NEC UPD16334

DATA SHEET
MOS INTEGRATED CIRCUIT
µPD16334
96-Bit AC-PDP DRIVER
The µPD16334 is a high-voltage CMOS driver designed for flat display panels such as PDPs, VFDs and ELs. It
consists of a 96-bit bi-directional shift register, 96-bit latch and high-voltage CMOS driver. The logic block is designed
to operate using a 5-V power supply/3.3-V interface enabling direct connection to a gate array or a microcontroller.
In addition, the µPD16334 achieves low power dissipation by employing the CMOS structure while having a high
withstand voltage output (80 V, 50 mA).
FEATURES
• Selectable by IBS pin; three 32-bit bi-directional shift register circuits
configuration or six 16-bit bi-directional shift register circuits configuration
• Data control with transfer clock (external) and latch
• High-speed data transfer (fmax. = 25 MHz min. at data fetch)
(fmax. = 15 MHz min. at cascade connection)
• High withstand output voltage (80 V, 50 mA MAX.)
• 3.3 V CMOS input interface
• High withstand voltage CMOS structure
• Capable of reversing all driver outputs by PC pin
ORDERING INFORMATION
Part Number
Package
µPD16334
COB*
* Please consult with an NEC sales representative about COB.
Document No. S12362EJ2V0DS00 (2nd edition)
Date Published May 1998 N CP(K)
Printed in Japan
©
1997
µPD16334
BLOCK DIAGRAM (IBS = H, 3-BIT INPUT, 32-BIT LENGTH SHIFT REGISTER)
OE
PC
BLK
VDD2
LE
SR1
A1
S1
S1
S4
S2
S3
A1
CLK
CLK
R/L
R/L
B1
B1
A2
A2
L1
O1
VSS2
S94
SR2
S2
S5
CLK
R/L
B2
B2
A3
A3
S95
SR3
S3
S6
VDD2
CLK
B3
R/L
S94
B3
S95
S96
S96
L96
O96
SRn: 32-bit shift register
VSS2
2
µPD16334
BLOCK DIAGRAM (IBS = L, 6-BIT INPUT, 16-BIT LENGTH SHIFT REGISTER)
OE
PC
BLK
VDD2
LE
A1
CLK
R/L
B1
A2
B2
A3
B3
A4
B4
A5
B5
A6
B6
SR1
A1
S1
S7
CLK
R/L
S91
B1
SR2
A2
S2
S8
CLK
R/L
S92
B2
S1 LE
S2
L1
S3
S4
S5
S6
O1
VSS2
SR3
A3
S3
S9
CLK
R/L
S93
B3
SR4
A4
S4
CLK S10
R/L
S94
B4
SR5
A5
S5
CLK S11
R/L
S95
B5
SR6
A6
S6
CLK S12
R/L
S96
B6
VDD2
S93
S94
S95
S96
L96
O96
SRn: 16-bit shift register
VSS2
3
µPD16334
PIN DESCRIPTION
Symbol
PC
Pin Name
Description
Polarity change input
PC = L: All driver output invert
BLK
Blank input
BLK = H : All output = H or L
LE
Latch enable input
Automatically executes latch by setting high at rising edge
OE
Output enable
of the clock
A1 to A3
Make output high impedance by input H
RIGHT data input/output
(6)
(Note)
When R/L=H (values in parentheses are for 6-bit input)
A1 to A3 (6) : Input B1 to B3 (6) : Output
(Note)
B1 to B3 (6)
LEFT data input/output
When R/L=L (values in parentheses are for 6-bit input)
CLK
Clock input
Shift executed on fall
R/L
Shift control input
Right shift mode when R/L= H
A1 to A3 (6) : Output B1 to B3 (6) : Input
SR1 : A1 → S1...S94 → B1 (Same direction for SR2 to SR6)
Left shift mode when R/L= L
SR1 : B1 → S94...S1 → A1 (Same direction for SR2 to SR6)
IBS
Input mode switch
H: 32-bit length shift register, 3-bit input
O1 to O96
High withstand voltage output
80 V, 50 mAMAX.
VDD1
Power supply for logic block
5 V ± 10 %
VDD2
Power supply for driver block
10 to 70 V
V SS1
Logic GND
Connect to system GND
V SS2
Driver GND
Connect to system GND
L: 16-bit length shift register, 6-bit input
Note When input mode is 3-bit, set unused input and output pins “L” level.
TRUTH TABLE 1 (Shift Register Block)
Input
Output
R/L
CLK
H
↓
H
H or L
L
↓
L
H or L
A
Shift Register
B
Input
Output Note1
Right shift execution
Output
Hold
Output Note2
Input
Left shift execution
Output
Hold
Notes 1. The data of S91 to S93 (S85 to S90) shifts to S94 to S96 (S91 to S96) and is output from B1 to B3 (B1 to B6) at the falling
edge of the clock, respectively. (Values in parentheses are for 6-bit input)
2. The data of S4 to S6 (S7 to S12) shifts to S1 to S3 (S1 to S6) and is output from A1 to A3 (A1 to A6) at the falling
edge of the clock, respectively (Values in parentheses are for 6-bit input)
TRUTH TABLE 2 (Latch Block)
LE
CLK
H
↑
Latch Sn data and hold output data
↓
Hold latch data
X
Hold latch data
L
Output State of Latch Block (Ln)
TRUTH TABLE 3 (Driver Block)
Ln
BLK
PC
OE
X
H
H
L
H (All driver outputs: H)
X
H
L
L
L (All driver outputs: L)
X
L
H
L
Output latch data (Ln)
X
L
L
L
Output inverted latch data (Ln)
X
X
X
H
Set output impedance high
X: H or L, H: High level, L: Low level
4
Output State of Driver Block
µPD16334
TIMING CHART (WHEN IBS=”H”: 3-BIT INPUT, RIGHT SHIFT)
Values in parentheses in the following chart are when R/L=L.
CLK
A1 (B3)
,,
,,,
,,
,,,
A2 (B2)
A3 (B1)
S1 (S96)
S2 (S95)
S3 (S94)
S4 (S93)
S5 (S92)
S6 (S91)
LE
BLK
PC
OE
High impedance
O1 (O96)
O2 (O95)
O3 (O94)
O4 (O93)
O5 (O92)
O6 (O91)
5
µPD16334
TIMING CHART (WHEN IBS=”L”: 6-BIT INPUT, RIGHT SHIFT)
Values in parentheses in the following chart are when R/L=L.
CLK
A1 (B6)
A2 (B5)
A3 (B4)
A4 (B3)
,,,
,,,
,,,
,,,
,,,,
A5 (B2)
A6 (B1)
S1 (S96)
S2 (S95)
S3 (S94)
S4 (S93)
S5 (S92)
S6 (S91)
S7 (S90)
LE
BLK
PC
OE
O1 (O96)
O2 (O95)
O3 (O94)
O4 (O93)
O5 (O92)
O6 (O91)
O7 (O90)
6
High impedance
µPD16334
ABSOLUTE MAXIMUM RATINGS (TA = 25 °C, VSS1 = VSS2 = 0 V)
Symbol
Ratings
Unit
Logic Block Supply Voltage
Parameter
VDD1
–0.5 to +7.0
V
Driver Block Supply Voltage
VDD2
–0.5 to +80
V
Logic Block Input Voltage
VI
–0.5 to VDD1 + 0.5
V
Driver Block Output Current
IO2
50
mA
Junction Temperature
Tj
+125
°C
Storage Temperature
T stg.
–65 to +150
°C
RECOMMENDED OPERATING CONDITIONS (TA = –40 to +85 °C, V SS1 = VSS2 = 0 V)
Parameter
Symbol
MIN.
TYP.
MAX.
Unit
Logic Block Supply Voltage
VDD1
4.75
5.0
5.25
V
Driver Block Supply Voltage
VDD2
10
70
V
High-Level Input Voltage
VIH
2.7
VDD1
V
Low-Level Input Voltage
VIL
0
0.6
V
Driver Output Current
IOH2
–40
mA
IOL2
+40
mA
Caution
In order to prevent latch-up breakage, be sure to enter the power to VDD1, logic signal and VDD2 in that
order, and turn off the power in the reverse order, keep this order also during a transition period.
ELECTRICAL SPECIFICATIONS (T A = 25 °C, VDD1 = 5.0 V, VDD2 = 70 V, VSS1 = VSS2 = 0 V)
Parameter
High-Level Output Voltage
Symbol
Conditions
MAX.
Unit
0.9 • VDD1
VDD1
V
Logic, IOL1 = 1.0 mA
0
0.1 VDD1
V
O1 to O96, IOH2 = –1 mA
69
V
VOH22
O1 to O96, IOH2 = –10 mA
65
V
VOL21
O1 to O96, IOL2 = 5 mA
1.0
V
VOL22
O1 to O96, IOL2 = 40 mA
10
V
±1.0
µA
VOH1
Logic, I OH1 = –1.0 mA
Low-Level Output Voltage
VOL1
High-Level Output Voltage
VOH21
Low-Level Output Voltage
Input Leakage Current
IIL
VI = VDD1 or VSS1
High-Level Input Voltage
VIH
VDD1 = 4.75 to 5.25 V
Low-Level Input Voltage
VIL
VDD1 = 4.75 to 5.25 V
Static Current Dissipation
MIN.
TYP.
2.7
V
0.6
V
Note
mA
IDD1
Logic, TA = –40 to +85 °C
10
IDD1
Logic, T A = 25 °C
10 Note
mA
IDD2
Driver, TA = –40 to +85 °C
1000
µA
IDD2
Driver, TA = 25 °C
100
µA
Note When all inputs are high-level (VIH = 2.7 V to VDD1, the R/L and IBS pins are fixed to VI = VSS1 or VDD1)
7
µPD16334
SWITCHING CHARACTERISTICS (TA = 25 °C, VDD1 = 5 V, VDD2 = 70 V, VSS1 = VSS2 = 0 V, Logic CL =
15 pF, Driver CL = 50 pF, tr = tf = 6.0 ns)
Parameter
Symbol
Transmission
t PHL1
Delay time
t PLH1
t PHL2
Conditions
MIN.
TYP.
CLK ↓ → A/B
CLK ↑ (LE = H) → O1 to O96
t PLH2
t PHL3
BLK → O1 to O96
t PLH3
t PHL4
PC → O1 to O96
t PLH4
Maximum Clock
ns
180
ns
180
ns
165
ns
165
ns
160
ns
160
ns
300
ns
tPZH
RL = 10 kΩ
180
ns
300
ns
180
ns
150
ns
3
µs
tTLH
O1 to O96
tTLZ
RL = 10 kΩ
tTZH
O1 to O96
150
ns
tTHL
O1 to O96
150
ns
tTHZ
RL = 10 kΩ
tTZL
O1 to O96
fmax.
When data is read, duty 50 %
25
MHz
cascade connection, Duty 50 %
15
MHz
Frequency
Input Capacitance
ns
55
OE → O1 to O96
tPZL
Fall Time
Unit
55
tPHZ
tPLZ
Rise Time
MAX.
CI
3
µs
150
ns
15
pF
TIMING REQUIREMENT (TA = –40 to +85 °C, VDD1 = 4. 75 to 5. 25 V, VSS1,2 = 0 V, tr = tf = 6.0 ns)
Parameter
8
Symbol
Conditions
MIN.
TYP.
MAX.
Unit
Clock Pulse Width
PWCLK
20
ns
Latch Enable Pulse Width
PWLE
30
ns
Blank Pulse Width
PWBLK
200
ns
PC Pulse Width
PWPC
200
ns
OE Pulse Width
PWOE
3.3
µs
Data Setup Time
tsetup
10
ns
Data Hold Time
thold
10
ns
Latch Enable Time 1
tLE1
25
ns
Latch Enable Time 2
tLE2
5
ns
Latch Enable Time 3
tLE3
25
ns
Latch Enable Time 4
tLE4
5
ns
RL = 10 kΩ
µPD16334
SWITCHING CHARACTERISTICS WAVEFORM
1/fmax.
PWCLK (H)
PWCLK (L)
3.3 V
50 %
50 %
50 %
CLK
VSS1
tsetup
thold
3.3 V
An/Bn
(Input)
50 %
50 %
VSS1
tPHL1
tPLH1
Bn/An
(Output)
VOH1
50 %
50 %
VOL1
3.3 V
50 %
50 %
VSS1
LE
PWLE
tLE1
tLE2
tLE3
tLE4
3.3 V
50 %
50 %
50 %
CLK
VSS1
tPHL2
90 %
VOH2
On
VOL2
tPLH2
On
VOH2
10 %
VOL2
9
µPD16334
PWBLK
3.3 V
BLK
50 %
50 %
VSS1
tPHL3
tPLH3
VOH2
90 %
On
10 %
VOL2
PWPC
3.3 V
PC
50 %
50 %
VSS1
tPHL4
tPLH4
VOH2
90 %
On
10 %
VOL2
PWOE
3.3 V
50 %
50 %
VSSI
OE
tPLZ
tTLZ
tPZL
tTZL
VO(H)
90 %
90 %
On
10 %
10 %
VOL2
VOH2
90 %
On
10 %
tPHZ
10
90 %
tTHZ
10 %
tPZH
tTZH
VO (L)
µPD16334
[MEMO]
11
µPD16334
No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this
document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from use of a device described herein or any other liability arising
from use of such device. No license, either express, implied or otherwise, is granted under any patents,
copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety
measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on
a customer designated "quality assurance program" for a specific application. The recommended applications
of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each
device before using it in a particular application.
Standard: Computers, office equipment, communications equipment, test and measurement equipment,
audio and visual equipment, home electronic appliances, machine tools, personal electronic
equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,
they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.
M4 96. 5