NEC's MEDIUM POWER NPN NE664M04 SILICON HIGH FREQUENCY TRANSISTOR FEATURES • LOW PROFILE M04 PACKAGE: SOT-343 footprint, with a height of only 0.59 mm Flat lead style for better RF performance +0.40-0.05 2 1.25 0.650.65 1 NEC's NE664M04 is fabricated using NEC's state-of-the-art UHS0 25 GHz fT wafer process. With a transition frequency of 20 GHz, the NE664M04 is usable in applications from 100 MHz to over 3 GHz. The NE664M04 provides P1dB of 26 dBm, even with low voltage and low current, making this device an excellent choice for the output or driver stage for mobile or fixed wireless applications. +0.01 0.59±0.05 +0.30-0.05 (leads 1, 3 and ,4) +0.1 2.0±0.1 R57 DESCRIPTION 2.05±0.1 1.25±0.1 1.30 HIGH LINEAR GAIN: GL = 12 dB at 1.8 GHz +0.11-0.05 • 3 HIGH OUTPUT POWER: P-1dB = 26 dBm at 1.8 GHz 0.650.65 • 4 HIGH GAIN BANDWIDTH: fT = 20 GHz +0.30 • PIN CONNECTIONS 1. Emitter 3. Emitter 2. Collector 4. Base The NE664M04 is housed in NEC's low profile/flat lead style "M04" package ELECTRICAL CHARACTERISTICS (TA = 25°C) PART NUMBER PACKAGE OUTLINE EIAJ3 REGISTRATION NUMBER RF DC SYMBOLS NE664M04 M04 2SC5754 PARAMETERS AND CONDITIONS UNITS MIN TYP ICBO Collector Cutoff Current at VCB = 5V, IE = 0 nA IEBO Emitter Cutoff Current at VEB = 1 V, IC = 0 nA hFE DC Current1 Gain at VCE = 3 V, IC = 100 mA P1dB Output Power at 1 dB compression point at VCE = 3.6 V, ICQ = 4 mA, f = 1.8 GHz, Pin = 15 dBm, 1/2 Duty Cycle dBm 26.0 GL Linear Gain at VCE = 3.6 V, ICQ = 20 mA, f = 1.8 GHz, Pin = 0 dBm, 1/2 Duty Cycle dB 12.0 |S21E|2 ηc 1000 1000 40 Maximum Available Power Gain4 at VCE = 3 V, IC = 100 mA, f = 2 GHz MAG dBm Insertion Power Gain at VCE = 3 V, IC = 100 mA, f = 2 GHz dB Collector Efficiency, 3.6 V, ICQ = 4 mA, f = 1.8 GHz, Pin = 15 dBm, 1/2 Duty Cycle % fT Gain Bandwidth at VCE = 3 V, IC = 100 mA, f = 0.5 GHz GHz Cre Feedback Capacitance2 at VCB = 3 V, IC = 0, f = 1 MHz pF MAX 60 100 12.0 5.0 6.5 60 16 20 1.0 1.5 Notes: 1. Pulsed measurement, pulse width ≤ 350 µs, duty cycle ≤ 2 %. 2. Collector to Base capacitance measured by capacitance meter(automatic balance bridge method) when emitter pin is connected to the guard pin of capacitance meter. 3. Electronic Industrail Association of Japan 4. MAG = |S21| |S12| (K - K 2- 1 ). California Eastern Laboratories NE664M04 ABSOLUTE MAXIMUM RATINGS1 (TA = 25°C) SYMBOLS PARAMETERS UNITS RATINGS VCBO Collector to Base Voltage V 13 VCEO Collector to Emitter Voltage V 5.0 VEBO Emitter to Base Voltage V 1.5 IC Collector Current mA 500 PT Total Power Dissipation2 mW 735 TJ Junction Temperature °C 150 TSTG Storage Temperature °C ORDERING INFORMATION PART NUMBER QUANTITY NE664M04-T2 3k pcs./reel THERMAL RESISTANCE SYMBOLS -65 to +150 Note: 1. Operation in excess of any one of these parameters may result in permanent damage. 2. Mounted on 38 x 38 mm, t = 0.4 mm polyimide PCB. PARAMETERS Rth j-a1 Junction to Ambient Resistance °C/W 170 Rth j-a2 Junction to Ambient Resistance2 °C/W 570 Note: 1. Mounted on 38 x 38 mm, t = 0.4 mm polyimide PCB. 2. Stand alone device in free air. APPLICATIONS Bluetooth Power Class 1 f = 2.4 GHz R57 T80 0 dBm 13 dBm NE663M04 22 dBm NE664M04 SS Cordless Phone f = 2.4 GHz R57 20 dBm 26 dBm NE664M04 DCS1800 (GSM1800) Cellular Phone f = 1.8 GHz A R55 5 dBm R57 16 dBm NE678M04 ñ3 dBm 1 00 25 dBm NE664M04 35 dBm NE5520379A (MOS FET) R57 9 dBm NE68019 (3-pin TUSMM) 3 9Z Cordless Phone f = 0.9 GHz TH UNITS RATINGS 1 25 dBm NE664M04 NE664M04 TYPICAL PERFORMANCE CURVES (TA = 25°C) REVERSE TRANSFER CAPACITANCE vs. COLLECTOR TO BASE VOLTAGE TOTAL POWER DISSIPATION vs. AMBIENT TEMPERATURE Reverse Tramsfer Capacitance, Cre (pF) Total Power Dissipation, Ptot (mW) 1000 Mounted on Polyimide PCB 800 (38 x 38 mm, t = 0.4 mm) 735 600 400 205 Stand alone device in free air 200 0 1000 25 50 75 100 125 2.0 f = 1 MHz 1.5 1.0 0.5 1 0 150 5 COLLECTOR CURRENT vs. BASE TO EMITTER VOLTAGE COLLECTOR CURRENT vs. COLLECTOR TO EMITTER VOLTAGE 450 VCE = 3 V IB : 0.5 mA step 100 Collector Current, IC (mA) Collector Current, IC (mA) 4 Collector to Base Voltage, VCB (V) 10 1 0.1 0.01 0.001 0.5 7 mA 350 6 mA 5 mA 300 4 mA 250 3 mA 200 2 mA 150 100 1 mA 50 0.6 0.7 0.8 0.9 1.0 DC CURRENT GAIN vs. COLLECTOR CURRENT 1000 VCE = 3 V 100 10 100 Collector Current, IC (mA) 0 1 2 3 4 IB = 0.5 mA 5 6 Collector to Emitter Voltage, VCE (V) Base to Emitter Voltage, VBE (V) DC Current Gain hFE 3 Ambient Temperature, TA (ºC) 400 10 1 2 1000 NE664M04 TYPICAL PERFORMANCE CURVES (TA = 25°C) INSERTION POWER GAIN, MAG, MSG vs. FREQUENCY GAIN BANDWIDTH PRODUCT vs. COLLECTOR CURRENT 35 20 15 10 5 0 1 10 100 20 15 10 5 |S21e|2 1 10 INSERTION POWER GAIN, MAG, MSG vs. COLLECTOR CURRENT INSERTION POWER GAIN, MAG, MSG vs. COLLECTOR CURRENT VCE = 3 V f = 1 GHz MSG 20 MAG |S21e| 10 5 0 1 10 100 1000 INSERTION POWER GAIN, MAG, MSG vs. COLLECTOR CURRENT VCE = 3 V f = 2.5 GHz 15 MSG MAG 5 |S21e|2 0 1 10 100 Collector Current, IC (mA) VCE = 3 V f = 2 GHz 15 MSG MAG 10 |S21e|2 5 0 1 10 100 Collector Current, IC (mA) Collector Current, IC (mA) Insertion Power Gain, IS21eI2 Maximum Available Gain, MAG (dB) Maximum Stable Gain, MSG (dB) MAG 25 Frequency, f (Hz) 2 10 MSG 0 1000 15 20 30 VCE = 3 V IC = 100 mA Collector Current, IC (mA) 20 Insertion Power Gain, IS21eI2 Maximum Available Gain, MAG (dB) Maximum Stable Gain, MSG (dB) Insertion Power Gain, IS21eI2 Maximum Available Gain, MAG (dB) Maximum Stable Gain, MSG (dB) VCE = 3 V f = 0.5 GHz Insertion Power Gain, IS21eI2 Maximum Available Gain, MAG (dB) Maximum Stable Gain, MSG (dB) Gain Bandwidth Product, fT (GHz) 25 1000 1000 NE664M04 TYPICAL PERFORMANCE CURVES (TA = 25°C) 250 Pout IC 20 200 GP 15 150 10 100 5 50 Output Power, Pout (dBm) Power Gain, Gp (dB) 25 300 VCE = 3.2 V, f = 2.4 GHz ICq = 20 mA, 1/2 Duty 250 Pout 20 200 IC 15 150 GP 10 100 5 50 ηc ηc -10 -5 0 5 10 0 -5 0 15 0 Input Power, Pin (dBm) 30 300 20 200 IC 15 150 GP 10 100 5 50 25 300 VCE = 3.2 V, f = 1.8 GHz ICq = 20 mA, 1/2 Duty 250 Pout 20 200 IC 15 150 GP 10 100 5 50 ηc -5 0 5 ηc 10 15 0 20 0 -10 -5 Input Power, Pin (dBm) 30 5 300 30 250 25 20 200 IC 15 150 GP 10 100 5 50 0 5 300 250 Pout 20 200 IC 15 150 GP 10 100 5 50 ηc -5 0 20 15 VCE = 3.6 V, f = 1.8 GHz ICq = 20 mA, 1/2 Duty Output Power, Pout (dBm) Power Gain, Gp (dB) Pout 0 -10 10 OUTPUT POWER, POWER GAIN, COLLECTOR CURRENT, & COLLECTOR EFFICIENCY vs. INPUT POWER VCE = 3.6 V, f = 1.8 GHz ICq = 4 mA, 1/2 Duty Collector Current, IC (mA) Collector Efficiency, ηC (%) Output Power, Pout (dBm) Power Gain, Gp (dB) 0 Input Power, Pin (dBm) OUTPUT POWER, POWER GAIN, COLLECTOR CURRENT, & COLLECTOR EFFICIENCY vs. INPUT POWER 25 0 25 20 30 Output Power, Pout (dBm) Power Gain, Gp (dB) 250 Pout 0 -10 15 OUTPUT POWER, POWER GAIN, COLLECTOR CURRENT, & COLLECTOR EFFICIENCY vs. INPUT POWER VCE = 3.2 V, f = 1.8 GHz ICq = 4 mA, 1/2 Duty Collector Current, IC (mA) Collector Efficiency, ηC (%) Output Power, Pout (dBm) Power Gain, Gp (dB) 10 Input Power, Pin (dBm) OUTPUT POWER, POWER GAIN, COLLECTOR CURRENT, & COLLECTOR EFFICIENCY vs. INPUT POWER 25 5 Collector Current, IC (mA) Collector Efficiency, ηC (%) 0 -15 ηc 10 Input Power, Pin (dBm) 15 0 20 0 -10 -5 0 5 10 Input Power, Pin (dBm) 15 0 20 Collector Current, IC (mA) Collector Efficiency, ηC (%) 25 30 300 VCE = 3.2 V, f = 0.9 GHz ICq = 20 mA, 1/2 Duty Collector Current, IC (mA) Collector Efficiency, ηC (%) Output Power, Pout (dBm) Power Gain, Gp (dB) 30 OUTPUT POWER, POWER GAIN, COLLECTOR CURRENT, & COLLECTOR EFFICIENCY vs. INPUT POWER Collector Current, IC (mA) Collector Efficiency, ηC (%) OUTPUT POWER, POWER GAIN, COLLECTOR CURRENT, & COLLECTOR EFFICIENCY vs. INPUT POWER NE664M04 LARGE SIGNAL IMPEDANCES FREQUENCY f (GHz) COLLECTOR TO EMITTER VOLTAGE VCE (V) SOURCE IMPEDANCE Ω) ZS (Ω LOAD IMPEDANCE Ω) ZL (Ω 0.9 2.8 to 3.6 8.4 - 5.2j 15.1- 4.3j 1.8 2.8 to 3.6 6.3 - 16.4j 15.8- 6.9j 2.4 2.8 to 3.6 5.9 - 22.1j 15.2- 17.9j f = 0.9 GHz ZL ZS RF input line ZS GND B E E C GND RF output line Tr. ZL ZS ZL f = 1.8 GHz f = 2.4 GHz ZL ZL ZS ZS NE664M04 TYPICAL SCATTERING PARAMETERS (TA = 25°C) j50 90˚ S11 j25 120˚ j100 60˚ 150˚ 30˚ j10 0 10 25 100 50 0 180˚ 0˚ -j10 -150˚ S22 -30˚ 0.200 to 12.000GHz by 0.100 0.200 to 12.000GHz by 0.100 -j100 -j25 -120˚ -60˚ -j50 -90˚ NE664M04 VC = 1 V, IC = 10 mA FREQUENCY GHz 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 10.00 10.50 11.00 11.50 12.00 S11 MAG 0.784 0.801 0.810 0.812 0.820 0.827 0.834 0.838 0.845 0.850 0.855 0.861 0.866 0.874 0.881 0.889 0.898 0.905 0.911 0.916 0.917 0.926 0.923 0.931 S21 ANG -161.6 178.1 166.2 157.2 149.0 141.5 133.6 125.9 118.0 110.4 102.3 95.2 88.6 82.3 76.5 72.0 67.3 63.5 60.2 56.1 52.2 48.4 44.4 40.0 MAG 6.573 3.389 2.271 1.710 1.378 1.163 1.013 0.901 0.816 0.743 0.678 0.624 0.573 0.530 0.485 0.451 0.422 0.391 0.360 0.337 0.321 0.305 0.295 0.290 S12 ANG 95.1 77.6 65.1 54.4 44.3 35.2 26.1 17.1 8.6 0.1 - 7.5 - 14.9 - 21.9 - 28.0 - 34.0 - 38.9 - 44.1 - 48.5 - 52.4 - 56.3 - 60.0 - 64.1 - 66.4 - 69.9 MAG 0.075 0.081 0.084 0.090 0.097 0.109 0.119 0.133 0.146 0.160 0.170 0.175 0.190 0.195 0.198 0.203 0.211 0.205 0.208 0.208 0.209 0.210 0.208 0.221 S22 ANG 19.0 16.3 18.9 18.1 20.8 20.6 18.7 16.2 11.6 8.6 5.7 0.9 - 3.9 - 7.7 - 12.6 - 17.2 - 21.6 - 25.6 - 30.2 - 33.9 - 38.7 - 42.2 - 46.5 - 50.7 MAG 0.491 0.454 0.460 0.467 0.476 0.482 0.498 0.508 0.525 0.546 0.570 0.599 0.625 0.650 0.676 0.696 0.716 0.733 0.740 0.768 0.782 0.793 0.811 0.816 ANG -138.6 -164.9 -178.3 172.5 165.3 158.0 151.0 143.9 136.4 128.9 121.9 115.4 108.6 102.4 95.6 89.6 83.0 76.4 70.9 63.4 58.1 53.2 49.2 46.3 K 0.32 0.60 0.85 1.03 1.16 1.20 1.22 1.22 1.19 1.17 1.19 1.18 1.15 1.14 1.14 1.13 1.09 1.11 1.11 1.12 1.12 1.09 1.11 1.06 MAG1 (dB) 19.44 16.23 14.33 11.77 9.14 7.60 6.47 5.49 4.84 4.15 3.40 2.93 2.44 2.05 1.58 1.29 1.14 0.76 0.34 0.01 - 0.24 - 0.27 - 0.52 - 0.27 Note: 1. Gain Calculations: MAG = |S21| |S12| (K ± K 2- 1 ). When K ≤ 1, MAG is undefined and MSG values are used. MSG = MAG = Maximum Available Gain MSG = Maximum Stable Gain 2 2 2 |S21| , K = 1 + | ∆ | - |S11| - |S22| , ∆ = S11 S22 - S21 S12 |S12| 2 |S12 S21| NE664M04 TYPICAL SCATTERING PARAMETERS (TA = 25°C) 90˚ j50 120˚ j25 60˚ j100 S11 150˚ j10 0 30˚ S22 10 25 100 50 180˚ 0 -j10 0˚ -150˚ -30˚ 0.200 to 12.000GHz by 0.100 0.200 to 12.000GHz by 0.100 -j100 -j25 -120˚ -60˚ -90˚ -j50 NE664M04 VC = 2 V, IC = 100 mA FREQUENCY GHz 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 10.00 10.50 11.00 11.50 12.00 S11 MAG 0.808 0.812 0.819 0.822 0.830 0.831 0.834 0.837 0.836 0.843 0.843 0.851 0.857 0.865 0.866 0.874 0.883 0.891 0.900 0.902 0.914 0.918 0.917 0.917 S21 ANG 177.3 167.0 158.7 151.3 143.8 137.2 129.9 122.8 115.1 107.7 100.1 93.1 86.5 80.8 75.4 70.6 66.5 62.6 59.2 55.6 51.8 48.1 44.1 39.7 MAG 9.415 4.762 3.176 2.387 1.925 1.616 1.410 1.256 1.138 1.035 0.945 0.868 0.800 0.742 0.688 0.641 0.591 0.551 0.517 0.491 0.456 0.435 0.419 0.413 S12 ANG 90.1 77.9 68.6 60.0 51.6 43.8 36.0 27.7 19.7 12.1 4.4 - 2.5 - 9.0 - 15.3 - 21.2 - 26.6 - 32.4 - 37.1 - 43.0 - 47.2 - 52.1 - 56.2 - 60.1 - 63.7 MAG 0.027 0.046 0.065 0.083 0.106 0.123 0.140 0.159 0.175 0.188 0.197 0.207 0.212 0.222 0.225 0.225 0.227 0.231 0.221 0.226 0.219 0.219 0.219 0.229 S22 ANG 50.0 62.1 57.6 53.6 48.0 43.3 37.1 30.9 25.2 18.1 11.6 6.4 - 0.2 - 4.7 - 10.8 - 15.7 - 19.8 - 25.9 - 30.6 - 34.5 - 39.4 - 43.8 - 47.4 - 50.6 MAG 0.652 0.650 0.657 0.662 0.666 0.670 0.669 0.672 0.680 0.691 0.701 0.715 0.731 0.745 0.751 0.761 0.772 0.774 0.788 0.796 0.805 0.810 0.822 0.822 ANG -167.8 176.3 166.5 158.5 151.4 144.1 137.0 129.3 121.7 114.7 108.2 101.9 95.8 90.2 84.5 78.7 72.4 66.3 60.8 54.7 49.5 45.5 41.9 38.8 K MAG1 0.87 1.04 1.07 1.08 1.06 1.07 1.07 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.07 1.07 1.07 1.06 1.06 1.07 1.06 1.05 1.06 1.05 (dB) 25.50 18.88 15.33 12.85 11.12 9.60 8.45 7.52 6.61 5.96 5.25 4.71 4.23 3.80 3.29 2.94 2.56 2.24 2.17 1.80 1.69 1.54 1.31 1.13 Note: 1. Gain Calculations: MAG = |S21| |S12| (K ± K 2- 1 ). When K ≤ 1, MAG is undefined and MSG values are used. MSG = MAG = Maximum Available Gain MSG = Maximum Stable Gain 2 2 2 |S21| , K = 1 + | ∆ | - |S11| - |S22| , ∆ = S11 S22 - S21 S12 |S12| 2 |S12 S21| NE664M04 TYPICAL SCATTERING PARAMETERS (TA = 25°C) j50 j25 90˚ 120˚ j100 S11 S22 60˚ 150˚ 30˚ j10 10 0 25 100 50 180˚ 0 0˚ -j10 -150˚ -30˚ 0.200 to 12.000GHz by 0.100 0.200 to 12.000GHz by 0.100 -j100 -j25 -120˚ -60˚ -90˚ -j50 NE664M04 VC = 3 V, IC = 200 mA FREQUENCY GHz 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 10.00 10.50 11.00 11.50 12.00 S11 MAG 0.801 0.808 0.815 0.819 0.822 0.830 0.832 0.831 0.835 0.837 0.842 0.848 0.853 0.862 0.868 0.873 0.881 0.890 0.895 0.903 0.911 0.915 0.919 0.918 S21 ANG 175.9 166.3 158.4 150.9 143.9 136.8 129.7 122.5 115.0 107.6 100.2 93.0 86.4 80.5 75.4 70.4 66.5 62.7 59.3 55.7 52.0 48.3 44.1 39.8 MAG 9.856 4.975 3.310 2.483 1.996 1.676 1.461 1.299 1.171 1.069 0.979 0.896 0.828 0.764 0.707 0.660 0.611 0.572 0.532 0.498 0.466 0.445 0.430 0.426 S12 ANG 89.7 77.5 68.2 59.8 51.6 43.6 35.8 27.6 19.8 12.0 4.4 - 2.8 - 9.1 - 15.4 - 21.5 - 26.8 - 32.7 - 36.9 - 42.0 - 47.9 - 51.7 - 56.3 - 60.1 - 64.6 MAG 0.024 0.044 0.066 0.084 0.102 0.122 0.138 0.156 0.173 0.187 0.198 0.211 0.214 0.216 0.226 0.231 0.223 0.226 0.226 0.219 0.224 0.219 0.226 0.229 S22 ANG 66.8 68.0 62.1 57.6 52.3 43.9 39.2 32.6 26.9 19.5 11.8 7.0 1.2 - 4.7 - 9.8 - 15.6 - 20.4 - 24.0 - 30.2 - 33.8 - 38.3 - 43.0 - 46.2 - 49.5 MAG 0.624 0.632 0.633 0.638 0.644 0.648 0.653 0.656 0.662 0.672 0.683 0.698 0.711 0.724 0.736 0.748 0.750 0.764 0.771 0.779 0.793 0.794 0.810 0.811 ANG -169.4 175.5 166.7 158.1 150.8 144.1 136.7 129.3 122.1 114.9 108.2 102.1 96.2 90.6 85.1 78.9 72.7 67.2 61.0 55.0 48.9 45.8 41.6 39.3 K MAG1 1.01 1.07 1.07 1.08 1.09 1.07 1.07 1.07 1.07 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.07 1.07 1.07 1.07 1.06 1.06 1.05 1.05 (dB) 25.43 18.85 15.41 12.95 11.11 9.80 8.62 7.59 6.75 6.05 5.44 4.83 4.32 3.92 3.47 3.08 2.72 2.45 2.11 1.91 1.64 1.53 1.40 1.34 Note: 1. Gain Calculations: MAG = |S21| |S12| (K ± K 2- 1 ). When K ≤ 1, MAG is undefined and MSG values are used. MSG = 2 2 2 |S21| , K = 1 + | ∆ | - |S11| - |S22| , ∆ = S11 S22 - S21 S12 |S12| 2 |S12 S21| MAG = Maximum Available Gain MSG = Maximum Stable Gain Life Support Applications These NEC products are not intended for use in life support devices, appliances, or systems where the malfunction of these products can reasonably be expected to result in personal injury. The customers of CEL using or selling these products for use in such applications do so at their own risk and agree to fully indemnify CEL for all damages resulting from such improper use or sale. 04/04/2003 A Business Partner of NEC Compound Semiconductor Devices, Ltd.