NEC UPD2845GR-E1

DATA SHEET
SHEET
DATA
CMOS DIGITAL INTEGRATED CIRCUITS
PPD2845GR
1 V, 1.3 mA, 94MHz PLL SYNTHESIZER LSI
FOR PAGER SYSTEM
DESCRIPTION
PPD2845GR is a PLL synthesizer LSI for pager system. This LSI is manufactured using low voltage CMOS
process and therefore realized the low power consumption PLL operated on 1 V, 1.3 mA. This LSI is packaged in 16
pin plastic SSOP suitable for high-density surface mounting. So, this product contributes to produce a long-lifebattery and physically-small pager system.
FEATURES
• Operating frequency : · Input frequency : fin = 10 MHz to 94 MHz
· Reference oscillating frequency : fx’tal = 12.8 MHz
• Low Supply voltage : · PLL block : V DD1 = 1.00 V to 1.15 V @ fin = 10 MHz to 70 MHz
VDD1 = 1.05 V to 1.15 V @ fin = 10 MHz to 94 MHz
· Charge pump block: VDD2 = 3.0 V ± 300 mV
• Low power consumption • IDD = 1.3 mA TYP. @ fin = 70 MHz, fx’tal = 12.8 MHz
• Equipped with power-save function • Serial data can be received in power-save mode.
• Packaged in 16 pin plastic SSOP suitable for high-density surface mounting.
ORDERING INFORMATION
PART NUMBER
PACKAGE
SUPPLYING FORM
PPD2845GR-E1
16 pin plastic SSOP
(225 mil)
Embossed tape 12 mm wide. QTY 2.5 k/reel
Pin 1 is in tape pull-out direction.
PPD2845GR-E2
16 pin plastic SSOP
(225 mil)
Embossed tape 12 mm wide. QTY 2.5 k/reel
Pin 1 is in tape roll-in direction.
* To order evaluation samples, please contact your local NEC sales office (Order number : PPD2845GR).
PIN ASSIGNMENT
(Top View)
VDD1
XI
FIN
XO
GND
LE
FR
RESET
CLK
DATA
EO
PS
EOP
NC
EON
VDD2
Caution Electro-static sensitive devices
Document No. P12150EJ2V0DS00 (2nd edition)
(Previous No. IC-3291)
Date Published February 1997 N
Pi di J
©
1994
PPD2845GR
INTERNAL BLOCK DIAGRAM
XI
XO
LE
CLK
DATA
PS
NC
VDD2
16
15
14
13
12
11
10
9
IN
AMP
1/2
PRESCALER
gate
reference divider 13 BIT
timer
latch 13 BIT
DATA
CLK
LE
FR
Shift register 23 BIT
Phase
comparator
latch 18 BIT
Phase detector
error out
FV
5 BIT
divider 13 BIT
32/33
PRESCALER gate
Pch
open
drain
Nch
open
drain
TEST CIRCUIT
2
1
2
3
4
5
6
7
8
VDD1
FIN
GND
FR
RESET
EO
EOP
EON
PPD2845GR
PIN EXPLANATION
PIN No.
PIN NAME
I/O
EXPLANATION FOR FUNCTION
1
VDD1
•
2
FIN
I
3
GND
•
Ground
4
FR
O
Test pin for monitor.
Normally used as PLL, output L should be selected by test bit and this pin should be
opened. (Refer to setting for reference counter on 11 page)
5
RESET
I
Test pin for monitor reset. (Refer to RESET on 12 page)
Normally used as PLL, this pin should be grounded.
6
EO
O
Internal charge pump output. In the case of passive filter, this output should be used.
Input signal phase fp vs. reference signal fr
fp > fr : Low output
fp < fr : High output
fp = fr : High-impedance
7
8
EOP
EON
O
O
Supply voltage to PLL block
Frequency Input
Outputs for external charge pump. In the case of active filter, this outputs should be used.
EOP : PCH open drain
EON : NCH open drain
EON
EOP
9
VDD2
•
Supply voltage to charge pump.
10
NC
•
Non Connection.
11
PS
I
Control bias input for power-save (Refer to Power-save on 12 page).
12
DATA
I
Data input for divided ratio.
13
CLK
I
Clock input for shift register.
14
LE
I
Latch enable input.
15
16
XO
XI
O
I
X’tal oscillator connection pin.
3
PPD2845GR
ABSOLUTE MAXIMUM RATINGS (UNLESS OTHERWISE SPECIFIED, T A = +25 °C)
Supply Voltage
VDD1
ð0.3 to 2.0
VDD2
ð0.3 to 6.0
V
Input Voltage
VI1
ð0.3 to VDD1 +0.3 (Except for DATA, CLK, LE, PS pin)
V
VI2
ð0.3 to 6.0 (DATA, CLK, LE, PS)
V
Output Voltage
VO1
ð0.3 to VDD1 +0.3 (XO, FR)
V
VO2
ð0.3 to VDD2 +0.3 (EO, EOP, EON)
IO
10
Operating Ambient Temperature
TA
ð10 to +50
°C
Storage Temperature
Tstg
ð55 to +125
°C
Output Current
V
RECOMMENDED OPERATING RANGE
PARAMETER
SYMBOL
MIN.
TYP.
MAX.
UNIT
VDD1
1.0
1.05
1.1
V
VDD2
2.85
3.0
3.15
V
TA
ð10
+25
+50
°C
Supply Voltage
Operating Ambient Temperature
4
V
mA
PPD2845GR
ELECTRICAL CHARACTERISTICS
DC PERFORMANCE (Unless otherwise specified, VDD1 = 1.00 V to 1.15 V, VDD2 = 2.70 to 3.30 V, TA = ð10 to +50 °C)
PARAMETER
SYMBOL
MIN.
TYP.
MAX.
UNIT
VDD1
1.00
1.05
1.15
V
PLL Operation
VDD2
2.70
3.0
3.30
V
P/D Charge pump block
IDD1
1.3
2.2
mA
fin = 70 MHz, 0.2 VP-P.
fx’tal = 12.8 MHz X’tal OSC IN.
VDD1 = 1.0 V to 1.1 V
VDD2 = 2.85 V to 3.15 V
IDR
1.0
10
PA
No Input Signal, VDD1 = 1.1 V
Supply Voltage
Circuit Current
Data Retain Current
High Level Output Current1
*1
High Level Output Current2
*1
High Level Output Current3
*1
*2
Low Level Output Current1
*2
Low Level Output Current2
*2
Low Level Output Current3
High Level Input Current1
Low Level Input Current1
*2
*1
High Level Input Current2
*2
CONDITIONS
IOH1
ð1.0
mA
EO, EOP pin. VDD2 = 2.85 V
VOH = VDD2 ð0.5 V
IOH2
ð0.5
mA
XO pin. VOH = VDD1 ð0.5 V
IOH3
ð0.1
mA
FR pin. VOH = VDD1 ð0.5 V
IOL1
1.0
mA
EO, EON pin. VDD2 = 2.85 V
VOL = 0.5 V
IOL2
0.4
mA
XO pin. VOL = 0.5 V
IOL3
0.4
mA
FR pin. VOL = 0.5 V
IIH1
0.4
PA
FIN, XI pin. VIH = VDD1 1.0 V
IIL1
ð0.4
PA
FIN, XI pin. VIL = 0 V, VDD1 1.0 V
1.0
PA
DATA, CLK, LE, PS pin. VIH1 = 3.85 V
IIH2
High Level Input Voltage1
VIH1
0.8 u VDD1
4.0
V
DATA, CLK, LE, PS pin.
Low Level Input Voltage1
VIL1
0
0.2 u VDD1
V
DATA, CLK, LE, PS pin.
High Level Input Voltage2
VIH2
0.8 u VDD1
VDD1
V
RESET pin.
Low Level Input Voltage2
VIL2
0
0.2 u VDD1
V
RESET pin.
r1.0
PA
EO, EOP, EON pin.
VDD1 = 1.0 V to 1.1 V
VDD2 = 2.85 V to 3.15 V
Output Leak Current
ð4
10
IL
*1 Current from IC
*2 Current into IC
AC PERFORMANCE (Unless otherwise specified, VDD1 = 1.00 V to 1.15 V, VDD2 = 2.70 to 3.30 V, TA = ð10 to +50 qC)
PARAMETER
SYMBOL
MIN.
Input frequency 1
fin1
Input frequency 2
fin2
Reference Oscillating Frequency
fx’tal
TYP.
MAX.
UNIT
10
70
MHz
FIN pin, Vin = 0.2 VP-P
10
94
MHz
FIN pin, Vin = 0.2 VP-P,
VDD1 = 1.05 V to 1.15 V
MHz
XI, XO pin
12.8
CONDITIONS
5
PPD2845GR
TEST CIRCUIT
DC measurement
relay RL1
X’tal
BS2
XI
VDD1
2
16
XO
FIN
GND
C1
LE
GND
4
FR
5
RESET
6
EO
PS
7
EOP
NC
EON
VDD2
15
C2
D1
14
CLK
BS3
GND
13
DATA
12
11
10
8
BS1
µ PD2845GR
relay RL1
Diode D1
Capacitor C1,C2
X’tal
: SRR-204
: 1S945
: 18 pF
: 12.8 MHz
AC measurement
VDD1
SW 1
1µ F
VDD2
10 pF
100 pF
XI
VDD1
50 Ω
1µ F
X’tal
BNC1
FIN
XO
GND
LE
1 000 pF
BNC2
12.8 MHz
10 pF
FR
CLK
RESET
DATA
SW3
EO
PS
EOP
NC
EON
VDD2
SW2
µPD2845GR
BNC1
BNC2
SW1
SW2
SW3
6
: Frequency input
: Frequency output
: switch for voltage on/off
: Desired for PS mode : Low
: Desired for reset mode : High
100 pF
PPD2845GR
APPLICATION CIRCUIT EXAMPLES
Passive filter application example (using internal charge pump)
VDD1
1µF
VDD2
VCO out
10 pF
100 pF
VDD1
1µF
XI
X’tal
FIN
VCO
12.8 MHz
XO
controller
1 000 pF
10 pF
GND
LE
FR
CLK
RESET
passive filter
DATA
EO
PS
EOP
NC
EON
VDD2
µPD2845GR
100 pF
VDD1
VDD2
X’tal
: 1.0 to 1.1 V
: 2.85 to 3.15 V
: 12.8 MHz
Active filter application example (using external charge pump)
EO
FIN (2 pin)
EOP
VCO
LPF
PMOS
NMOS
EON
7
PPD2845GR
INPUT TIMING OF SERIAL DATA
DATA
latch
CLK
read
LE
This logic circuit is controlled by a 3-wire serial bus interface with DATA (12 pin), CLK (13 pin) and LE (14 pin).
On the control setting, Binary-coded serial data is input to DATA pin. This data is read into the shift register at the
rising edge of the CLK signal input to the CLK pin. When the LE signal is at the low level, DATA CLK are received
into the LSI to be latched at the rising edge of the LE signal.
While the LE signal is at the high level, neither DATA nor CLK signals can be received.
CAUTION At the initial VCC supplied time, serial data must be input, because the IC output is unstable on
the non-data input stage. [Refer to ‘Power-save (pin 11)’ on 12 page]
8
PPD2845GR
INPUT SIGNAL DIVIDER
INPUT SIGNAL DIVIDER obtain the frequency: fp input to phase comparator. This circuit divides input frequency:
fin to obtain fp. This block consists of prescaler, 5 bit swallow counter, 13 bit main counter and divide-ratio control
circuit.
Setting numbers
• Main counter
M = 32 to 8 191
• Swallow counter
S = 0 to 31
• Prescaler
P = 32, P+1 = 33
Total divide ratio
NT = S(P+1) + P(MðS) = PM+S = 32 M+S (M t S)
?NT = 1 024 to 262 143
Relation between fp and fin
fp = fin/(32 M+S)
(ex)
At fp = 5 kHz
fin = 70 MHz
NT = 70 M/5 k = 14 000
Therefore 14 000 32 = 437 • • • 16
n
n
M
S
Reference Counter
Reference Counter obtain the frequency: fr input to phase comparater.
This circuit divides the reference
oscillating frequency: fX’tal of X’tal or TCXO to obtain fr. This block consists of 13 bit programmable reference counter
and prescaler of divide-by-2.
Setting number
• 13 bit programmable reference counter
R = 2 to 8 191
Total reference counter block divide ratio
RT = 2 u R
?RT = 4 to 16 382
Relation between fr and fX’tal
fr = (fX’tal/2)/R
(ex)
fr = 5 kHz
fX’tal = 12.8 MHz
R = (12.8 MHz/2)/5 kHz = 1 280
9
PPD2845GR
Data format of shift register
Foundaly constraction of shift register
LE
LSB
MSB
A D22 D21 D20 D19 D18 D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1
DATA
CLK
last bit
first bit
(1) Setting for data selection bit
Data selection bit: last A bit can govern the latch selection.
Data selection bit’s construction and function
A
Function
1
Setting for swallow and main counter’s divide ratio.
Setting for charge pump output selection.
0
Setting for reference counter’s divide ratio.
“0” = Low, “1” = High
(2) Setting for swallow/main counter’s data and charge pump output selection
Bit constraction of setting for swallow/main counter and charge pump output selection
A
D22 D21 D20 D19 D18 D17 D16 D15 D14 D13 D12 D11 D10 D9
0
A
1
2
2
A = 1 charge
no
pump
assigned
output
selection
2
2
3
2
4
2
0
2
1
2
2
2
swallow counter : S
(5 bits 0 to 31)
3
2
4
2
D8
5
2
D7
6
2
D6
7
2
D5
8
2
D4
9
2
D3
10
2
D2
11
2
D1
12
2
main counter : M
(13 bits 32 to 8 191)
CAUTION D19, D20 are not assigned for setting but CLK signals must be input because of the bit
construction.
• SWALLOW COUNTER DATA
S = (D14 u 24) + (D15 u 23) + (D16 u 22) + (D17 u 21) + (D18 u 20)
• MAIN COUNTER DATA
M = (D1 u 212) + (D2 u 211) + (D3 u 210) + (D4 u 29) + (D5 u 28) + (D6 u 27) + (D7 u 26) + (D8 u 25) + (D9 u 24) +
(D10 u 23) + (D11 u 22) + (D12 u 21) + (D13 u 20)
10
PPD2845GR
NT = 32M + S
= 32 u {(D1 u 212) + (D2 u 211) + (D3 u 210) + (D4 u 29) + (D5 u 28) + (D6 u 27) + (D7 u 26) + (D8 u 25) + (D9 u 24) +
(D10 u 23) + (D11 u 22) + (D12 u 21) + (D13 u 20)} + {(D14 u 24) + (D15 u 23) + (D16 u 22) + (D17 u 21) + (D18 u
20)}
17
16
15
14
13
12
11
10
9
?NT = (D1 u 2 ) + (D2 u 2 ) + (D3 u 2 ) + (D4 u 2 ) + (D5 u 2 ) + (D6 u 2 ) + (D7 u 2 ) + (D8 u 2 ) + (D9 u 2 ) +
(D10 u 28) + (D11 u 27) + (D12 u 26) + (D13 u 25) + (D14 u 24) + (D15 u 23) + (D16 u 22) + (D17 u 21) + (D18 u 20)
Thus, total divide ratio of input signal divider ‘NT’ can be transferred to binary-code in order to setting data ‘D1 to
D18’ input. (D1 should be top digit and D18 should be bottom digit.)
• Charge pump output selection data
D22
D21
EO Pin
(To use internal
charge pump)
EOP, EO Pin
(To use external
charge pump)
0
0
Hi- Impedance
OFF
0
1
Hi-Impedance
OUTPUT
1
0
OUTPUT
OFF
1
1
OUTPUT
OUTPUT
“0” = Low, “1” = High
(3) Setting for reference counter
A
A
D22 D21 D20 D19 D18 D17 D16 D15 D14 D13 D12 D11 D10 D9
0
2
1
2
2
2
3
2
4
2
A=0
5
2
6
2
2
7
2
8
2
9
10
2
11
2
12
2
reference counter : R
(13 bits 2 to 8 191)
0
D8
D7
D6
D5
D4
D3
D2
D1
1
TEST BIT
(FR pin)
no assigned
CAUTION D1 to D7 are not assigned for setting but CLK signals must be input because of the bit
construction.
RT = 2 u R
12
11
10
9
8
7
6
5
?RT = 2 u {(D10 u 2 ) + (D11 u 2 ) + (D12 u 2 ) + (D13 u 2 ) + (D14 u 2 ) + (D15 u 2 ) + (D16 u 2 ) + (D17 u 2 ) +
(D18 u 24) + (D19 u 23) + (D20 u 22) + (D21 u 21) + (D22 u 20)}
*TEST BIT: for IC tester (FR pin) use or not use (PLL operation).
for normally PLL operation, input D9 = 0, D8 = 1 (FR pin = output L).
11
PPD2845GR
Power-save and RESET
Power-save (PIN 11)
Power-save-mode can be selected by input data to PS pin.
H; operation mode
L; power-save-mode
On the power-save-mode, reference oscillator and prescaler turn off and error-outs (EO, EOP, EON) output Hiimpedance but shift register data is remained. Serial data can be received in power-save-mode.
Note: Power-save usage for initial VCC supplying
To prevent unstable mode at initial VCC supplying, Power-save-mode must be selected. After counter data
setting, normal operation mode can be selected.
RESET (PIN 5)
Reset-mode can be selected by input data to RESET pin.
H; reset-mode
L(GND or Open); Normal operation.
On the reset-mode, reference oscillator/prescalers turn off and error-outs (EO, EOP, EON) output Hi-impedance.
Shift-register data is initialized.
This reset-mode should be used at LSI testing, normally use as PLL, RESET pin should be opened or grounded.
Supplementary explanation:
When RESET pin bias is switched from H to L, initial divide ratios can be set automatically as follows
• Input signal divider: NT = 10372
• 13 bit programmable reference counter: R = 1 280 (RT = 2 560)
These divide ratios make PLL loop without controller on condition as follows
fin = 51.86 MHz
fx’tal = 12.8 MHz
fp = fr = 5.0 kHz
12
PPD2845GR
PHASE COMPARATOR
PHASE COMPARATOR compares the phase between divided input frequency (fp) and reference frequency (fr).
This circuit make the change pump output signals according to following detection.
*3
*4
EO
fr > fp
H
H
OFF
fr = fp
Hi-Impedance
OFF
OFF
fr < fp
L
OFF
L
EOP
*3 To use internal charge pump
*4
detection
EON
(passive filter type)
*4 To use external charge pump
(active filter type)
VCO should be used as type of ‘higher voltagehigher frequency’.
EON
EO
EOP
EOP is Pch open drain, EON is Nch open drain. EO is output pin of internal charge pump.
SYSTEM APPLICATION EXAMPLE
Pager block diagram of direct conversion type
∫
LPF
DET
PLL
×5
DECODER
DRIVER
BZ
CLOCK
DRIVER
LCD
µ PD2845GR
π/2
LPF
∫
13
PPD2845GR
PACKAGE DIMENSIONS
16 PIN PLASTIC SHRINK SOP (225 mil)
16
9
P
detail of lead end
1
8
A
H
J
E
K
F
G
I
B
C
L
N
D
M
M
NOTE
Each lead centerline is located within 0.10 mm (0.004 inch) of
its true position (T.P.) at maximum material condition.
ITEM
MILLIMETERS
INCHES
A
5.50 MAX.
0.217 MAX.
B
0.475 MAX.
0.019 MAX.
C
0.65 (T.P.)
0.026 (T.P.)
D
0.20±0.10
0.008±0.004
E
0.125±0.075
0.005±0.003
F
1.8 MAX.
0.071 MAX.
G
1.44
0.057
H
6.2±0.3
0.244±0.012
I
4.4±0.2
+0.009
0.173 –0.008
J
0.9±0.2
0.035 +0.009
–0.008
K
0.15 +0.10
–0.05
0.006 +0.004
–0.002
L
0.5±0.2
0.020 +0.008
–0.009
M
0.10
0.004
N
0.10
5°±5°
0.004
5°±5°
P
P16GM-65-225B-2
14
PPD2845GR
NOTE ON CORRECT USE
(1) Observe precautions for handling because of electrostatic sensitive devides.
(2) Form a ground pattern as wide as possible to minimize ground impedance.
(3) Connect a bypass capacitor (e. g. 1 000 pF) to the VDD pin.
(4) The DC cut capacitor must be each attached to FIN, XI and XO pin.
(5) External R, C values of loop filter should be determined according to the VCO specification.
(6) While VCO signal is not input to F IN pin, power-save-mode must be set.
(7) After initially VCC, VDD are supplied, serial data should be input immediately. (Before serial data input, LSI
operation is unstable or undesired.)
RECOMMENDED SOLDERING CONDITIONS
This product should be soldered in the following recommended conditions. Other soldering method and conditions
than the recommended conditions are to be consulted with our sales representatives.
PPD2845GR
Soldering process
Soldering conditions
Symbol
Infrared ray reflow
Peak package’s surface temperature: 235 °C or below,
Reflow time: 30 seconds or below (210 °C or higher),
Number of reflow process: 2, Exposure limit*: None
IR35-00-2
VPS
Peak package’s surface temperature: 215 °C or below,
Reflow time: 40 seconds or below (200 °C or higher),
Number of reflow process: 2, Exposure limit*: None
VP15-00-2
Partial heating method
Terminal temperature: 300 °C or below,
Flow time: 3 seconds or below, Exposure limit*: None
*: Exposure limit before soldering after dry-package is opened.
Storage conditions: 25 °C and relative humidity at 65 % or less.
Note Apply only a single process at once, except for “Partial heating method”.
For details of recommended soldering conditions for surface mounting, refer to information document
SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (C10535E).
15
PPD2845GR
No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this
document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from use of a device described herein or any other liability arising
from use of such device. No license, either express, implied or otherwise, is granted under any patents,
copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety
measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on
a customer designated "quality assurance program" for a specific application. The recommended applications
of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each
device before using it in a particular application.
Standard: Computers, office equipment, communications equipment, test and measurement equipment,
audio and visual equipment, home electronic appliances, machine tools, personal electronic
equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,
they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.
M4 96. 5