inhibited Inhibited COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11 COM12 COM13 COM14 COM15 COM16 COM17 COM18 COM19 COM20 COM21 COM22 COM23 COM24 COM25 COM26 COM27 COM28 COM29 COM30 COM31 COM32 COM33 COM34 COM35 COM36 COM37 COM38 COM39 39 3 7 11 15 19 23 27 31 35 0 4 8 12 16 20 24 28 32 36 (40rd COM period) *1 39 39 39 39 39 39 39 39 39 39 0 39 0 39 0 39 0 39 0 39 0 39 39 0 39 0 39 0 DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line *1 : 40th COM period is not selected. - 79 - NJU6820 (32-3) Initial display line “0”, 1/17 duty cycle (Common forward scan, DSE=”0”) SC3 SC2 SC1 SC0 COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11 COM12 COM13 COM14 COM15 COM16 COM17 COM18 COM19 COM20 COM21 COM22 COM23 COM24 COM25 COM26 COM27 COM28 COM29 COM30 COM31 COM32 COM33 COM34 COM35 COM36 COM37 COM38 COM39 (17rd COM period) *1 0000 SHIFT=”0”(Common forward scan), DS3, 2, 1, 0=”0110”, LA5….LA0=”00000000”(Initial display line 0) 0001 0010 0011 0100 0101 0110 0111 1000 1001 Inhibited Inhibited Inhibited Inhibited Inhibited Inhibited 0 12 8 4 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 16 16 16 16 16 16 15 16 11 16 7 16 3 16 DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line *1 : 17th COM period is not selected. (32-4) Initial display line “0”, 1/17 duty cycle (Common backward scan, DSE=”0”) SC3 SC2 COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11 COM12 COM13 COM14 COM15 COM16 COM17 COM18 COM19 COM20 COM21 COM22 COM23 COM24 COM25 COM26 COM27 COM28 COM29 COM30 COM31 COM32 COM33 COM34 COM35 COM36 COM37 COM38 COM39 SC1 SC0 0000 SHIFT=”1”(Common forward scan), DS3, 2, 1, 0=”0110”, LA5….LA0=”00000000”(Initial display line 0) 0001 0010 0011 0100 0101 0110 0111 1000 1001 Inhibited Inhibited Inhibited Inhibited Inhibited Inhibited 15 7 3 0 15 0 15 0 15 0 15 0 15 0 15 0 0 0 0 0 0 0 (17rd COM period) *1 16 16 16 16 16 16 16 DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line *1 : 17th COM period is not selected. - 80 - 11 12 8 4 16 16 16 NJU6820 (32-5) Initial display line “0”, 1/5 duty cycle (Common forward scan, DSE=”0”) SC3 SC2 SC1 SC0 COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11 COM12 COM13 COM14 COM15 COM16 COM17 COM18 COM19 COM20 COM21 COM22 COM23 COM24 COM25 COM26 COM27 COM28 COM29 COM30 COM31 COM32 COM33 COM34 COM35 COM36 COM37 COM38 COM39 (5rd COM period) *1 0000 SHIFT=”0”(Common forward scan), DS3, 2, 1, 0=”1001”, LA5….LA0=”00000000”(Initial display line 0) 0001 0010 0011 0100 0101 0110 0111 1000 1001 Inhibited Inhibited Inhibited Inhibited Inhibited Inhibited 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 4 4 4 4 4 4 4 4 4 3 4 DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line *1 : 5th COM period is not selected. (32-6) Initial display line “0”, 1/5 duty cycle (Common backward scan, DSE=”0”) SC3 SC2 SC1 SC0 0000 COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11 COM12 COM13 COM14 COM15 COM16 COM17 COM18 COM19 COM20 COM21 COM22 COM23 COM24 COM25 COM26 COM27 COM28 COM29 COM30 COM31 COM32 COM33 COM34 COM35 COM36 COM37 COM38 COM39 0 (5rd COM period) *1 4 SHIFT=”1”(Common forward scan), DS3, 2, 1, 0=”1001”, LA5….LA0=”00000000”(Initial display line 0) 0001 0010 0011 0100 0101 0110 0111 1000 1001 Inhibited Inhibited Inhibited Inhibited Inhibited Inhibited 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 4 4 4 4 4 4 4 4 4 DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line *1 : 5th COM period is not selected. - 81 - NJU6820 (32-7) Initial display line “5”, 1/41 duty cycle (Common forward scan, DSE=”0”) SC3 SC2 SC1 SC0 COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11 COM12 COM13 COM14 COM15 COM16 COM17 COM18 COM19 COM20 COM21 COM22 COM23 COM24 COM25 COM26 COM27 COM28 COM29 COM30 COM31 COM32 COM33 COM34 COM35 COM36 COM37 COM38 COM39 (40rd COM period) *1 0000 5 SHIFT=”0”(Common forward scan), DS3, 2, 1, 0=”0000”, LA5….LA0=”00000101”(Initial display line 0) 0001 0010 0011 0100 0101 0110 0111 1000 1001 Inhibited Inhibited Inhibited Inhibited Inhibited Inhibited 1 37 33 29 25 21 17 13 9 39 0 5 39 0 5 39 0 5 39 0 5 39 0 5 39 0 5 39 0 5 39 0 5 39 0 5 4 39 39 0 39 36 39 32 39 28 39 24 39 20 39 16 39 12 39 8 39 DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line *1 : 40th COM period is not selected. (32-8) Initial display line “5”, 1/41 duty cycle (Common backward scan, DSE=”0”) SC3 SC2 COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11 COM12 COM13 COM14 COM15 COM16 COM17 COM18 COM19 COM20 COM21 COM22 COM23 COM24 COM25 COM26 COM27 COM28 COM29 COM30 COM31 COM32 COM33 COM34 COM35 COM36 COM37 COM38 COM39 SC1 SC0 0000 4 SHIFT=”1”(Common forward scan), DS3, 2, 1, 0=”0000”, LA5….LA0=”00000101”(Initial display line 0) 0001 0010 0011 0100 0101 0110 0111 1000 1001 Inhibited Inhibited Inhibited Inhibited Inhibited Inhibited 0 39 36 32 28 24 20 12 8 0 39 0 39 0 39 0 39 0 39 0 39 0 39 0 39 0 39 (40rd COM period) *1 5 1 37 33 29 25 21 17 13 9 39 39 39 39 39 39 39 39 39 39 DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line *1 : 40th COM period is not selected. - 82 - 16 NJU6820 (32-9) Initial display line “5”, 1/17 duty cycle (Common forward scan, DSE=”0”) SC3 SC2 SC1 SC0 COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11 COM12 COM13 COM14 COM15 COM16 COM17 COM18 COM19 COM20 COM21 COM22 COM23 COM24 COM25 COM26 COM27 COM28 COM29 COM30 COM31 COM32 COM33 COM34 COM35 COM36 COM37 COM38 COM39 (17rd COM period) *1 0000 SHIFT=”0”(Common forward scan), DS3, 2, 1, 0=”0110”, LA5….LA0=”00000101”(Initial display line 0) 0001 0010 0011 0100 0101 0110 0111 1000 1001 Inhibited Inhibited Inhibited Inhibited Inhibited Inhibited 5 17 13 9 20 5 20 5 20 5 20 5 20 5 20 5 20 5 20 5 20 5 16 16 16 16 16 16 20 16 16 16 12 16 8 16 DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line *1 : 17th COM period is not selected. (32-10) Initial display line “5”, 1/17 duty cycle (Common backward scan, DSE=”0”) SC3 SC2 COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11 COM12 COM13 COM14 COM15 COM16 COM17 COM18 COM19 COM20 COM21 COM22 COM23 COM24 COM25 COM26 COM27 COM28 COM29 COM30 COM31 COM32 COM33 COM34 COM35 COM36 COM37 COM38 COM39 SC1 SC0 0000 SHIFT=”1”(Common forward scan), DS3, 2, 1, 0=”0110”, LA5….LA0=”00000101”(Initial display line 0) 0001 0010 0011 0100 0101 0110 0111 1000 1001 Inhibited Inhibited Inhibited Inhibited Inhibited Inhibited 20 16 12 8 5 20 5 20 5 20 5 20 5 20 5 20 5 20 5 20 5 20 5 (17rd COM period) *1 16 16 16 16 16 16 16 17 13 9 16 16 16 DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line *1 : 17th COM period is not selected. - 83 - NJU6820 (32-11) Initial display line “5”, 1/5 duty cycle (Common forward scan, DSE=”0”) SC3 SC2 SC1 SC0 COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11 COM12 COM13 COM14 COM15 COM16 COM17 COM18 COM19 COM20 COM21 COM22 COM23 COM24 COM25 COM26 COM27 COM28 COM29 COM30 COM31 COM32 COM33 COM34 COM35 COM36 COM37 COM38 COM39 (5rd COM period) *1 0000 SHIFT=”0”(Common forward scan), DS3, 2, 1, 0=”1001”, LA5….LA0=”00000101”(Initial display line 0) 0001 0010 0011 0100 0101 0110 0111 1000 1001 Inhibited Inhibited Inhibited Inhibited Inhibited Inhibited 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 4 4 4 4 4 4 4 4 4 DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line th *1 : 5 COM period is not selected. 8 4 (32-12) Initial display line “5”, 1/5 duty cycle (Common forward scan, DSE=”0”) SC3 SC2 SC1 SC0 0000 COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11 COM12 COM13 COM14 COM15 COM16 COM17 COM18 COM19 COM20 COM21 COM22 COM23 COM24 COM25 COM26 COM27 COM28 COM29 COM30 COM31 COM32 COM33 COM34 COM35 COM36 COM37 COM38 COM39 5 (5rd COM period) *1 4 SHIFT=”1”(Common forward scan), DS3, 2, 1, 0=”1001”, LA5….LA0=”00000101”(Initial display line 0) 0001 0010 0011 0100 0101 0110 0111 1000 1001 Inhibited Inhibited Inhibited Inhibited Inhibited Inhibited 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 3 8 4 4 4 4 4 4 4 4 DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line th *1 : 5 COM period is not selected. - 84 - 4 NJU6820 (32-13) Initial display line “0”, 1/40 duty cycle (Common forward scan, DSE=”1”) SC3 COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11 COM12 COM13 COM14 COM15 COM16 COM17 COM18 COM19 COM20 COM21 COM22 COM23 COM24 COM25 COM26 COM27 COM28 COM29 COM30 COM31 COM32 COM33 COM34 COM35 COM36 COM37 COM38 COM39 SC2 SC1 SC0 0000 0 SHIFT=”0”(Common forward scan), DS3, 2, 1, 0=”0000”, LA5….LA0=”00000000”(Initial display line 0) DSE=”1” 0001 0010 0011 0100 0101 0110 0111 1000 1001 Inhibited Inhibited Inhibited Inhibited Inhibited Inhibited 36 32 28 24 20 16 12 8 4 39 0 39 0 39 0 39 0 39 0 39 0 39 0 39 0 39 0 39 35 31 27 23 19 15 11 7 3 DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line - 85 - NJU6820 ■ ABSOLUTE MAXIMUM RATINGS PARAMETER Supply Voltage (1) Supply Voltage (2) Supply Voltage (3) Supply Voltage (4) Supply Voltage (5) Supply Voltage (6) Input Voltage Storage Temperature SYMBOL VDD VEE VOUT VREG VLCD V1, V2, V3, V4 VI Tstg CONDITION VSS=0V Ta = +25°C TERMINAL VDD VEE VOUT VREG VLCD V1, V2, V3, V4 *1 RATING -0.3 to +4.0 -0.3 to +4.0 -0.3 to +19.0 -0.3 to +19.0 -0.3 to +19.0 -0.3 to VLCD + 0.3 -0.3 to VDD + 0.3 -45 to +125 UNIT V V V V V V V °C Note 1) D0 to D15, CSb, RS, RDb, WRb, OSC1, RESb, TEST1, TEST2, terminals. Note 2) To stabilize the voltage booster operation, decoupling capacitors must be connected between the VDD and VSS pins and between the VEE and VSSH pins. ! RECOMMENDED OPERATING CONDITIONS PARAMETER Supply Voltage Operating Voltage Operating Temperature Note1) Note2) Note3) Note4) SYMBOL VDD1 VDD2 VEE VLCD VOUT VREG VREF Topr TERMINAL VDD VEE VLCD VOUT VREG VREF MIN 1.7 2.4 2.4 5 TYP 2.1 MAX 3.3 3.3 3.3 18.0 18.0 VOUT × 0.9 3.3 UNIT V V V V V V V -30 85 °C Applies to the condition when the reference voltage generator is not used. Applies to the condition when the reference voltage generator is used. Applies to the condition when the voltage booster is used. The following relationship among the supply voltages must be maintained. VSS<V4<V3<V2<V1<VLCD<VOUT Note5) The relationship: VREF<VEE must be maintained. - 86 - NOTE *1 *2 *3 *4 *5 NJU6820 ■ DC CHARACTERISTICS 1 VSS = 0V, VDD = +1.7 to +3.3V, Ta = -30 to +85°C High level input voltage Low level input voltage High level output voltage Low level output voltage High level output voltage Low level output voltage Input leakage current Output leakage current SYM BOL VIH VIL VOH1 VOL1 VOH2 VOL2 ILI ILO IOH = -0.4mA IOL = 0.4mA IOH = -0.1mA IOL = 0.1mA VI = VSS or VDD VI = VSS or VDD Driver ON-resistance RON1 |∆VON| = 0.5V VLCD = 10V VLCD = 6V ISTB CSb=H, Ta=25°C VDD = 3V PARAMETER Stand-by current Internal oscillation Frequency External oscillation Frequency fOSC1 fOSC2 fOSC3 fr1 fr2 fr3 CONDITION MIN TYP 0.8 VDD 0 VDD - 0.4 MAX VDD 0.2VDD 0.4 VDD - 0.4 -10 -10 VDD = 3V Ta = 25°C Rf=51kΩ Rf=240kΩ Rf=1800kΩ N-time booster (N=2 to 5) RL = 500kΩ (VOUT - VSS) VDD = 3V, 5-time booster Whole ON pattern VDD = 3V, 5-time booster Checker pattern VDD = 3V,4-time booster Whole ON pattern VDD = 3V, 4-time booster Checker pattern Voltage converter output voltage VOUT Supply current (1) IDD1 Supply current (2) IDD2 Supply current (3) IDD3 Supply current (4) IDD4 VBA Operating voltage VBA VEE = 2.4 to 3.3V VREG Operating voltage VREG VEE = 2.4 to 3.3V VREF = 0.9 x VEE N-time booster (N=2 to 5) Output Voltage V2 V3 VD12 VD34 VD24 1 2 152 34 4.9 186 42 6.0 172 40 5.5 0.4 10 10 2 4 15 220 50 7.1 (N x VEE) x 0.95 (0.9 VEE) x 0.98 (VREF x N) x 0.97 -100 -100 -30 -30 -30 520 780 650 980 360 540 450 680 0.9 VEE (0.9 VEE) x 1.02 (VREF x N) 0 0 0 0 0 (VREF x N) x 1.03 +100 +100 +30 +30 +30 UNIT NOTE V V V V V V µA µA *1 *1 *2 *2 *3 *3 *4 *5 kΩ *6 µA *7 *8 *9 *10 kHz kHz *11 V *12 µA *13 V *14 V *15 mV *16 - 87 - NJU6820 ■ CLOCK and FRAME FREQUENCY PARAMETER SYMBOL Internal clock fOSC Display mode Display duty cycle ratio (1/D) <DSE=0> 1/41 to 1/25 1/21 to 1/13 1/9 1/5 16 Gradation mode fOSC / (62xD) fOSC / (62xDx2) fOSC / (62xDx4) fOSC / (62xDx8) Simplified 8 gradation mode fOSC / (14xD) fOSC / (14xDx2) fOSC / (14xDx4) fOSC / (14xDx8) B&W mode fOSC / (2xD) fOSC / (2xDx2) fOSC / (2xDx4) fOSC / (2xDx8) 16 Gradation mode fCK / (62xD) fCK / (62xDx2) fCK / (62xDx4) fCK / (62xDx8) Simplified 8 gradation mode fCK / (14xD) fCK / (14xDx2) fCK / (14xDx4) fCK / (14xDx8) B&W mode fCK / (2xD) fCK / (2xDx2) fCK / (2xDx4) fCK / (2xDx8) NOTE FLM External clock - 88 - fCK NJU6820 APPLIED TERMINALS and CONDITIONS Note 1) D0-D15, CSb, RS, RDb, WRb, P/S, SEL68, RESb Note 2) D0-D15 Note 3) CL, FLM, FR, CLK Note 4) CSb, RS, SEL68, RDb, WRb, P/S, RESb, OSC1 Note 5) D0-D15 in the high impedance Note 6) SEGA0-SEGA127, SEGB0-SEGB127, SEGC0-SEGC127, COM0-COM39 - Defines the resistance between the COM/SEG terminals and each of the power supply terminals (VLCD, V1, V2, V3 and V4) at the condition of 0.5V deference and 1/8 LCD bias ratio. Note 7) VDD - The oscillator is halted, CSb=”1” (disabled), No-load on the COM/SEG drivers Note 8) OSC - Defines the internal oscillation frequency at (Rf2, Rf1, Rf0)=(0,0,0) in the variable gradation mode. Note 9) OSC - Defines the internal oscillation frequency at (Rf2, Rf1, Rf0)=(0,0,0) in the fixed gradation mode. Note 10) OSC - Defines the internal oscillation frequency at (Rf2, Rf1, Rf0)=(0,0,0) in the Black & White mode. Note 11) VDD=3V, Ta=25°C Note 12) VOUT - Applies to the condition when the internal voltage booster, the internal oscillator and internal power circuits are used. - VEE=2.4V to 3.3V, EVR= (1,1,1,1,1,1,1), 1/4 to 1/8 LCD bias, 1/41 duty cycle, No-load on COM/SEG drivers - RL=500KΩ between the VOUT and the VSS, CA1=CA2=1.0uF, CA3=0.1uF, DCON=”1”, AMPON=”1” Note 13) VDD - Applies to the condition using the internal oscillator and internal power circuits, no access between the LSI and MPU. - EVR= (1,1,1,1,1,1,1), All pixels turned-on or checkerboard display in gradation mode. No-load on the COM/SEG drivers. - VDD=VEE, VREF=0.9VEE, CA1=CA2=1.0uF, CA3=0.1uF, DCON=”1”, AMPON=”1”, NLIN=”0” 1/41 Duty cycle, Ta=25°C Note 14) VBA - Applies to the condition that VBA=VREF and voltage booster N= 1. DCON=”0”, VOUT=13.5V input. Note 15) VREG - VEE=2.4V to 3.3V, VREF=0.9VEE, VOUT=18V, 1/4 to 1/8 LCD bias ratio, 1/41 duty cycle, EVR=(1,1,1,1,1,1,1) - Checkerboard display, No-load on the COM/SEG drivers, the voltage booster N=2 to 5 CA1=CA2=1.0uF, CA3=0.1uF, DCON=”0”, AMPON=”1”, NLIN=”0” Note 16) VLCD, V1, V2, V3, V4 - VEE=3.0V, VREF=0.9VEE, VOUT=15V, 1/4 to 1/8 LCD Bias, EVR= (1,1,1,1,1,1,1), Display OFF, Noload on the COM/SEG drivers, voltage booster N=5, CA1=CA2=1.0uF, CA3=0.1uF, DCON=”0”, AMPON=”1” (1) (2) (3) (4) VLCD V1 V2 V3 V4 VSS VD12: (1)-(2) VD34: (3)-(4) VD24: (2)-(4) - 89 - NJU6820 ■ AC CHARACTERISTICS ! Write operation (80-type MPU) tAS8 tAH8 CSb RS WRb tWRLW8 tWRHW8 tDS8 tDH8 D0 to D15 tCYC8 PARAMETER Address hold time Address setup time System cycle time Enable ”L” level pulse width Enable ”H” level pulse width Data setup time Data hold time PARAMETER Address hold time Address setup time System cycle time Enable ”L” level pulse width Enable ”H” level pulse width Data setup time Data hold time SYMBOL tAH8 tAS8 CONDITION MIN. 0 0 (VDD=2.5 to 3.3V, Ta=-30 to +85°C) MAX. UNIT TERMINAL ns CSb ns RS tCYC8 tWRLW8 tWRHW8 90 35 35 ns ns ns WRb tDS8 tDH8 30 5 ns ns D0 to D15 SYMBOL tAH8 tAS8 CONDITION MIN. 0 0 (VDD=2.2 to 2.5V, Ta=-30 to +85°C) MAX. UNIT TERMINAL ns CSb ns RS tCYC8 tWRLW8 tWRHW8 160 70 70 ns ns ns WRb tDS8 tDH8 40 5 ns ns D0 to D15 (VDD=1.7 to 2.2V, Ta=-30 to +85°C) PARAMETER Address hold time Address setup time System cycle time Enable ”L” level pulse width Enable ”H” level pulse width SYMBOL tAH8 tAS8 tCYC8 tWRLW8 tWRHW8 CONDITION MIN. 0 0 MAX. UNIT ns ns TERMINAL CSb RS 180 80 80 ns ns ns WRb Data setup time tDS8 70 Data hold time tDH8 10 Note) Each timing is specified based on 20% and 80% of VDD. ns ns D0 to D15 - 90 - NJU6820 ! Read operation (80-type MPU) tAH8 tAS8 CSb RS tWRLR8 RDb tWRHR8 tRDH8 D0 to D15 tRDD8 tCYC8 PARAMETER Address hold time Address setup time System cycle time Enable ”L” level pulse width Enable ”H” level pulse width Read Data delay time Read Data hold time PARAMETER Address hold time Address setup time System cycle time Enable ”L” level pulse width Enable ”H” level pulse width Read Data delay time Read Data hold time SYMBOL tAH8 tAS8 CONDITION tCYC8 tWRLR8 tWRHR8 tRDD8 tRDH8 SYMBOL tAH8 tAS8 (VDD=2.5 to 3.3V, Ta=-30 to +85°C) MAX. UNIT TERMINAL ns CSb ns RS 180 80 80 CL=15pF CONDITION tCYC8 tWRLR8 tWRHR8 tRDD8 tRDH8 MIN. 0 0 60 0 MIN. 0 0 RDb ns ns D0 to D15 (VDD=2.2 to 2.5V, Ta=-30 to +85°C) MAX. UNIT TERMINAL ns CSb ns RS 180 80 80 CL=15pF ns ns ns 60 0 ns ns ns RDb ns ns D0 to D15 (VDD=1.7 to 2.2V, Ta=-30 to +85°C) PARAMETER Address hold time Address setup time System cycle time Enable ”L” level pulse width Enable ”H” level pulse width SYMBOL tAH8 tAS8 tCYC8 tWRLR8 tWRHR8 CONDITION MIN. 0 0 MAX. 250 120 120 Read Data delay time tRDD8 CL=15pF Read Data hold time tRDH8 0 Note) Each timing is specified based on 20% and 80% of VDD. 110 UNIT ns ns TERMINAL CSb RS ns ns ns RDb ns ns D0 to D15 - 91 - NJU6820 ! Write operation (68-type MPU) tAH6 tAS6 CSb RS R/W (WRb) tELW6 tEHW6 E (RDb) tDS6 tDH6 D0 to D15 tCYC6 PARAMETER Address hold time Address setup time System cycle time Enable ”L” level pulse width Enable ”H” level pulse width Data setup time Data hold time PARAMETER Address hold time Address setup time System cycle time Enable ”L” level pulse width Enable ”H” level pulse width Data setup time Data hold time SYMBOL tAH6 tAS6 CONDITION MIN. 0 0 (VDD=2.5 to 3.3V, Ta=-30 to +85°C) MAX. UNIT TERMINAL ns CSb ns RS tCYC6 tELW6 tEHW6 90 35 35 ns ns ns E tDS6 tDH6 40 5 ns ns D0 to D15 SYMBOL tAH6 tAS6 CONDITION MIN. 0 0 (VDD=2.2 to 2.5V, Ta=-30 to +85°C) MAX. UNIT TERMINAL ns CSb ns RS tCYC6 tELW6 tEHW6 160 70 70 ns ns ns E tDS6 tDH6 50 5 ns ns D0 to D15 (VDD=1.7 to 2.2V, Ta=-30 to +85°C) PARAMETER Address hold time Address setup time System cycle time Enable ”L” level pulse width Enable ”H” level pulse width SYMBOL tAH6 tAS6 tCYC6 tELW6 tEHW6 CONDITION MIN. 0 0 MAX. UNIT ns ns TERMINAL CSb RS 180 80 80 ns ns ns E Data setup time tDS6 70 Data hold time tDH6 10 Note) Each timing is specified based on 20% and 80% of VDD. ns ns D0 to D15 - 92 - NJU6820 ! Read operation (68-type MPU) tAS6 tAH6 CSb RS R/W (WRb) tELR6 tEHR6 E (RDb) tRDH6 D0 to D15 tRDD6 tCYC6 PARAMETER Address hold time Address setup time SYMBOL tAH6 tAS6 System cycle time Enable ”L” level pulse width Enable ”H” level pulse width tCYC6 tELR6 tEHR6 Read Data delay time Read Data hold time tRDD6 tRDH6 PARAMETER Address hold time Address setup time SYMBOL tAH6 tAS6 CONDITION MIN. 0 0 180 80 80 CL=15pF 0 CONDITION MIN. 0 0 System cycle time Enable ”L” level pulse width Enable ”H” level pulse width tCYC6 tELR6 tEHR6 Read Data delay time Read Data hold time tRDD6 tRDH6 CL=15pF 0 SYMBOL CONDITION MIN. PARAMETER (VDD=2.5 to 3.3V, Ta=-30 to +85°C) MAX. UNIT TERMINAL ns CSb ns RS 70 ns ns ns E ns ns D0 to D15 (VDD=2.2 to 2.5V, Ta=-30 to +85°C) MAX. UNIT TERMINAL ns CSb ns RS 180 80 80 70 ns ns ns E ns ns D0 to D15 (VDD=1.7 to 2.2V, Ta=-30 to +85°C) MAX. UNIT TERMINAL Address hold time Address setup time tAH6 tAS6 0 0 ns ns CSb RS System cycle time Enable ”L” level pulse width Enable ”H” level pulse width tCYC6 tELR6 tEHR6 250 120 120 ns ns ns E Read Data delay time Read Data hold time tRDD6 tRDH6 ns ns D0 to D15 CL=15pF 0 110 Note) Each timing is specified based on 20% and 80% of VDD. - 93 - NJU6820 ! Serial interface CSb tCSH tCSS RS tASS SCL tAHS tSLW tSHW tCYCS tDSS tDHS SDA PARAMETER Serial clock cycle SCL ”H” level pulse width SCL ”L” level pulse width Address setup time Address hold time Data setup time Data hold time CSb – SCL time CSb hold time PARAMETER Serial clock cycle SCL ”H” level pulse width SCL ”L” level pulse width Address setup time Address hold time Data setup time Data hold time CSb – SCL time CSb hold time SYMBOL CONDITION tCYCS tSHW tSLW tASS tAHS tDSS tDHS tCSS tCSH SYMBOL CONDITION tCYCS tSHW tSLW tASS tAHS tDSS tDHS tCSS tCSH MIN. 50 20 20 20 20 20 20 20 20 (VDD=2.5 to 3.3V, Ta=-30 to +85°C) UNIT MAX. TERMINAL ns ns SCL ns ns RS ns ns SDA ns ns CSb ns MIN. 50 20 20 20 20 20 20 20 20 (VDD=2.2 to 2.5V, Ta=-30 to +85°C) UNIT MAX. TERMINAL ns ns SCL ns ns RS ns ns SDA ns ns CSb ns PARAMETER SYMBOL CONDITION MIN. 80 Serial clock cycle tCYCS 35 SCL ”H” level pulse width tSHW 35 tSLW SCL ”L” level pulse width 35 Address setup time tASS 35 Address hold time tAHS 35 Data setup time tDSS 35 Data hold time tDHS 35 CSb – SCL time tCSS 35 t CSH CSb hold time Note) Each timing is specified based on 20% and 80% of VDD. - 94 - (VDD=1.7 to 2.2V, Ta=-30 to +85°C) UNIT MAX. TERMINAL ns ns SCL ns ns RS ns ns SDA ns ns CSb ns NJU6820 ! Display control timing CLK tDCL CL tDFLM tDFLM FLM tFR FR Output timing PARAMETER FLM delay time FR delay time CL delay time Output timing PARAMETER FLM delay time FR delay time CL delay time SYMBOL CONDITION tDFLM CL=15pF tFR tDCL SYMBOL CONDITION tDFLM CL=15pF tFR tDCL MIN. 0 0 0 (VDD=2.4 to 3.3V, Ta=-30 to +85°C) MAX. UNIT TERMINAL 500 ns FLM 500 ns FR 200 ns CL MIN. 0 0 0 (VDD=1.7 to 2.4V, Ta=-30 to +85°C) MAX. UNIT TERMINAL 1000 ns FLM 1000 ns FR 200 ns CL Note) Each timing is specified based on 20% and 80% of VDD. - 95 - NJU6820 ! Input clock timing tCKLW OSC1 PARAMETER OSC1 “H” level pulse width (1) OSC1 “L” level pulse width (1) OSC1 “H” level pulse width (2) OSC1 “L” level pulse width (2) OSC1 “H” level pulse width (3) OSC1 “L” level pulse width (3) tCKHW SYMBOL tCKHW1 tCKLW1 tCKHW2 tCKLW2 tCKHW3 tCKLW3 CONDITION MIN. 2.27 2.27 10 10 70 70 (VDD=1.7 to 3.3V, Ta=-30 to +85°C) UNIT MAX. TERMINAL OSC1 3.29 µs ∗1 3.29 µs OSC1 14.7 µs ∗2 14.7 µs OSC1 103 µs ∗3 103 µs Note) Each timing is specified based on 20% and 80% of VDD. Note 1) Applied to the variable gradation / mode MON=”0”,PWM=”0” Note 2) Applied to the fixed gradation / mode MON=”0”,PWM=”1” Note 3) Applied to the B&W mode / MON=”1” - 96 - NJU6820 ! Reset input timing tRW RESb tR Internal circuit status PARAMETER Reset time RESb “L” level pulse width PARAMETER Reset time RESb “L” level pulse width End of reset During reset SYMBOL CONDITION MIN. tR tRW SYMBOL CONDITION 1.0 MIN. RESb (VDD=1.7 to 2.4V, Ta=-30 to +85°C) UNIT MAX. Terminal 1.5 10.0 µs µs 10.0 tR tRW (VDD=2.4 to 3.3V, Ta=-30 to +85°C) UNIT MAX. Terminal µs µs RESb Note) Each timing is specified based on 20% and 80% of VDD. - 97 - NJU6820 ! Typical characteristic PARAMETER Basic delay time of gate ! SYMBOL Ta=+25°C, VSS=0V, VDD=3.0V MIN TYP 10 MAX Input output terminal type (a) Input circuit VDD Terminals: CSb, RS, RDb, WRb, SEL68, P/S, RESb I Input signal VSS(0V) (b) Output circuit Terminals: VDD FLM, CL, FR, CLK Output control signal O Output signal VSS(0V) (c) Input/Output circuit VDD Terminals: D0 to D15 I/O Input signal VSS(0V) VSS(0V) Input control signal VDD Output control signal Output signal VSS(0V) - 98 - UNIT ns NJU6820 (d) Display output circuit VLCD VLCD VLCD V1/V2 Output control signal 1 Output control signal 2 Output control signal 3 Output control signal 4 O VSS(0V) Terminals: V3/V4 VSS(0V) VSS(0V) SEGA0 to SEGA127 SEGB0 to SEGB127 SEGC0 to SEGC127 COM0 to COM39 - 99 - NJU6820 ■ APPLICATION CIRCUIT EXAMPLES (1) MPU Connections 80-type MPU interface 1.7V to 3.3V VCC A0 A1 to A7 7 (80-type MPU)IORQb D0 to D7 RS Decoder 8 RDb WRb RESb VDD NJU6820 CSb D0 to D7 RDb WRb RESb V SS GND RESET 68-type MPU interface 1.7V to 3.3V VCC A0 A1 to A15 (68-type MPU) VMA RS 15 D0 to D7 Decoder 8 E R/W RESb NJU6820 CSB D0 to D7 RDb (E) WRb(R/W) RESb GND VDD VSS RESET Serial interface 1.7V to 3.3V VCC A0 A1 to A7 (MPU) RS 7 Decoder SDA SCL RESb RESb RESET - 100 - NJU6820 CSb PORT1 PORT2 GND VDD VSS NJU6820 [CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights. - 101