IXYS L016

MDO 500
IFRMS = 880 A
IFAVM = 560 A
VRRM = 1200-2200 V
High Power
Diode Modules
VRSM
VDSM
VRRM
VDRM
V
V
1300
1500
1700
1900
2100
2300
1200
1400
1600
1800
2000
2200
3
2
2
MDO 500-12N1
MDO 500-14N1
MDO 500-16N1
MDO 500-18N1
MDO 500-20N1
MDO 500-22N1
Symbol
Test Conditions
IFRMS
IFAVM
TVJ = TVJM
TC = 85°C; 180° sine
IFSM
TVJ = 45°C
VR = 0
I2t
3
Type
Maximum Ratings
880
560
A
A
t = 10 ms (50 Hz)
t = 8.3 ms (60 Hz)
15000
16000
A
A
TVJ = TVJM
VR = 0
t = 10 ms (50 Hz)
t = 8.3 ms (60 Hz)
13000
14400
A
A
TVJ = 45°C
VR = 0
t = 10 ms (50 Hz)
t = 8.3 ms (60 Hz)
1125000
1062000
t = 10 ms (50 Hz)
t = 8.3 ms (60 Hz)
845000
813000
As
A2s
-40...140
140
-40...125
°C
°C
°C
3000
3600
V~
V~
A2s
A2s
Features
International standard package
Direct copper bonded Al2O3-ceramic
with copper base plate
Planar passivated chips
Isolation voltage 3600 V~
UL registered E 72873
●
●
●
●
●
Applications
Supplies for DC power equipment
DC supply for PWM inverter
Field supply for DC motors
Battery DC power supplies
●
●
●
TVJ = TVJM
VR = 0
TVJ
TVJM
Tstg
t = 1 min
t=1s
2
VISOL
50/60 Hz, RMS
IISOL £ 1 mA
Md
Weight
Mounting torque (M6)
Terminal connection torque (M8)
Typical including screws
4.5-7/40-62 Nm/lb.in.
11-13/97-115 Nm/lb.in.
650
g
Symbol
IRRM
Test Conditions
TVJ = TVJM; VR = VRRM
Characteristic Values
mA
30
VF
IF
VT0
rT
For power-loss calculations only (TVJ = TVJM)
RthJC
RthJK
DC current
DC current
dS
dA
a
Creeping distance on surface
Creepage distance in air
Maximum allowable acceleration
= 1200 A; TVJ = 25°C
1.3
V
0.8
0.38
V
mW
0.072
0.096
K/W
K/W
21.7
9.6
50
mm
mm
m/s2
●
Advantages
Simple mounting
Improved temperature and power
cycling
Reduced protection circuits
●
●
●
Dimensions in mm (1 mm = 0.0394")
Data according to IEC 60747 and refer to a single diode unless otherwise stated.
IXYS reserves the right to change limits, test conditions and dimensions
© 2000 IXYS All rights reserved
1-3
MDO 500
107
14000
1000
VR = 0V
I2t
ITSM
IFAVM
12000
A
DC
180° sin
120°
60°
30°
800
A2s
50 Hz
80 % VRRM
TVJ = 45°C
TVJ = 140°C
10000
A
900
700
600
8000
TVJ = 45°C
6
10
500
6000
400
TVJ = 140°C
300
4000
200
2000
100
5
0
0.001
10
0.01
s
0.1
1
0
1
ms
t
t
1200
Ptot
W
50
75
100
125 °C 150
Fig. 4 Power dissipation versus
forward current and ambient
temperature
0.03
0.07
0.12
0.2
0.3
0.4
0.6
800
25
Fig. 3 Maximum forward current
at case temperature
RthKA K/W
1000
0
TC
Fig. 2 I2t versus time (1-10 ms)
Fig. 1 Surge overload current
IFSM: Crest value, t: duration
10
600
DC
180° sin
120°
60°
30°
400
200
0
0
200
400
600
0
800 A
25
50
75
100
IFAVM
125
°C
TA
150
3200
W
2800
R
Fig. 5 Single phase rectifier bridge:
Power dissipation versus direct
output current and ambient
temperature
R = resistive load
L = inductive load
RthKA K/W
L
0.015
0.03
0.04
0.05
0.07
0.01
0.14
Ptot
2400
2000
1600
1200
Circuit
B2
4xMDO500
800
400
0
0
300
600
900
1200
A 0
IdAVM
© 2000 IXYS All rights reserved
25
50
75
100
°C
125
150
TA
2-3
MDO 500
5000
W
4500
Fig. 6 Three phase rectifier bridge:
Power dissipation versus direct
output current and ambient
temperature
RthKA K/W
0.01
0.02
0.03
0.045
0.06
0.08
0.12
Ptot 4000
3500
3000
2500
2000
Circuit
B6
6xMDO500
1500
1000
500
0
0
300
600
900
1200 1500A
0
25
50
75
100
125 °C 150
TA
IdAVM
0.12
Fig. 7 Transient thermal impedance
junction to case
K/W
0.10
RthJC for various conduction angles d:
ZthJC
d
0.08
DC
180°
120°
60°
30°
0.06
30°
60°
120°
180°
DC
0.04
0.072
0.0768
0.081
0.092
0.111
Constants for ZthJC calculation:
0.02
i
0.00
10-3
RthJC (K/W)
10-2
10-1
100
101
s
102
t
0.14
1
2
3
4
Rthi (K/W)
ti (s)
0.0035
0.0186
0.0432
0.0067
0.0054
0.098
0.54
12
Fig. 8 Transient thermal impedance
junction to heatsink
K/W
0.12
ZthJK
RthJK for various conduction angles d:
0.10
d
DC
180°
120°
60°
30°
0.08
0.06
30°
60°
120°
180°
DC
0.04
0.02
10-2
10-1
100
s
101
t
© 2000 IXYS All rights reserved
0.096
0.1
0.105
0.116
0.135
Constants for ZthJK calculation:
i
0.00
10-3
RthJK (K/W)
102
1
2
3
4
5
Rthi (K/W)
ti (s)
0.0035
0.0186
0.0432
0.0067
0.024
0.0054
0.098
0.54
12
12
3-3