NEC UPD16335

DATA SHEET
MOS INTEGRATED CIRCUIT
µPD16335
96-Bit AC-PDP DRIVER
The µPD16335 is a high-voltage CMOS driver designed for flat display panels such as PDPs, VFDs and ELs. It
consists of a 96-bit bi-directional shift register, 96-bit latch and high-voltage CMOS driver. The logic block is designed
to operate using a 5-V power supply enabling direct connection to a gate array or a microcontroller. In addition, the
µPD16335 achieves low power dissipation by employing CMOS structure while having a high withstand voltage output
(80 V, +50/–75 mA).
FEATURES
• Selectable by IBS pin; three 32-bit bi-directional shift register circuits configuration or six 16-bit bi-directional shift
register circuits configuration
• Data control with transfer clock (external) and latch
• High-speed data transfer (fmax. = 25 MHz min. at data fetch)
(fmax. = 16 MHz min. at cascade connection)
• High withstand output voltage (80 V, +50/–75 mAMAX.)
• 5 V CMOS input interface
• High withstand voltage CMOS structure
• Capable of reversing all driver outputs by PC pin
ORDERING INFORMATION
Part Number
µPD16335
Package
COBNote
Note Please consult with an NEC sales representative about COB.
Document No. S12192EJ2V0DS00 (2nd edition)
Date Published May 1998 N CP(K)
Printed in Japan
©
1998
µPD16335
BLOCK DIAGRAM (IBS = H, 3-BIT INPUT, 32-BIT LENGTH SHIFT REGISTER)
OE
PC
BLK
VDD2
LE
SR1
A1
A1
CLK
CLK
R/L
R/L
B1
B1
S1
S.4
..
..
..
..
..
..
..
.
S94
S1
S2
S3
SR2
A2
A2
CLK
R/L
B2
B2
A3
A3
S2
S.5
..
..
..
..
..
..
..
.
S95
SR3
CLK
R/L
B3
B3
S3
S.6
..
..
..
..
..
..
..
.
S96
S94
S95
S96
L1
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
L96
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
VSS2
VDD2
O96
SRn: 32-bit shift register
VSS2
2
O.1
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
µPD16335
BLOCK DIAGRAM (IBS = L, 6-BIT INPUT, 16-BIT LENGTH SHIFT REGISTER)
OE
PC
BLK
VDD2
LE
A1
CLK
R/L
B1
A2
B2
A3
B3
A4
B4
A5
B5
A6
B6
SR1
A1
S1
CLK
S.7
..
R/L
S91
B1
SR2
A2
S2
CLK
S.8
..
R/L
S92
B2
SR3
A3
S3
CLK
S.9
..
R/L
S93
B3
SR4
A4
S4
CLK S10
..
.
R/L
S94
B4
SR5
A5
S5
CLK S11
..
.
R/L
S95
B5
SR6
A6
S6
CLK S12
..
.
R/L
S96
B6
S1 LE
S2
S3
S4
S5
S.6
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
S93
S94
S95
S96
L1
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
L96
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
VSS2
VDD2
O.1
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
O96
SRn: 16-bit shift register
VSS2
3
µPD16335
PIN DESCRIPTION
Symbol
Pin Name
Description
PC
Polarity change input
PC = L: All driver output invert
BLK
Blank input
BLK = H: All output = H or L
LE
Latch enable input
Data latch by rising edge of this signal.
OE
Output enable
Make output high impedance by input H
input/outputNote
A1 to A3 (6)
RIGHT data
B1 to B3 (6)
LEFT data input/outputNote
When R/L = L (values in parentheses are for 6-bit input)
A1 to A3 (6): Output B1 to B3 (6): Input
CLK
Clock input
Shift executed on fall
R/L
Shift control input
Right shift mode when R/L = H
SR1: A1 → S1 ··· S94 → B1 (Same direction for SR2 to SR6)
Left shift mode when R/L = L
SR1: B1 → S94 ··· S1 → A1 (Same direction for SR2 to SR6)
IBS
Input mode switch
H: 32-bit length shift register, 3-bit input
L: 16-bit length shift register, 6-bit input
O1 to O96
High withstand voltage output
80 V, +50/–75 mA
VDD1
Power supply for logic block
5 V ±10%
VDD2
Power supply for driver block
10 to 70 V
VSS1
Logic GND
Connect to system GND
VSS2
Driver GND
Connect to system GND
When R/L = H (values in parentheses are for 6-bit input)
A1 to A3 (6): Input B1 to B3 (6): Output
MAX
.
Note When input mode is 3-bit, set unused input and output pins “L” level.
TRUTH TABLE 1 (Shift Register Block)
Input
Output
R/L
CLK
H
↓
H
H or L
L
↓
L
H or L
Shift Register
A
Input
OutputNote 2
B
OutputNote 1
Right shift execution
Output
Hold
Input
Left shift execution
Output
Hold
Notes 1. The data of S91 to S93 (S85 to S90) shifts to S94 to S96 (S91 to S96) and is output from B1 to B3 (B1 to B6)
at the falling edge of the clock, respectively. (Values in parentheses are for 6-bit input)
2. The data of S4 to S6 (S7 to S12) shifts to S1 to S 3 (S1 to S6) and is output from A1 to A 3 (A1 to A6) at the
falling edge of the clock, respectively (Values in parentheses are for 6-bit input)
TRUTH TABLE 2 (Latch Block)
LE
Output State of Latch Block (Ln)
↑
Latch Sn data
H or L
Hold latch data
TRUTH TABLE 3 (Driver Block)
4
Ln
BLK
PC
OE
X
H
H
L
H (All driver outputs: H)
X
H
L
L
L (All driver outputs: L)
X
L
H
L
Output latch data (Ln)
X
L
L
L
Output inverted latch data (Ln)
X
X
X
H
Set output impedance high
X: H or L, H: High level, L: Low level
Output State of Driver Block
µPD16335
TIMING CHART (WHEN IBS = “H”: 3-BIT INPUT, RIGHT SHIFT)
Values in parentheses in the following chart are when R/L = L.
CLK
A1 (B3)
A2 (B2)
A3 (B1)
S1 (S96)
S2 (S95)
S3 (S94)
S4 (S93)
S5 (S92)
S6 (S91)
LE
Latch by rising edge
BLK
PC
OE
High impedance
O1 (O96)
O2 (O95)
O3 (O94)
O4 (O93)
O5 (O92)
O6 (O91)
5
µPD16335
TIMING CHART (WHEN IBS = “L”: 6-BIT INPUT, RIGHT SHIFT)
Values in parentheses in the following chart are when R/L = L.
CLK
A1 (B6)
A2 (B5)
A3 (B4)
A4 (B3)
A5 (B2)
A6 (B1)
S1 (S96)
S2 (S95)
S3 (S94)
S4 (S93)
S5 (S92)
S6 (S91)
S7 (S90)
LE
Latch by rising edge
BLK
PC
OE
High impedance
O1 (O96)
O2 (O95)
O3 (O94)
O4 (O93)
O5 (O92)
O6 (O91)
O7 (O90)
6
µPD16335
ABSOLUTE MAXIMUM RATINGS (TA = 25°C, VSS1 = VSS2 = 0 V)
Parameter
Symbol
Ratings
Unit
Logic Block Supply Voltage
VDD1
–0.5 to +7.0
V
Driver Block Supply Voltage
VDD2
–0.5 to +80
V
Logic Block Input Voltage
VI
–0.5 to VDD1 +0.5
V
Driver Block Output Current
IO2
+50/–75
mA
Junction Temperature
Tj
±125
°C
Storage Temperature
Tstg.
–65 to +150
°C
RECOMMENDED OPERATING CONDITIONS (TA = –40 to +85°C, VSS1 = VSS2 = 0 V)
Parameter
Symbol
MIN.
TYP.
MAX.
Unit
Logic Block Supply Voltage
VDD1
4.5
5.0
5.5
V
Driver Block Supply Voltage
VDD2
10
70
V
High-Level Input Voltage
VIH
0.7 VDD1
VDD1
V
Low-Level Input Voltage
VIL
0
0.2 VDD1
V
Driver Output Current
IOH2
–60
mA
IOL2
+40
mA
Caution In order to prevent latch-up breakage, be sure to enter the power to VDD1, logic signal and VDD2 in
that order, and turn off the power in the reverse order, keep this order also during a transition period.
ELECTRICAL SPECIFICATIONS (TA = 25°C, VDD1 = 5.0 V, VDD2 = 70 V, VSS1 = VSS2 = 0 V)
Parameter
Symbol
Conditions
MIN.
TYP.
MAX.
Unit
0.9 VDD1
VDD1
V
0.1 VDD1
V
High-Level Output Voltage
VOH1
Logic, IOH1 = –1.0 mA
Low-Level Output Voltage
VOL1
Logic, IOL1 = 1.0 mA
0
High-Level Output Voltage
VOH21
O1 to O96, IOH2 = –1.3 mA
69
V
VOH22
O1 to O96, IOH2 = –13 mA
65
V
VOL21
O1 to O96, IOL2 = 5 mA
1.0
V
VOL22
O1 to O96, IOL2 = 40 mA
10
V
±1.0
µA
Low-Level Output Voltage
Input Leakage Current
IIL
High-Level Input Voltage
VIH
Low-Level Input Voltage
VIL
Static Current Dissipation
IDD1
VI = VDD1 or VSS1
0.7 VDD1
V
0.2 VDD1
V
Logic, TA = –40 to +85°
100
µA
IDD1
Logic, TA = 25°C
10
µA
IDD2
Driver, TA = –40 to +85°
1000
µA
IDD2
Driver, TA = 25°C
100
µA
7
µPD16335
SWITCHING CHARACTERISTICS (TA = 25°C, VDD1 = 5.0 V, VDD2 = 130 V, VSS1 = VSS2 = 0 V, logic CL
= 15 pF, driver CL = 50 pF, tr = tf = 6.0 ns)
Parameter
Transmission Delay Time
Symbol
tPHL1
Conditions
MIN.
TYP.
CLK ↓ → A/B
tPLH1
tPHL2
CLK ↑ (LE = H) → O1 to O96
tPLH2
tPHL3
BLK → O1 to O96
tPLH3
tPHL4
PC → O1 to O96
tPLH4
Rise Time
Fall Time
Maximum Clock Frequency
Input Capacitance
MAX.
Unit
55
ns
55
ns
180
ns
180
ns
165
ns
165
ns
160
ns
160
ns
tPHZ
OE → O1 to O96
300
ns
tPZH
RL = 10 kΩ
180
ns
tPLZ
300
ns
tPZL
180
ns
120
ns
3
µs
tTLH
O1 to O96
tTLZ
RL = 10 kΩ
tTZH
O1 to O96
120
ns
tTHL
O1 to O96
150
ns
tTHZ
RL = 10 kΩ
3
µs
tTZL
O1 to O96
150
ns
fmax.
When data is read, duty 50%
25
MHz
cascade connection, Duty 50%
16
MHz
CI
15
pF
TIMING REQUIREMENT (TA = –40 to +85°C, VDD1 = 4.5 to 5.5 V, VSS1, 2 = 0 V, tr = tf = 6.0 ns)
Parameter
8
Symbol
Condition
MIN.
TYP.
MAX.
Unit
Clock Pulse Width
PWCLK
20
ns
Latch Enable Pulse Width
PWLE
20
ns
Blank Pulse Width
PWBLK
200
ns
PC Pulse Width
PWPC
200
ns
OE Pulse Width
PWOE
3.3
µs
Data Setup Time
tsetup
7
ns
Data Hold Time
thold
10
ns
Latch Enable Time 1
tLE1
20
ns
Latch Enable Time 2
tLE2
20
ns
RL = 10 kΩ
µPD16335
SWITCHING CHARACTERISTICS WAVEFORM
1/fmax.
PWCLK (H)
PWCLK (L)
3.3 V
CLK
50%
50%
50%
VSS1
tsetup
thold
3.3 V
An/Bn
(Input)
50%
50%
VSS1
tPHL1
tPLH1
VOH1
Bn/An
(Output)
50%
50%
VOL1
3.3 V
LE
50%
50%
VSS1
PWLE
tLE1
tLE2
3.3 V
CLK
50%
50%
VSS1
tPHL2
90%
On
VOH2
VOL2
tPLH2
VOH2
On
10%
VOL2
9
µPD16335
PWBLK
3.3 V
BLK
50%
50%
VSS1
tPHL3
tPLH3
VOH2
90%
On
10%
VOL2
PWPC
3.3 V
PC
50%
50%
VSS1
tPHL4
tPLH4
VOH2
90%
On
10%
VOL2
PWOE
3.3 V
OE
50%
50%
VSS1
tPLZ
tTLZ
tPZL
tTZL
VO (H)
90%
90%
On
10%
10%
VOL2
VOH2
90%
90%
On
10%
10%
VO (L)
tPHZ
10
tTHZ
tPZH
tTZH
µPD16335
[MEMO]
11
µPD16335
No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
rights of third parties by or arising from use of a device described herein or any other liability arising from use
of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety
measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a
customer designated "quality assurance program" for a specific application. The recommended applications of
a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device
before using it in a particular application.
Standard: Computers, office equipment, communications equipment, test and measurement equipment,
audio and visual equipment, home electronic appliances, machine tools, personal electronic
equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,
they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.
M4 96.5