MDO 500 IFRMS = 880 A IFAVM = 560 A VRRM = 1200-2200 V High Power Diode Modules VRSM VDSM VRRM VDRM V V 1300 1500 1700 1900 2100 2300 1200 1400 1600 1800 2000 2200 3 2 2 MDO 500-12N1 MDO 500-14N1 MDO 500-16N1 MDO 500-18N1 MDO 500-20N1 MDO 500-22N1 Symbol Test Conditions IFRMS IFAVM TVJ = TVJM TC = 85°C; 180° sine IFSM TVJ = 45°C VR = 0 I2t 3 Type Maximum Ratings 880 560 A A t = 10 ms (50 Hz) t = 8.3 ms (60 Hz) 15000 16000 A A TVJ = TVJM VR = 0 t = 10 ms (50 Hz) t = 8.3 ms (60 Hz) 13000 14400 A A TVJ = 45°C VR = 0 t = 10 ms (50 Hz) t = 8.3 ms (60 Hz) 1125000 1062000 t = 10 ms (50 Hz) t = 8.3 ms (60 Hz) 845000 813000 As A2s -40...140 140 -40...125 °C °C °C 3000 3600 V~ V~ A2s A2s Features International standard package Direct copper bonded Al2O3-ceramic with copper base plate Planar passivated chips Isolation voltage 3600 V~ UL registered E 72873 ● ● ● ● ● Applications Supplies for DC power equipment DC supply for PWM inverter Field supply for DC motors Battery DC power supplies ● ● ● TVJ = TVJM VR = 0 TVJ TVJM Tstg t = 1 min t=1s 2 VISOL 50/60 Hz, RMS IISOL £ 1 mA Md Weight Mounting torque (M6) Terminal connection torque (M8) Typical including screws 4.5-7/40-62 Nm/lb.in. 11-13/97-115 Nm/lb.in. 650 g Symbol IRRM Test Conditions TVJ = TVJM; VR = VRRM Characteristic Values mA 30 VF IF VT0 rT For power-loss calculations only (TVJ = TVJM) RthJC RthJK DC current DC current dS dA a Creeping distance on surface Creepage distance in air Maximum allowable acceleration = 1200 A; TVJ = 25°C 1.3 V 0.8 0.38 V mW 0.072 0.096 K/W K/W 21.7 9.6 50 mm mm m/s2 ● Advantages Simple mounting Improved temperature and power cycling Reduced protection circuits ● ● ● Dimensions in mm (1 mm = 0.0394") Data according to IEC 60747 and refer to a single diode unless otherwise stated. IXYS reserves the right to change limits, test conditions and dimensions © 2000 IXYS All rights reserved 1-3 MDO 500 107 14000 1000 VR = 0V I2t ITSM IFAVM 12000 A DC 180° sin 120° 60° 30° 800 A2s 50 Hz 80 % VRRM TVJ = 45°C TVJ = 140°C 10000 A 900 700 600 8000 TVJ = 45°C 6 10 500 6000 400 TVJ = 140°C 300 4000 200 2000 100 5 0 0.001 10 0.01 s 0.1 1 0 1 ms t t 1200 Ptot W 50 75 100 125 °C 150 Fig. 4 Power dissipation versus forward current and ambient temperature 0.03 0.07 0.12 0.2 0.3 0.4 0.6 800 25 Fig. 3 Maximum forward current at case temperature RthKA K/W 1000 0 TC Fig. 2 I2t versus time (1-10 ms) Fig. 1 Surge overload current IFSM: Crest value, t: duration 10 600 DC 180° sin 120° 60° 30° 400 200 0 0 200 400 600 0 800 A 25 50 75 100 IFAVM 125 °C TA 150 3200 W 2800 R Fig. 5 Single phase rectifier bridge: Power dissipation versus direct output current and ambient temperature R = resistive load L = inductive load RthKA K/W L 0.015 0.03 0.04 0.05 0.07 0.01 0.14 Ptot 2400 2000 1600 1200 Circuit B2 4xMDO500 800 400 0 0 300 600 900 1200 A 0 IdAVM © 2000 IXYS All rights reserved 25 50 75 100 °C 125 150 TA 2-3 MDO 500 5000 W 4500 Fig. 6 Three phase rectifier bridge: Power dissipation versus direct output current and ambient temperature RthKA K/W 0.01 0.02 0.03 0.045 0.06 0.08 0.12 Ptot 4000 3500 3000 2500 2000 Circuit B6 6xMDO500 1500 1000 500 0 0 300 600 900 1200 1500A 0 25 50 75 100 125 °C 150 TA IdAVM 0.12 Fig. 7 Transient thermal impedance junction to case K/W 0.10 RthJC for various conduction angles d: ZthJC d 0.08 DC 180° 120° 60° 30° 0.06 30° 60° 120° 180° DC 0.04 0.072 0.0768 0.081 0.092 0.111 Constants for ZthJC calculation: 0.02 i 0.00 10-3 RthJC (K/W) 10-2 10-1 100 101 s 102 t 0.14 1 2 3 4 Rthi (K/W) ti (s) 0.0035 0.0186 0.0432 0.0067 0.0054 0.098 0.54 12 Fig. 8 Transient thermal impedance junction to heatsink K/W 0.12 ZthJK RthJK for various conduction angles d: 0.10 d DC 180° 120° 60° 30° 0.08 0.06 30° 60° 120° 180° DC 0.04 0.02 10-2 10-1 100 s 101 t © 2000 IXYS All rights reserved 0.096 0.1 0.105 0.116 0.135 Constants for ZthJK calculation: i 0.00 10-3 RthJK (K/W) 102 1 2 3 4 5 Rthi (K/W) ti (s) 0.0035 0.0186 0.0432 0.0067 0.024 0.0054 0.098 0.54 12 12 3-3