ETC HAT2009F

HAT2009F
Silicon N Channel Power MOS FET
Application
SOP–8
Power switching
8
Features
•
•
•
•
Low on–resistance
Capable of 2.5V gate drive
Low drive current
High density mounting
5 6
D D
7 8
D D
Ordering Information
Hitachi Code
FP–8D
————————————————————
EIAJ Code
3
1 2
4
4
G
2
G
————————————————————
5
7 6
S1
MOS1
S3
1, 3
Source
2, 4
Gate
5, 6, 7, 8 Drain
MOS2
SC–527–8A
————————————————————
JEDEC Code
—
————————————————————
Table 1 Absolute Maximum Ratings (Ta = 25°C)
Item
Symbol
Ratings
Unit
———————————————————————————————————————————
Drain to source voltage
VDSS
30
V
———————————————————————————————————————————
Gate to source voltage
VGSS
±10
V
———————————————————————————————————————————
Drain current
ID
3.5
A
———————————————————————————————————————————
Drain peak current
ID(pulse)*
14
A
———————————————————————————————————————————
Channel dissipation
Pch***
1.5
W
———————————————————————————————————————————
Channel dissipation
Pch**
1
W
———————————————————————————————————————————
Channel temperature
Tch
150
°C
———————————————————————————————————————————
Storage temperature
Tstg
–55 to +150
°C
———————————————————————————————————————————
*
PW ≤ 10 µs, duty cycle ≤ 1 %
** 1 Drive operation
When using the glass epoxy board (40 x 40 x 1.6 mm)
*** 2 Drive operation
When using the glass epoxy board (40 x 40 x 1.6 mm)
HAT2009F
Table 2 Electrical Characteristics (Ta = 25°C)
Item
Symbol
Min
Typ
Max
Unit
Test conditions
———————————————————————————————————————————
Drain to source breakdown
voltage
V(BR)DSS
30
—
—
V
ID = 10 mA, VGS = 0
———————————————————————————————————————————
Gate to source breakdown
voltage
V(BR)GSS
±10
—
—
V
IG = ±200 µA, VDS = 0
———————————————————————————————————————————
Gate to source leak current
IGSS
—
—
±10
µA
VGS = ±6.5 V, VDS = 0
———————————————————————————————————————————
Zero gate voltage drain current
IDSS
—
—
10
µA
VDS = 30 V, VGS = 0
———————————————————————————————————————————
Gate to source cutoff voltage
VGS(off)
0.5
—
1.5
V
VDS = 10 V, ID = 1 mA
———————————————————————————————————————————
Static drain to source on state
resistance
RDS(on)
—
0.065
0.08
Ω
ID = 2A
VGS = 4V *
————————————————————————
—
0.08
0.12
Ω
ID = 2A
VGS =2.5V *
———————————————————————————————————————————
Forward tramsfer admittance
|yfs|
4.5
7.0
—
S
ID = 2 A
VDS = 10 V *
———————————————————————————————————————————
Input capacitance
Ciss
—
610
—
pF
VDS = 10 V
————————————————————————————————
Output capacitance
Coss
—
330
—
pF
VGS = 0
————————————————————————————————
Reverse transfer capacitance
Crss
—
105
—
pF
f = 1 MHz
———————————————————————————————————————————
Turn–on delay time
td(on)
—
tr
—
td(off)
—
tf
—
VDF
—
17
—
ns
VGS = 4 V, ID = 2 A
————————————————————————————————
Rise time
80
—
ns
VDD = 10 V
————————————————————————————————
Turn–off delay time
110
—
ns
————————————————————————————————
Fall time
90
—
ns
———————————————————————————————————————————
Body–drain diode forward
voltage
0.9
—
V
IF = 3.5 A, VGS = 0
———————————————————————————————————————————
Body–drain diode reverse
recovery time
trr
—
50
—
ns
IF = 3.5 A
diF / dt = 20A / µs
———————————————————————————————————————————
* Pulse Test
HAT2009F
Power vs. Temperature Derating
100
Test Condition :
When using the glass epoxy board
(40 x 40 x 1.6 mm)
1.5
Maximum Safe Operation Area
10 µs 100 µs
30
I D (A)
Pch (W)
2.0
10
PW
ive
50
DC
1
1m
=
s
10
Op
er
Operation in
at
ion
0.3 this area is
**
limited by R DS(on)
0.1
ms
n
er
tio
Op
ra
0
Dr
pe
O
1
ive
Dr
1.0
0.5
Drain Current
2
Channel Dissipation
3
at
ion
100
Ambient Temperature
150
200
Ta (°C)
0.03 Ta = 25 °C
0.01 1 shot Pulse
0.1 0.3
1
3
10
30
100
Drain to Source Voltage V DS (V)
** When using the glass epoxy board
(40 x 40 x 1.6 mm)
20
Typical Output Characteristics
10 V 5 V
Typical Transfer Characteristics
20
(A)
4.5 V
4V
3.5 V
2.5 V
12
8
2V
4
VGS = 1.5 V
ID
16
Drain Current
Drain Current
I D (A)
3V
16
V DS = 10 V
Pulse Test
12
8
Tc = 75°C
4
25°C
–25°C
Pulse Test
0
2
4
6
Drain to Source Voltage
8
10
V DS (V)
0
1
2
3
Gate to Source Voltage
5
4
V GS (V)
HAT2009F
Static Drain to Source on State Resistance
vs. Drain Current
1
Drain to Source On State Resistance
R DS(on) ( Ω )
0.3
Pulse Test
0.4
0.2
ID=2A
0.1
0
2
4
6
Gate to Source Voltage
8
Static Drain to Source on State Resistance
R DS(on) ( Ω)
I C = 2A, 1 A
0.5 A
V GS = 2.5 V
0.04
0
–40
0.1
VGS = 2.5 V
0.05
4V
V GS (V)
0.16
2A
1
A
0.5 A
0.08
0.2
0.01
0.2
10
Static Drain to Source on State Resistance
vs. Temperature
0.20
Pulse Test
0.12
Pulse Test
0.5
0.02
1A
0.5 A
4V
0
40
80
120
160
Case Temperature Tc (°C)
Forward Transfer Admittance |yfs| (S)
V DS(on) (V)
0.5
Drain to Source Voltage
Drain to Source Saturation Voltage vs.
Gate to Source Voltage
50
0.5
1
2
Drain Current
5
10
I D (A)
20
Forward Transfer Admittance vs.
Drain Current
20
10
Tc = –25 °C
5
25 °C
75 °C
2
1
0.5
0.2
V DS = 10 V
Pulse Test
0.5
1
2
5
Drain Current I D (A)
10
20
HAT2009F
Typical Capacitance vs.
Drain to Source Voltage
Body–Drain Diode Reverse
Recovery Time
10000
di/dt = 20 A/µs
V GS = 0, Ta = 25°C
200
Capacitance C (pF)
Reverse Recovery Time trr (ns)
500
100
50
20
5
0.2
Crss
100
VGS = 0
f = 1 MHz
0
6
V GS
V DD = 25 V
10 V
5V
4
8
12
16
Gate Charge Qg (nc)
4
2
0
20
20
30
40
50
Switching Characteristics
V GS = 4 V, V DD = 10 V
500 PW = 3 µs, duty < 1 %
Switching Time t (ns)
V DD = 5 V
10 V
25 V
1000
V GS (V)
8
10
Drain to Source Voltage V DS (V)
Gate to Source Voltage
V DS (V)
Drain to Source Voltage
10
I D = 3.5 A
30 V
DS
0
Coss
300
0.5
1
2
5
10 20
Reverse Drain Current I DR (A)
40
10
Ciss
10
Dynamic Input Characteristics
20
1000
30
10
50
3000
200
t d(off)
100
tf
50
tr
20
t d(on)
10
0.2
0.5
1
2
Drain Current
5
10
I D (A)
20
HAT2009F
Reverse Drain Current vs.
Souece to Drain Voltage
Reverse Drain Current I DR (A)
20
Pulse Test
16
12
8
V GS = 0
5V
4
0
0.4
0.8
1.2
Source to Drain Voltage
1.6
2.0
V SD (V)
Package Dimensions
Unit : mm
• SOP–8
0.75 Max
6.8 Max
+ 0.05
4
0.20 – 0.02
1
2.03 Max
5
2.00 Max
8
4.55 Max
5.25 Max
0 – 10 °
0.40
+ 0.10
– 0.05
0.10 ± 0.10
1.27
0.25
0.60 +– 0.18
0.1
0.12 M
FP–8D
Hitachi Code
SC–527–8A
EIAJ
—
JEDEC