HAT2009F Silicon N Channel Power MOS FET Application SOP–8 Power switching 8 Features • • • • Low on–resistance Capable of 2.5V gate drive Low drive current High density mounting 5 6 D D 7 8 D D Ordering Information Hitachi Code FP–8D ———————————————————— EIAJ Code 3 1 2 4 4 G 2 G ———————————————————— 5 7 6 S1 MOS1 S3 1, 3 Source 2, 4 Gate 5, 6, 7, 8 Drain MOS2 SC–527–8A ———————————————————— JEDEC Code — ———————————————————— Table 1 Absolute Maximum Ratings (Ta = 25°C) Item Symbol Ratings Unit ——————————————————————————————————————————— Drain to source voltage VDSS 30 V ——————————————————————————————————————————— Gate to source voltage VGSS ±10 V ——————————————————————————————————————————— Drain current ID 3.5 A ——————————————————————————————————————————— Drain peak current ID(pulse)* 14 A ——————————————————————————————————————————— Channel dissipation Pch*** 1.5 W ——————————————————————————————————————————— Channel dissipation Pch** 1 W ——————————————————————————————————————————— Channel temperature Tch 150 °C ——————————————————————————————————————————— Storage temperature Tstg –55 to +150 °C ——————————————————————————————————————————— * PW ≤ 10 µs, duty cycle ≤ 1 % ** 1 Drive operation When using the glass epoxy board (40 x 40 x 1.6 mm) *** 2 Drive operation When using the glass epoxy board (40 x 40 x 1.6 mm) HAT2009F Table 2 Electrical Characteristics (Ta = 25°C) Item Symbol Min Typ Max Unit Test conditions ——————————————————————————————————————————— Drain to source breakdown voltage V(BR)DSS 30 — — V ID = 10 mA, VGS = 0 ——————————————————————————————————————————— Gate to source breakdown voltage V(BR)GSS ±10 — — V IG = ±200 µA, VDS = 0 ——————————————————————————————————————————— Gate to source leak current IGSS — — ±10 µA VGS = ±6.5 V, VDS = 0 ——————————————————————————————————————————— Zero gate voltage drain current IDSS — — 10 µA VDS = 30 V, VGS = 0 ——————————————————————————————————————————— Gate to source cutoff voltage VGS(off) 0.5 — 1.5 V VDS = 10 V, ID = 1 mA ——————————————————————————————————————————— Static drain to source on state resistance RDS(on) — 0.065 0.08 Ω ID = 2A VGS = 4V * ———————————————————————— — 0.08 0.12 Ω ID = 2A VGS =2.5V * ——————————————————————————————————————————— Forward tramsfer admittance |yfs| 4.5 7.0 — S ID = 2 A VDS = 10 V * ——————————————————————————————————————————— Input capacitance Ciss — 610 — pF VDS = 10 V ———————————————————————————————— Output capacitance Coss — 330 — pF VGS = 0 ———————————————————————————————— Reverse transfer capacitance Crss — 105 — pF f = 1 MHz ——————————————————————————————————————————— Turn–on delay time td(on) — tr — td(off) — tf — VDF — 17 — ns VGS = 4 V, ID = 2 A ———————————————————————————————— Rise time 80 — ns VDD = 10 V ———————————————————————————————— Turn–off delay time 110 — ns ———————————————————————————————— Fall time 90 — ns ——————————————————————————————————————————— Body–drain diode forward voltage 0.9 — V IF = 3.5 A, VGS = 0 ——————————————————————————————————————————— Body–drain diode reverse recovery time trr — 50 — ns IF = 3.5 A diF / dt = 20A / µs ——————————————————————————————————————————— * Pulse Test HAT2009F Power vs. Temperature Derating 100 Test Condition : When using the glass epoxy board (40 x 40 x 1.6 mm) 1.5 Maximum Safe Operation Area 10 µs 100 µs 30 I D (A) Pch (W) 2.0 10 PW ive 50 DC 1 1m = s 10 Op er Operation in at ion 0.3 this area is ** limited by R DS(on) 0.1 ms n er tio Op ra 0 Dr pe O 1 ive Dr 1.0 0.5 Drain Current 2 Channel Dissipation 3 at ion 100 Ambient Temperature 150 200 Ta (°C) 0.03 Ta = 25 °C 0.01 1 shot Pulse 0.1 0.3 1 3 10 30 100 Drain to Source Voltage V DS (V) ** When using the glass epoxy board (40 x 40 x 1.6 mm) 20 Typical Output Characteristics 10 V 5 V Typical Transfer Characteristics 20 (A) 4.5 V 4V 3.5 V 2.5 V 12 8 2V 4 VGS = 1.5 V ID 16 Drain Current Drain Current I D (A) 3V 16 V DS = 10 V Pulse Test 12 8 Tc = 75°C 4 25°C –25°C Pulse Test 0 2 4 6 Drain to Source Voltage 8 10 V DS (V) 0 1 2 3 Gate to Source Voltage 5 4 V GS (V) HAT2009F Static Drain to Source on State Resistance vs. Drain Current 1 Drain to Source On State Resistance R DS(on) ( Ω ) 0.3 Pulse Test 0.4 0.2 ID=2A 0.1 0 2 4 6 Gate to Source Voltage 8 Static Drain to Source on State Resistance R DS(on) ( Ω) I C = 2A, 1 A 0.5 A V GS = 2.5 V 0.04 0 –40 0.1 VGS = 2.5 V 0.05 4V V GS (V) 0.16 2A 1 A 0.5 A 0.08 0.2 0.01 0.2 10 Static Drain to Source on State Resistance vs. Temperature 0.20 Pulse Test 0.12 Pulse Test 0.5 0.02 1A 0.5 A 4V 0 40 80 120 160 Case Temperature Tc (°C) Forward Transfer Admittance |yfs| (S) V DS(on) (V) 0.5 Drain to Source Voltage Drain to Source Saturation Voltage vs. Gate to Source Voltage 50 0.5 1 2 Drain Current 5 10 I D (A) 20 Forward Transfer Admittance vs. Drain Current 20 10 Tc = –25 °C 5 25 °C 75 °C 2 1 0.5 0.2 V DS = 10 V Pulse Test 0.5 1 2 5 Drain Current I D (A) 10 20 HAT2009F Typical Capacitance vs. Drain to Source Voltage Body–Drain Diode Reverse Recovery Time 10000 di/dt = 20 A/µs V GS = 0, Ta = 25°C 200 Capacitance C (pF) Reverse Recovery Time trr (ns) 500 100 50 20 5 0.2 Crss 100 VGS = 0 f = 1 MHz 0 6 V GS V DD = 25 V 10 V 5V 4 8 12 16 Gate Charge Qg (nc) 4 2 0 20 20 30 40 50 Switching Characteristics V GS = 4 V, V DD = 10 V 500 PW = 3 µs, duty < 1 % Switching Time t (ns) V DD = 5 V 10 V 25 V 1000 V GS (V) 8 10 Drain to Source Voltage V DS (V) Gate to Source Voltage V DS (V) Drain to Source Voltage 10 I D = 3.5 A 30 V DS 0 Coss 300 0.5 1 2 5 10 20 Reverse Drain Current I DR (A) 40 10 Ciss 10 Dynamic Input Characteristics 20 1000 30 10 50 3000 200 t d(off) 100 tf 50 tr 20 t d(on) 10 0.2 0.5 1 2 Drain Current 5 10 I D (A) 20 HAT2009F Reverse Drain Current vs. Souece to Drain Voltage Reverse Drain Current I DR (A) 20 Pulse Test 16 12 8 V GS = 0 5V 4 0 0.4 0.8 1.2 Source to Drain Voltage 1.6 2.0 V SD (V) Package Dimensions Unit : mm • SOP–8 0.75 Max 6.8 Max + 0.05 4 0.20 – 0.02 1 2.03 Max 5 2.00 Max 8 4.55 Max 5.25 Max 0 – 10 ° 0.40 + 0.10 – 0.05 0.10 ± 0.10 1.27 0.25 0.60 +– 0.18 0.1 0.12 M FP–8D Hitachi Code SC–527–8A EIAJ — JEDEC