TPIC1533 QUAD AND HEX POWER DMOS ARRAY SLIS064 – OCTOBER 1996 D D D D Low rDS(on): 0.1 Ω Typ (Full H-Bridge) 0.22 Ω Typ (Triple Half H-Bridge) Pulsed Current: 12 A Per Channel (Full H-Bridge) 6 A Per Channel (Triple Half H-Bridge) Matched Sense Transistors for Class A-B Linear Operation Fast Commutation Speed DW PACKAGE (TOP VIEW) OUTPUT3 GND GATE3B GATE2B SENSE OUTPUT2 GATE4B GATE2A GATE5B VDD2 OUTPUT4 SOURCE description 1 24 2 23 3 22 4 21 5 20 6 19 7 18 8 17 9 16 10 15 VDD3 GND GATE3A GATE1B GATE2C OUTPUT1 GATE4A GATE1A GATE5A VDD1 VDD3 OUTPUT5 The TPIC1533 is a monolithic power DMOS array 11 14 that consists of ten electrically isolated N-channel 12 13 enhancement-mode power DMOS transistors, four of which are configured as a full H-bridge and six as a triple half H-bridge. The lower stage of the full H-bridge is provided with an integrated sense-FET to allow biasing of the bridge in class A-B operation. The TPIC1533 is offered in a 24-pin wide-body surface-mount (DW) package and is characterized for operation over the case temperature range of – 40°C to 125°C. schematic VDD1 15 8 GATE2A Q3A 22 GATE3A Q4A 18 GATE4A 6 OUTPUT2 1 OUTPUT3 11 OUTPUT4 13 OUTPUT5 Q3B 3 GATE3B Q4B 7 GATE4B Q5B 9 GATE5B Q2A Q1A 17 GATE1A 19 OUTPUT1 D1 D2 Q1B 21 GATE1B SENSE VDD3 14, 24 VDD2 10 Q2B 4 GATE2B D4 5 Q2C Q5A 16 GATE5A D5 D6 D3 12 SOURCE 20 GATE2C 6V 2, 23 GND NOTES: A. Terminals 2 and 23 must be externally connected. B. Terminals 14 and 24 must be externally connected. C. No output may be taken greater than 0.5 V below GND. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 TPIC1533 QUAD AND HEX POWER DMOS ARRAY SLIS064 – OCTOBER 1996 absolute maximum ratings, TC = 25°C (unless otherwise noted)† Supply-to-GND voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 V Source-to-GND voltage (Q3A, Q4A, Q5A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 V Output-to-GND voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 V Sense-to-GND voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 V Gate-to-source voltage range, VGS (Q1A, Q1B, Q2A, Q2B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 20 V Gate-to-source voltage range, VGS (Q3A, Q3B, Q4A, Q4B, Q5A, Q5B) . . . . . . . . . . . . . . . . . . – 0.3 V to 20 V Gate-to-source voltage, VGS (Q2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.7 V to 6 V Continuous gate-to-source zener-diode current (Q2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±10 mA Pulsed gate-to-source zener-diode current (Q2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50 mA Continuous drain current, each output (Q1A, Q1B, Q2A, Q2B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 A Continuous drain current, each output (Q3A, Q3B, Q4A, Q4B, Q5A, Q5B) . . . . . . . . . . . . . . . . . . . . . . . . 1.5 A Continuous drain current (Q2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 mA Continuous source-to-drain diode current (Q1A, Q1B, Q2A, Q2B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 A Continuous source-to-drain diode current (Q3A, Q3B, Q4A, Q4B, Q5A, Q5B) . . . . . . . . . . . . . . . . . . . . . 1.5 A Continuous source-to-drain diode current (Q2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 mA Pulsed drain current, each output, Imax (Q1A, Q1B, Q2A, Q2B) (see Note 1 and Figure 24) . . . . . . . . . 12 A Pulsed drain current, each output, Imax (Q3A, Q3B, Q4A, Q4B, Q5A, Q5B) (see Note 1 and Figure 25) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 A Pulsed drain current, each output, Imax (Q2C) (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 mA Continuous total power dissipation, TC = 70°C (see Note 2 and Figures 24 and 25) . . . . . . . . . . . . . . 2.86 W Operating virtual junction temperature range, TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 150°C Operating case temperature range, TC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 125°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. Pulse duration = 10 ms, duty cycle = 2% 2. Package mounted in intimate contact with infinite heatsink. 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TPIC1533 QUAD AND HEX POWER DMOS ARRAY SLIS064 – OCTOBER 1996 electrical characteristics, Q1A, Q1B, Q2A, Q2B, TC = 25°C (unless otherwise noted) PARAMETER TEST CONDITIONS VGS = 0 VDS = VGS, Gate-to-source threshold voltage g ID = 250 µA, ID = 1 mA, See Figure 5 VGS(th)match Gate-to-source threshold voltage matching ID = 5 mA, ID = 5 mA, VDS = VGS VDS = VGS V(BR) Reverse drain-to-GND breakdown voltage V(BR)GS V(BR)SG Gate-to-source breakdown voltage, Q2C V(BR)DSX Drain-to-source breakdown voltage VGS(th) Source-to-gate breakdown voltage, Q2C Drain-to-GND current = 250 µA (D1, D2) IGS = 100 µA ISG = 100 µA VDS(on) Drain-to-source on-state voltage ID = 3 A, See Notes 3 and 4 VF Forward on-state voltage, GND-to-VDD1, GND-to-VDD2 ID = 3 A (D1, D2) See Notes 3 and 4 VF(SD) on state voltage, voltage source-to-drain source to drain Forward on-state MIN TYP MAX 20 UNIT V 1.4 1.7 2.1 1.65 1.95 2.35 75 V mV 20 V 6 V 0.7 V VGS = 10 V, 0.3 0.36 1.8 V V IS = 2 A, VGS = 0, See Notes 3 and 4 and Figure 19 1 1.2 IS = 3 A, VGS = 0, See Notes 3 and 4 and Figure 19 1.1 1.3 0.05 1 0.5 10 V IDSS Zero gate voltage drain current Zero-gate-voltage VDS = 16 V,, VGS = 0 TC = 25°C TC = 125°C IGSSF Forward gate current, drain short-circuited to source VGS = 16 V, VDS = 0 10 100 nA IGSSR Reverse gate current, drain short-circuited to source VSG = 16 V, VDS = 0 10 100 nA Ilk lkg Leakage g current,, VDD1-to-GND,, VDD2-to-GND,, gate shorted to source VDGND = 16 V TC = 25°C TC = 125°C 0.05 1 0.5 10 VGS = 10 V, ID = 2 A,, See Notes 3 and 4 and Figure 9 TC = 25°C 0.1 0.12 TC = 125°C 0.14 0.18 VGS = 10 V, ID = 3 A,, See Notes 3 and 4 and Figures 7 and 9 TC = 25°C 0.1 0.12 TC = 125°C 0.14 0.18 VDS = 14 V, See Notes 3 and 4 ID = 1 A, rDS(on) DS( ) gfs f Static drain-to-source drain to source on-state on state resistance Forward transconductance VDS = 14 V, ID = 1.5 A, See Notes 3 and 4 and Figure 13 Ciss Short-circuit input capacitance, common source Coss Short-circuit output capacitance, common source Crss Short-circuit reverse transfer capacitance, common source αs Sense-FET drain current ratio µA µA Ω 1.5 2.5 2 3 S 240 VDS = 14 V, f = 1 MHz MHz, 170 VGS = 0, See Figure 17 pF 130 VDS = 6 V, ID(Q2C) = 40 µA 100 150 200 NOTES: 3. Technique should limit TJ – TC to 10°C maximum. 4. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 TPIC1533 QUAD AND HEX POWER DMOS ARRAY SLIS064 – OCTOBER 1996 source-to-drain diode characteristics, Q1A, Q2A, TC = 25°C PARAMETER trr Reverse-recovery time QRR Total diode charge trr QRR Reverse-recovery time Total diode charge TEST CONDITIONS IS = 1.5 A, VDS = 14 V, V See Figures 1 and 23 VGS = 0, di/dt = 100 A/µs A/µs, IS = 2 A, VDS = 14V, VGS = 0, di/dt = 100 A/µs, MIN TYP MAX UNIT 70 ns 90 nC 75 ns 110 nC resistive-load switching characteristics, Q1A, Q1B, Q2A, Q2B, TC = 25°C PARAMETER TEST CONDITIONS MIN TYP MAX td(on) td(off) Turn-on delay time tr tf Rise time Fall time 25 Qg Total gate charge 5.6 7 0.8 1 1.4 1.7 Turn-off delay time 20 VDD = 14 V,, tdis = 10 ns, VDS = 14 V, V See Figure 4 RL = 9.1 Ω,, See Figure 3 ID = 1.5 1 5 A, A ten = 10 ns,, 30 VGS = 10 V, V Threshold gate-to-source charge Qgd Gate-to-drain charge LD LS Internal drain inductance 5 Internal source inductance 5 Rg Internal gate resistance 0.25 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 ns 15 Qgs(th) 4 UNIT nC nH Ω TPIC1533 QUAD AND HEX POWER DMOS ARRAY SLIS064 – OCTOBER 1996 electrical characteristics, Q3A, Q3B, Q4A, Q4B, Q5A, Q5B, TC = 25°C (unless otherwise noted) PARAMETER TEST CONDITIONS V(BR)DSX Drain-to-source breakdown voltage VGS(th) Gate-to-source threshold voltage g ID = 250 µA, ID = 1 mA, See Figure 6 V(BR) Reverse drain-to-GND breakdown voltage ID = 5 mA, VDS = VGS Drain-to-GND current = 250 µA (D3) VDS(on) Drain-to-source on-state voltage ID = 2 A, See Notes 3 and 4 VF Forward on-state voltage, GND-to-VDD3 ID = 1.5 A (D3) See Notes 3 and 4 VF(SD) on state voltage, voltage source-to-drain source to drain Forward on-state VGS = 0 VDS = VGS, VGS = 16 V, VDS = 0 Ilk lkg Leakage g current,, VDD3-to-GND,, g gate shorted to source VDGND = 16 V Crss 20 V V 0.44 0.6 V V V V 0.05 1 0.5 10 10 100 TC = 25°C TC = 125°C 0.05 1 0.5 10 VGS = 10 V, ID = 1.5 A,, See Notes 3 and 4 and Figures 8 and 10 TC = 25°C 0.22 0.3 TC = 125°C 0.32 0.4 VGS = 10 V, ID = 2 A,, See Notes 3 and 4 and Figure 10 TC = 25°C 0.22 0.3 TC = 125°C 0.32 0.4 VDS = 14 V, See Notes 3 and 4 ID = 500 mA, VDS = 14 V, ID = 750 mA, See Notes 3 and 4 and Figure 14 Short-circuit reverse transfer capacitance, common source 2.35 0.5 Forward gate current, drain short-circuited to source Short-circuit output capacitance, common source 1.95 1.3 IGSSF Coss 1.65 1.1 TC = 25°C TC = 125°C Short-circuit input capacitance, common source 2.1 IS = 2 A, VGS = 0 See Notes 3 and 4 and Figure 20 VDS = 16 V,, VGS = 0 Ciss 1.7 1.2 Zero gate voltage drain current Zero-gate-voltage Forward transconductance 1.4 1 IDSS UNIT V IS = 1.5 A, VGS = 0 See Notes 3 and 4 and Figure 20 ID = 1 mA (D4, D5, D6) gfs f MAX 1.7 Forward on-state voltage, GND-to-GATE 3A, GND-to-GATE4A, GND-to GATE5A Static drain-to-source drain to source on-state on state resistance TYP 20 VGS = 10 V, VF rDS(on) DS( ) MIN µA nA µA Ω 0.3 0.8 0.4 0.9 S 120 VDS = 14 V, f = 1 MHz, VGS = 0, See Figure 18 140 pF F 80 NOTES: 3: Technique should limit TJ – TC to 10°C maximum. 4: These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 TPIC1533 QUAD AND HEX POWER DMOS ARRAY SLIS064 – OCTOBER 1996 source-to-drain diode characteristics, Q3A, Q4A, Q5A, TC = 25°C PARAMETER trr Reverse-recovery time QRR Total diode charge trr QRR Reverse-recovery time Total diode charge TEST CONDITIONS IS = 750 mA, VDS = 14 V, V See Figures 2 and 23 VGS = 0, di/dt = 100 A/µs A/µs, IS = 2 A, VDS = 14 V, VGS = 0, di/dt = 100 A/µs MIN TYP MAX UNIT 45 ns 45 nC 70 ns 100 nC resistive-load switching characteristics, Q3A, Q3B, Q4A, Q4B, Q5A, Q5B, TC = 25°C PARAMETER TEST CONDITIONS MIN TYP MAX td(on) td(off) Turn-on delay time tr tf Rise time Fall time 20 Qg Total gate charge 2.3 3.1 0.4 0.5 0.6 0.9 UNIT 18 Turn-off delay time VDD = 14 V,, tdis = 10 ns, VDS = 14 V, V See Figure 4 RL = 18.7 Ω,, See Figure 3 ID = 750 mA, A 25 ten = 10 ns,, ns 13 VGS = 10 V, V Qgs(th) Threshold gate-to-source charge Qgd Gate-to-drain charge LD LS Internal drain inductance 5 Internal source inductance 5 Rg Internal gate resistance nC nH Ω 0.25 thermal resistance PARAMETER TEST CONDITIONS MIN TYP RθJA Junction-to-ambient thermal resistance See Notes 5 and 8 90 RθJB Junction-to-board thermal resistance See Notes 6 and 8 38 See Notes 7 and 8 28 RθJP Junction-to-pin thermal resistance NOTES: 5. Package mounted on a FR4 printed-circuit board with no heat sink. 6. Package mounted on a 24 in2, 4-layer FR4 printed-circuit board. 7. Package mounted in intimate contact with infinite heat sink. 8. All outputs with equal power 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MAX UNIT °C/W TPIC1533 QUAD AND HEX POWER DMOS ARRAY SLIS064 – OCTOBER 1996 PARAMETER MEASUREMENT INFORMATION 3 VDS = 14 V VGS = 0 TJ = 25°C Q1A and Q2A 2 I S – Source-to-Drain Diode Current – A Reverse di/dt = 100 A/µs 1 0 25% of IRM† –1 Shaded Area = QRR –2 IRM† –3 trr(SD) –4 –5 0 100 200 300 400 500 Time – ns † IRM = maximum recovery current Figure 1. Reverse-Recovery-Current Waveform of Source-to-Drain Diodes POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 TPIC1533 QUAD AND HEX POWER DMOS ARRAY SLIS064 – OCTOBER 1996 PARAMETER MEASUREMENT INFORMATION 3 VDS = 14 V VGS = 0 TJ = 25°C Q3A, Q4A, and Q5A I S – Source-to-Drain Diode Current – A 2 Reverse di/dt = 100 A/µs 1 0 25% of IRM† –1 Shaded Area = QRR IRM† –2 –3 trr(SD) –4 –5 0 100 200 300 Time – ns 400 500 † IRM = maximum recovery current Figure 2. Reverse-Recovery-Current Waveform of Source-to-Drain Diodes VDD = 14 V RL Pulse Generator ten VDS 10 V VGS VGS 0V DUT Rgen tdis 50 Ω td(on) CL 30 pF (see Note A) 50 Ω td(off) tr tf VDD VDS VDS(on) VOLTAGE WAVEFORMS TEST CIRCUIT NOTE A: CL includes probe and jig capacitance. Figure 3. Resistive-Switching Test Circuit and Voltage Waveforms 8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TPIC1533 QUAD AND HEX POWER DMOS ARRAY SLIS064 – OCTOBER 1996 PARAMETER MEASUREMENT INFORMATION Current Regulator 12-V Battery 0.2 µF Qg Same Type as DUT 50 kΩ 10 V 0.3 µF VDS Qgs(th) VDD = 14 V VGS DUT IG = 100 µA 0 Qgd Gate Voltage Time IG CurrentSampling Resistor ID CurrentSampling Resistor VOLTAGE WAVEFORM TEST CIRCUIT Figure 4. Gate-Charge Test Circuit and Voltage Waveform TYPICAL CHARACTERISTICS 2.5 VDS = VGS Q1A, Q1B, Q2A, Q2B 2 ID = 5 mA 1.5 ID = 100 µA 1 ID = 1 mA 0.5 0 – 40 – 20 0 20 40 60 80 100 120 140 160 GATE-TO-SOURCE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE VGS(th) – Gate-to-Source Threshold Voltage – V VGS(th) – Gate-to-Source Threshold Voltage – V GATE-TO-SOURCE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE 2.5 ID = 10 mA 2 1.5 ID = 100 µA 1 ID = 1 mA 0.5 VDS = VGS Q3A, Q3B, Q4A, Q4B, Q5A, Q5B 0 – 40 – 20 TJ – Junction Temperature – °C 0 20 40 60 80 100 120 140 160 TJ – Junction Temperature – °C Figure 5 Figure 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9 TPIC1533 QUAD AND HEX POWER DMOS ARRAY SLIS064 – OCTOBER 1996 TYPICAL CHARACTERISTICS STATIC DRAIN-TO-SOURCE ON-STATE RESISTANCE vs JUNCTION TEMPERATURE STATIC DRAIN-TO-SOURCE ON-STATE RESISTANCE vs JUNCTION TEMPERATURE 0.175 ID = 1.5 A Q3A, Q3B, Q4A, Q4B, Q5A, Q5B On-State Resistance – Ω VGS = 10 V 0.125 VGS = 15 V 0.100 0.075 VGS = 12 V 0.050 0.5 On-State Resistance – Ω r DS(on) – Static Drain-to-Source r DS(on) – Static Drain-to-Source 0.150 0.6 ID = 3 A Q1A, Q1B, Q2A, Q2B 0.025 0 – 40 – 20 0 20 40 60 0.4 VGS = 10 V 0.3 0.2 VGS = 15 V VGS = 12 V 0.1 0 – 40 – 20 80 100 120 140 160 TJ – Junction Temperature – °C 60 80 100 120 140 160 STATIC DRAIN-TO-SOURCE ON-STATE RESISTANCE vs DRAIN CURRENT 0.26 10 TJ = 25°C Q1A, Q1B, Q2A, Q2B 0.24 VGS = 10 V VGS = 15 V VGS = 12 V TJ = 25°C Q3A, Q3B, Q4A Q4B, Q5A, Q5B VGS = 10 V 0.22 On-State Resistance – Ω r DS(on) – Static Drain-to-Source On-State Resistance – Ω 40 Figure 8 STATIC DRAIN-TO-SOURCE ON-STATE RESISTANCE vs DRAIN CURRENT r DS(on) – Static Drain-to-Source 20 TJ – Junction Temperature – °C Figure 7 0.1 0 0.2 VGS = 12 V 0.18 VGS = 16 V 0.16 0.14 0.12 0.01 0.01 0.1 1 10 ID – Drain Current – A 100 0.1 0.1 Figure 9 10 1 ID – Drain Current – A Figure 10 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 10 TPIC1533 QUAD AND HEX POWER DMOS ARRAY SLIS064 – OCTOBER 1996 TYPICAL CHARACTERISTICS DRAIN CURRENT vs DRAIN-TO-SOURCE VOLTAGE DRAIN CURRENT vs GATE-TO-SOURCE VOLTAGE 12 5 VGS = 5 V I D – Drain Current – A 10 8 6 VGS = 4 V 4 VGS = 3 V 2 1 3 VGS = 4 V 2 VGS = 3 V 1 0 0 ∆VGS = 1 V (unless otherwise noted) TJ = 25°C Q3A, Q3B, Q4A, Q4B, Q5A, Q5B 4 2 3 4 5 6 7 8 9 VDS – Drain-to-Source Voltage – V 0 10 0 7 8 9 2 3 4 5 6 VGS – Gate-to-Source Voltage – V 1 Figure 11 DISTRIBUTION OF FORWARD TRANSCONDUCTANCE DISTRIBUTION OF FORWARD TRANSCONDUCTANCE 40 gfs – Forward Transconductance – S 0.94 0.93 0.92 0.91 0.90 3.3 3.2 3.1 3 2.9 2.8 2.7 2.6 0 2.5 0 2.4 10 2.3 10 0.89 20 0.87 20 30 Total Number of Units = 1200 VDS = 14 V TJ = 25°C ID = 750 mA Q3A, Q3B, Q4A, Q4B, Q5A, Q5B 0.86 Percentage of Units – % Total Number of Units = 1200 VDS = 14 V TJ = 25°C ID = 1.5 A Q1A, Q1B, Q2A, Q2B 2.2 Percentage of Units – % 40 30 10 Figure 12 0.88 I D – Drain Current – A 6 ∆VGS = 0.5 V (unless otherwise noted) TJ = 25°C Q1A, Q1B, Q2A, Q2B gfs – Forward Transconductance – S Figure 13 Figure 14 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 11 TPIC1533 QUAD AND HEX POWER DMOS ARRAY SLIS064 – OCTOBER 1996 TYPICAL CHARACTERISTICS DRAIN CURRENT vs GATE-TO-SOURCE VOLTAGE DRAIN CURRENT vs GATE-TO-SOURCE VOLTAGE 12 6 TJ = – 40°C 11 Q3A, Q3B, Q4A, Q4B, Q5A, Q5B TJ = 25°C 10 5 TJ = – 40°C TJ = 125°C 8 I D – Drain Current – A I D – Drain Current – A 9 7 Q1A, Q1B, Q2A, Q2B 6 5 4 3 2 4 TJ = 25°C 3 TJ = 125°C 2 1 1 0 0 1 2 3 4 5 0 6 0 1 VGS – Gate-to-Source Voltage – V 2 3 Figure 15 8 7 320 VGS = 0 f = 1 MHz TJ = 25°C Q1A, Q1B, Q2A, Q2B 450 400 290 VGS = 0 f = 1 MHz TJ = 25°C Q3A, Q3B, Q4A, Q4B, Q5A, Q5B 260 230 Capacitance – pF 350 300 Ciss Coss 200 6 CAPACITANCE vs DRAIN-TO-SOURCE VOLTAGE 500 250 5 Figure 16 CAPACITANCE vs DRAIN-TO-SOURCE VOLTAGE Capacitance – pF 4 VGS – Gate-to-Source Voltage – V 200 170 Coss 140 Ciss 110 Crss 150 Crss 80 100 50 50 0 2 4 6 8 10 12 14 16 20 0 2 VDS – Drain-to-Source Voltage – V 6 8 10 Figure 18 POST OFFICE BOX 655303 12 14 16 VDS – Drain-to-Source Voltage – V Figure 17 12 4 • DALLAS, TEXAS 75265 18 20 TPIC1533 QUAD AND HEX POWER DMOS ARRAY SLIS064 – OCTOBER 1996 TYPICAL CHARACTERISTICS SOURCE-TO-DRAIN DIODE CURRENT vs SOURCE-TO-DRAIN VOLTAGE SOURCE-TO-DRAIN DIODE CURRENT vs SOURCE-TO-DRAIN VOLTAGE 10 VGS = 0 Q1A, Q1B, Q2A, Q2B 6 I SD – Source-to-Drain Diode Current – A 4 2 1 0.6 TJ = 125°C TJ = – 40°C 0.4 TJ = 150°C TJ = 25°C 0.2 TJ = 75°C 0.1 VGS = 0 Q3A, Q3B, Q4A, Q4B, Q5A, Q5B 6 4 2 1 0.6 TJ = 125°C TJ = 150°C TJ = 25°C 0.2 TJ = 75°C 0.1 0.1 10 1 VSD – Source-to-Drain Voltage – V 0.1 Figure 20 DRAIN-TO-SOURCE VOLTAGE AND GATE-TO-SOURCE VOLTAGE vs GATE CHARGE DRAIN-TO-SOURCE VOLTAGE AND GATE-TO-SOURCE VOLTAGE vs GATE CHARGE ID = 1.5 A TJ = 25°C Q1A, Q1B, Q2A, Q2B See Figure 4 14 12 16 16 14 14 12 VDD = 10 V 10 10 8 8 VDD = 12 V 6 6 4 4 VDD = 14 V 2 2 VDD = 12 V 0 VGS – Gate-to-Source Voltage – V VDS – Drain-to-Source Voltage – V 16 0 0 1 2 3 4 5 6 10 1 VSD – Source-to-Drain Voltage – V Figure 19 VDS – Drain-to-Source Voltage – V TJ = – 40°C 0.4 7 8 9 10 ID = 750 mA TJ = 25°C See Figure 4 Q3A, Q3B, Q4A, Q4B, Q5A, Q5B 12 VDD = 10 V 10 16 14 12 10 VDD = 12 V 8 8 VDD = 14 V 6 6 VDD = 12 V 4 VDD = 14 V 2 0 0 0.25 0.5 0.75 Qg – Gate Charge – nC 1 1.25 1.5 1.75 4 2 VGS – Gate-to-Source Voltage – V I SD – Source-to-Drain Diode Current – A 10 0 2 2.25 2.5 Qg – Gate Charge – nC Figure 22 Figure 21 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 13 TPIC1533 QUAD AND HEX POWER DMOS ARRAY SLIS064 – OCTOBER 1996 TYPICAL CHARACTERISTICS REVERSE RECOVERY TIME vs REVERSE di/dt trr – Reverse Recovery Time – ns 100 TJ = 25°C See Figures 1 and 2 80 IS = 1.5 A Q1A, Q1B 60 40 IS = 750 mA Q3A, Q4A, Q5A 20 0 0 100 200 300 400 Reverse di/dt – A/µs Figure 23 14 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 500 TPIC1533 QUAD AND HEX POWER DMOS ARRAY SLIS064 – OCTOBER 1996 THERMAL INFORMATION MAXIMUM DRAIN CURRENT vs DRAIN-TO-SOURCE VOLTAGE 100 I D – Maximum Drain Current – A TC = 25°C Q1A, Q1B, Q2A, Q2B ÁÁ ÁÁ 500 µs† 10 10 ms¶ 1 ms† 1 θJC§ θJA‡ DC Conditions 0.1 0.1 1 10 100 VDS – Drain-to-Source Voltage – V Figure 24 MAXIMUM DRAIN CURRENT vs DRAIN-TO-SOURCE VOLTAGE 100 I D – Maximum Drain Current – A TC = 25°C Q3A, Q3B, Q4A, Q4B, Q5A, Q5B ÁÁ ÁÁ 10 500 µs 10 ms¶ 1 ms† 1 θJC§ θJA‡ DC Conditions 0.1 0.1 1 10 100 VDS – Drain-to-Source Voltage – V Figure 25 † Less than 10% duty cycle ‡ Device is mounted on FR4 printed-circuit board with no heat sink. § Device is mounted in intimate contact with infinite heat sink. ¶ Less than 2% duty cycle POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 15 TPIC1533 QUAD AND HEX POWER DMOS ARRAY SLIS064 – OCTOBER 1996 THERMAL INFORMATION DW PACKAGE† JUNCTION-TO-BOARD THERMAL RESISTANCE vs PULSE DURATION 100 RθJB – Junction-to-Board Thermal Resistance – °C/W DC Conditions d = 0.5 10 d = 0.2 d = 0.1 d = 0.05 d = 0.02 1 d = 0.01 tc tw Single Pulse ID 0 0.1 0.0001 0.001 0.01 0.1 tw – Pulse Duration – s † Device mounted on 24 in2, 4 layer FR4 printed-circuit board with no heat sink. NOTE A: ZθB(t) = r(t) RθJB tw = pulse duration tc = cycle time d = duty cycle = tw/tc Figure 26 16 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 10 100 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK. In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof. Copyright 1998, Texas Instruments Incorporated