TPIC83000-Q1 www.ti.com SLDS171 – NOVEMBER 2009 PRESSURE SENSOR SIGNAL CONDITIONING INTERFACE Check for Samples: TPIC83000-Q1 FEATURES 1 • • • • • • • • • Qualified for Automotive Applications 10-Bit Pressure and Temperature Output On-Board Temperature Sensor Programmable Gain / Gain TC1 Programmable Offset / Offset TC1 / TC2 On-Board EEPROM for System Calibration Operating Temperature Range: –40°C to 85°C 16-Pin TSSOP (PW) Package UART Interface APPLICATIONS • • • PW PACKAGE (TOP VIEW) Vcc 1 16 Vdd VccA 2 15 DGnd Gnd 3 14 DI REF1 4 13 DO GndA 5 12 TST2 SIP 6 11 TST1 Gnd 7 10 TST0 SIN 8 9 ProgV Occupancy Weight Sensing Pedal-Pressure Sensing General Low-Pressure Sensing DESCRIPTION The TPIC83000 is a single-channel, signal conditioning device for pressure sensors used in low-pressure sensing applications such as passenger occupancy indication/detection and pedal pressure sensing. The pressure sensor can be based on either a strain gauge or piezo-resistive elements configured as a full Wheatstone bridge. This device provides an analog signal conditioning interface between the pressure sensor and a microcontroller. The analog front end (AFE) inside the device processes the sensed signals from the pressure sensor by amplifying the signal and cancelling offset. This processed signal is then converted into a 14-bit, digital word using a sigma-delta analog-to-digital converter (ADC). The device also has a built-in 12-bit ADC that is used to sense ambient temperature to compensate for the temperature coefficient of the sensor and related processing circuitry. The compensated digital data is transferred to the microprocessor via a built-in UART interface. ORDERING INFORMATION (1) TA –40°C to 85°C (1) (2) PACKAGE TSSOP – PW (2) Reel of 2000 ORDERABLE PART NUMBER TPIC83000IPWRQ1 TOP-SIDE MARKING TPIC83000I For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com. Package drawings, thermal data, and symbolization are available at www.ti.com/packaging. 1 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2009, Texas Instruments Incorporated TPIC83000-Q1 SLDS171 – NOVEMBER 2009 www.ti.com Functional Block Diagram PROGV IC HV generator EEPROM VCC Temperature sensor Over -Pressure detector ADC 12bit DO LOGIC (DSP) SIP Amp. SIN Amp. Amp. DI ADC 14bit input error detector GND I/O i/f OSC TST0 TST1 TST2 REFI TST0 TST1 TST2 TERMINAL FUNCTIONS NAME NO. TYPE (1) DESCRIPTION Vcc 1 I 5-V input analog supply VccA 2 I ADC positive reference Gnd 3 I Ground (analog) REFI 4 I Current reference ( Vbg / R ) GndA 5 I ADC negative reference SIP 6 I / PD Gnd 7 I SIN 8 I / PD Negative sensor input ProgV 9 O / PD EEPROM programming voltage monitor (2) 10 I/O Test (analog / digital) TST1 (NC) (2) 11 I/O Test (analog / digital) TST2 (NC) (2) 12 I/O Test (digital) DO 13 O UART interface output DI 14 I UART interface input DGnd 15 I Digital ground Vdd 16 I 5-V digital supply TST0 (NC) (1) (2) 2 Positive sensor input Ground (analog) I = input, O = output, PD = pulldown, PU = pullup These pins are to be used for TI internal test purposes only and must be "no connection" in the system application. No signal traces should be connected to the NC pins. Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TPIC83000-Q1 TPIC83000-Q1 www.ti.com SLDS171 – NOVEMBER 2009 FUNCTIONAL DESCRIPTION The TPIC83000 is designed for detection of low-pressure variations in many automotive applications. This device provides analog interface signal conditioning between a piezo-resistive or strain gauge pressure sensor and a microcontroller. The input amplifiers process the voltage from the sensor and amplify this voltage before feeding it to the 14-bit sigma-delta ADC for signal conditioning. Once the signal is converted into a digital format, this converted value of the analog signal is processed and transmitted to the microcontroller via the UART interface. There is also a 12-bit ADC to sense ambient temperature, which is used to compensate for non-ideality of the sensor and associated circuitry due to temperature. Vcc VccA Vdd TST2 Vdd Digital block Vcc Vcc SIP - SIN Open/Short Sensor faults Vcc SIP + - Shorts Coarse Offset + + + - - - Vcc Mux Ampout- [2:0] Dweight ADC clock [13:0] Signal generator Conditioning Vcc Dtemp [11:0] Vbg Vptat Vcc Filter Sigma Delta ADC ADC clock generator Vcc Current mirror TrimBG [4:0] EEPROM control logic - Clk2.458MHz TrimOsc [6:0] REF1 DI DO Vcc 2.458MHz Oscillator + Trim Control Registers EEPROM Vdd Vcc GND GNDA Filter Sigma Delta ADC Bandgap PTAT generator Ampout+ [2:0] TST1 Control bus to ALL Clk2.458MHz blocks Master control logic PUC Vcc Vcc TST0 Test Mode Diagnostics Vcc Vcc Vcc SIN Overweight bit - Vcc SIP Short Cpuv Vcc + SIN Open Programmable offset Open + UART I/F Charge pump Cpuv Vcc PROGV Power On Reset DGND PUC GND Figure 1. Detailed Functional Block Diagram Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TPIC83000-Q1 3 TPIC83000-Q1 SLDS171 – NOVEMBER 2009 www.ti.com Function Pin Description Supply Voltage (Vcc) This terminal is the input supply for the analog circuits, typically 5 V +5%/-10% tolerant. A noise filter capacitor of 4.7 μF (typical) is required on this terminal to ensure stability of the internal circuits. Ground (Gnd) This terminal is connected to the system ground. Ground (DGnd) This terminal is connected to the system ground. ADC Reference Voltage (VccA) This terminal is the input reference for the ADC, typically 5 V. A noise filter capacitor of 0.1 μF (typical) is required on this terminal to ensure stability of the internal circuits. Supply Voltage (Vdd) This terminal is the input supply for the digital circuits, typically 5-V tolerant. A capacitor of 4.7 μF (typical) is required on this terminal to ensure stability of the internal circuits. ADC Reference Voltage (GNDA) This terminal is the input reference for the ADC, typically 0 V. Gauge OUTPUT (SIP) The SIP is a positive sensor output. This is the input to the amplifier used for the signal conditioning. Gauge OUTPUT (SIN) The SIN is a negative sensor output. This is the input to the amplifier used for the signal conditioning. Data Input/Data Output (DI/DO) The DI and DO is the UART communication interface, reporting information back to the microprocessor. This is an open-drain output with the output set to high-impedance mode when other DO in the system is activated. The output is by default in RX mode. Reference Supply (REFI) Internally generated reference voltage appears as resistor (10 kΩ) is connected to this pin to set up reference current for internal oscillator. Internal oscillator frequency fosc = 2 × (VBG/R) / (VBG ×Ctrim) VBG = Bandgap voltage (VREFI) Ctrim = Internally trimmed capacitor EEPROM Supply (PROGV) This terminal is the supply for EEPROM program. A capacitor of ~1 nF is required on this terminal. 4 Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TPIC83000-Q1 TPIC83000-Q1 www.ti.com SLDS171 – NOVEMBER 2009 Principles of Operation The system transfer equation is shown in Equation 1. 2 Gain × (1 + (TCGain1 × Temp)) VDIOdigital = (Vinput – VOS – (TCVOS2 × Temp) – (TCVOS2 × Temp ) × VccA × 1024 (1) Where Vinput = Voltage input to the Logic (DSP) block. This voltage is the same as the output of the Analog Front End VDIOdigital = Digital output of the logic (DSP) block Temp = Difference between ambient temperature and room temperature VOS = Offset adjust TCVOS1 = Offset TC1 adjust TCVOS2 = Offset TC2 adjust Gain = Gain TCGain1 = Gain TC1 adjust VccA = ADC reference VDIOdigital = 0 for lower clamp (TA = –40°C to 85°C) VDIOdigital = 1023 for upper clamp (TA = –40°C to 85°C) The range and resolution of the parameters is given in Table 1. Table 1. Output Parameters ITEM Input coarse offset Input fine offset Input offset first-order temperature coefficient Input offset second-order temperature coefficient Gain Gain first-order temperature coefficient SYMBOL BIT NO. ADJUSTMENT RANGE DEFAULT TRVOSC 9 ±120 mV 0 mV TRVOSF TRTCVOS1 TRTCVOS2 TRGAIN TRTCGAIN1 8 7 7 9 6 0 to 4 × 510 μV (±25 μV/°C) × 3 ±40 nV/°C2 100 + 25% -900 to 0 ppm/°C 0 μV 0 μV/°C 0 μV/°C2 100% 0 ppm/°C DECIMAL VALUE BINARY VALUE ADJUSTMENT VALUE 511 111111111 +120 mV 256 100000000 0 mV 0 0 -120 mV 255 11111111 4 × 510 μV 0 0 0 63 1111111 (+25 μV/°C) × 3 0 0 -64 10000000 0 63 1111111 40 nV/°C2 0 0 0 -64 10000000 -40 nV/°C2 255 1111111 125% 0 0 100% -255 10000000 75% 0 0 0 ppm/°C -63 1 -900 ppm/°C (-25 μV/°C) × 3 Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TPIC83000-Q1 5 TPIC83000-Q1 SLDS171 – NOVEMBER 2009 www.ti.com DETAILED FUNCTIONAL DESCRIPTION Pre-Amplifier (Front End) Due to initial large offset in the pressure sensor output, the analog front end has an offset correction as needed. Fault Detection Sensor inputs SIP, SIN The following faults are detected and a fault bit set in a register. The minimum fault detection filter time is 5 ms. There are 1-μA pulldown current source on the SIP and SIN terminals. Fault detection capabilities of this device are for both SIP and SIN sensor inputs. The following type of faults are reported and sent to the DIAG bits. • Shorts to Vcc • Shorts to Gnd • Open piezo-resistive or strain gauge (i.e., open-circuit between SIP and SIN inputs) ADC The ADC is a 14-bit with resolution of ±3 LSB (10 bit). Digital I/O • • • • • I/O data transfer via DI/DO pins. Refer to data format communications between microprocessor to IC: Mode selection (microprocessor → IC) chart. DI/DO interface become active only when specified data format and protocol are used. Start bit is used to initiate the communication: DI/DO repeats Rx-Tx-Rx-Tx, to realize one pin Tx-Rx communication. When sensor, temperature, diagnostics, and trimming data are requested, DI/DO remain in Rx mode until all frames are sent. DI/DO output current capability is 5 mA at low level. Memory • • • • EEPROM : Read/Write cycle is less than 25 times Data retention: 15 years at 90°C Data fault detection (CRC8) Fault write/erase prevention EEROM Write • • • 6 Generate programming voltage after receiving the write RQ. Output Diag during the write EEROM write sequence 1. Send data to appropriate bank or field 2. Send WE = 1 (a) Calculate new CRC (b) Set charge pump on (c) Reload all registers from EEPROM (d) Check CRC value 3. Read Diag register to confirm PROG_OK = 1 4. Send WE = 0 (≥ 15 ms must elapse for write sequence to complete before microprocessor can disable EEPROM write) Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TPIC83000-Q1 TPIC83000-Q1 www.ti.com SLDS171 – NOVEMBER 2009 System Configuration/Programming See the "Baud Rate Settings" table (Table 21). Programming Voltage • • • • Internally generated programming voltage Only active during the write mode The programming voltage can be monitored at PROGV pin. 15-ms sec timer / internal undervoltage comparator to guarantee required programming time and voltage level. (12.5 V, 15 ms + system response time > 20 ms) Temperature Sensor • Output data linearly proportional to temperature. Internal Oscillator • • • 2.458 MHz External resistor is used for current reference 10 kΩ Sensor Output • • • • Input signal from sensor is analog/digitally processed and output 10-bit word via DIO Linear region: output is linear to the sensor input. Clamp region: output is at the clamp value. Output and DIAG data can be requested every 100 ms. Refer to Data format communications between microprocessor to IC Mode selection (microprocessor → IC) chart. Data Transfer Format See Table 16. Data Output Request (Sensor vs Calibration Mode) Sensor Mode 1. Receive sensor position ID 2. Output pressure or temperature + DIAG + MODE information Calibration Mode A data access mode can be selected by setting ACSUNT Bank Mode (ACSUNT = 1) 1. Receive sensor position ID + command 2. Receive Bank address 3. Available output is: 1. Sensor output + diagnostics, 2. Temperature, 3. ADC output, 4. Configuration baud rate, 5. Sensor ID + Position ID, 6. Over-pressure setting, 7. Calibration setting, 8 Temperature data, 9. Over-pressure setting history, 10. Calibration history, 11. Mode data Field Mode (ACSUNT = 0) 1. Receive sensor position ID + Command 2. Receive Field address 3. Available output is: 1. Sensor + diagnostics, 2. Temperature, 3. ADC output, 4. Mode data Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TPIC83000-Q1 7 TPIC83000-Q1 SLDS171 – NOVEMBER 2009 www.ti.com Programmable Input Over-Level Detection Table 2. Input Over-Level Detection Ranges MIN MAX Pressure range PARAMETER -19.94 mV -6.93 mV VSIP – VSIN TRHSGAIN = 5 Programmable threshold level -21.35 mV -7.43 mV TRHSGAIN = 4 0.8 ms 3.2 ms Deglitch filter time Programmable step size NOTE EEPROM programmable EEPROM programmable TRHSGAIN = 4 0.93 mV Over Pressure Input (differential) VIHS Negative Pressure Comparator Output Output DIAG Deglitch time Acknowledge Time Figure 2. Detection of Negative Pressure Condition Power Sequence Power Up • The IC starts functioning if Vcc is more than UVcc + HVcc (~4 V). • Power on reset for digital circuit is ~2.5 V. • EEPROM data loaded to registers • DO is held low for ~10 ms. Power Down • When Vcc is less than UVcc, disable DO. Glitch on Vcc • Deglitch time : 320 ns (typical) • Functionality during the glitch : disable DO • Functionality after Vcc recovery: same as the Power up. EEPROM data is reloaded to registers if the glitch is lower than 2.5 V (typ). 8 Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TPIC83000-Q1 TPIC83000-Q1 www.ti.com SLDS171 – NOVEMBER 2009 UART Communication Communication Protocol • Protocol: UART • Transfer Rate: See Table 21 • Data transfer: See Table 21 • Internal Oscillator : 38.4k x 16 x 4 = 2.458 MHz • Data length = 8 bit, Start bit = 1 bit, Stop bit = 1, Parity = even • Error detection: parity error, over run error, framing error. Ignore the frame when error is detected. • Time out for "packet not done" is 13 bit. Ignore received data. No response. • NU: IC to microprocessor is 0. microprocessor to IC 1 or 0. • Interval Rx-Rx = 2 bit to 13 bit, Rx-Tx = 1.5 bit, Tx-Tx = 2 bit RX Start b0 b1 b2 b3 TX b4 b5 b6 b7 Parity Stop Start b0 b1 b2 b3 b5 b4 b6 b7 Parity Stop Stop b6 b7 Parity Stop Stop RX-TX = 1.5 bit TX Start b0 b1 b2 b3 TX b4 b5 b6 b7 Parity Stop Start b0 b1 b2 b3 b5 b4 RX-TX = 2 bit RX Data Sampling Timing 0 7 15 0 7 15 0 Internal Common Clock Acknowledge bit is valid Acknowledge Start bit is valid Start Bit DI/DO LSB Output Data Timing 0 7 15 0 7 15 0 Internal Common Clock Acknowledge bit is valid DI/DO Start Bit Acknowledge Start bit is valid LSB Figure 3. UART Communication Frames, Sampling, and Timing Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TPIC83000-Q1 9 TPIC83000-Q1 SLDS171 – NOVEMBER 2009 www.ti.com Device Communication Modes The TPIC83000 is a pressure sensing conditioning device that interfaces with a microprocessor. The TPIC83000 has register addressing that is partitioned into seven bank mode addresses (labeled 00h to 06h) and 27 field mode addresses (labeled 00h to 1Ah) as shown in Table 3 and Table 4. Bank addresses 00h to 05h are located in the EEPROM, and bank address 06h is located in the logic (DSP) block. Field addresses 00h to 16h are located in the EEPROM, and field addresses 17h to 1Ah are located in the logic (DSP) block. See Table 3 and Table 4 for details. Table 3. EEPROM Map BANK FIELD MODE MODE ADDRESS ADDRESS (1) DATA FIELD FIELD NAME DESCRIPTION READ/ WRITE DEFAULT 0 0000 00000 Sensor ID(43:0) SENID Sensor ID R/W - 00001 PositionID(1:0) PSNID Position ID R/W 0 0001 00010 TRHS(3:0) TRHS Over-pressure comparator threshold R/W 1101 - 00011 TRDELAY(1:0) TRDELAY Over-pressure comparator timer R/W 10 - 00100 TRHSGAIN(2:0) TRHSGAIN Over-pressure comparator gain adjust R/W 0 0010 00101 Config(3:0) CONFBPS Baud rate R/W 10 0011 00110 TRVOS(16:8) TRVOSC Input coarse offset R/W TRVOSC[16:8] = TEMP2[11:3] (1) - 00111 TRVOS(7:0) TRVOSF Input fine offset R/W 10000000 R/W 0 0 - 01000 TC1OFF(6:0) TRTCVOS1 Input offset first-order temperature coefficient - 01001 TC2OFF(6:0) TRTCVOS2 Input offset second-order temperature coefficient R/W - 01010 GAIN(8:0) TRGAIN Gain adjust R/W 0 - 01011 TCGAIN(5:0) TRTCGAIN1 Gain first-order temperature coefficient R/W 100010 0100 01100 TEMPOUT0(11:0) TEMP0 Temperature sensor data 1 R/W 0 - 01101 TEMPOUT1(11:0) TEMP1 Temperature sensor data 2 R/W VPHS - 01110 TEMPOUT2(11:0) TEMP2 Temperature sensor data 3 R/W 0 MTRHS History of over-pressure comparator threshold R N/A 0101 01111 MTRHS(3:0) - 10000 MTR DELAY(1:0) MTRDELAY History of over-pressure comparator timer R N/A - 10001 MTRHSGAIN(2:0) MTRHSGAIN History of over-pressure comparator gain R N/A - 10010 MTR VOS(16:0) MTRVOSC History of input coarse offset R N/A - 10011 MTC1OFF(6:0) MTRTCVOS1 History of input fine offset R N/A R N/A - 10100 MTC2OFF(6:0) MTRTCVOS2 History of offset first order temperature coefficient - 10101 MGAIN(8:0) MTRGAIN History of offset second order temperature coefficient R N/A - 10110 MTCGAIN(5:0) MTRTCGAIN1 History of gain first order temperature coefficient R N/A EED-1: All units are shipped with EEPROM values shown in "Default" column. Table 4. Logic (DSP) Map BANK FIELD MODE MODE ADDRESS ADDRESS (1) 10 DATA FIELD FIELD NAME DESCRIPTION READ/ WRITE DEFAULT 0110 10111 OUTDATA(9:0) OUTDATA Sensor pressure data R 0 - 11000 OUTTEMP(9:0) OUTTEMP Sensor temperature data R 0 - 11001 ADCDAT(13:0) ADCDAT Sensor pressure data from ADC R 0 - 11010 ADCTMP(11:0) ADCTMP Sensor temperature data from ADC R 0 1000 - DIAG/UART Diagnostics and UART W/R 0 (1) EED-1: All units are shipped with EEPROM values shown in Default column. Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TPIC83000-Q1 TPIC83000-Q1 www.ti.com SLDS171 – NOVEMBER 2009 The TPIC83000 has two primary modes in which it can be configured to communicate with the microprocessor: Sensor mode and Calibration mode (see Figure 4). In Sensor mode, the microprocessor requests pressure data from the device that is stored in designated registers of the Logic (DSP) block of the TPIC83000 as well as requests the device to switch from sensor mode to calibration mode. In Calibration mode, the microprocessor can request pressure and temperature data (i.e., Data Request mode), read data from the device (i.e., Calibration Read mode), write data to the device (i.e., Calibration Write mode), as well as allow the IC to switch back to Sensor mode from Calibration mode if desired (i.e., Mode Select mode). The data that is read, written, or requested in Calibration mode is accessed through registers that are located in either the Logic (DSP) or EEPROM. The Logic (DSP) block and EEPROM of the TPIC83000 have registers that are accessible through addressing schemes. The two (2) addressing schemes that are used in the TPIC83000 are called Bank mode and Field mode addressing. Bank and Field mode addressing are only valid in Calibration mode. Sensor mode is restricted to only sending 10-bit resolution, pressure data to the microprocessor from the Logic (DSP) block. In other words, in Sensor mode, the pressure data comes from the same register in the Logic (DSP) block regardless of whether the device is set for Bank or Field addressing. However, in Calibration mode, the amount of data send via UART bus is dependent on whether the IC is in Bank or Field mode. For example, looking at the EEPROM Map in Table 3, if you wanted to know the position ID configured in the device, you would just access address 00001 in Field Mode. However, if the IC was in Bank Mode, to access this same information, you would have access address 00000 and the microprocessor would simultaneously receive the Sensor ID and Position ID before the next set of instructions is set over the UART bus. Mode Calibration Bank Mode Addressing (addresses 00h to 06h) Sensor Field Mode Addressing (Addresses 00h to 1Ah) Data Request Data Request Calibration Write Calibration Write Calibration Read Calibration Read Mode Select Mode Select Pressure Data Only (OUTDATA Register, 10 bit) Figure 4. Explanation of Device Modes and Addressing Schemes Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TPIC83000-Q1 11 TPIC83000-Q1 SLDS171 – NOVEMBER 2009 www.ti.com Sensor Mode In the Sensor Mode, the microprocessor sends a command frame to the TPIC83000 in Sensor mode and the TPIC83000 responds with a data frame. Note that in sensor mode, the data frame immediately follows the command frame. The following section explains the command and data frames in detail along with the meaning and action of each bit in these frames. 7 6 5 4 3 2 1 0 PSNID(1) PSNID(0) WORDID ACOVLD ACOVIN DISPSN ACTMODE ACSUNT PSNID[1:0] Bits 7-6 WORDID Bit 5 ACOVLD Bit 4 ACOVIN Bit 3 DISPSN Bit 2 ACTMODE Bit 1 ACSUNT Bit 0 Position ID of device on UART bus. Each device process information for one sensor. Four sensors can be sensed on the UART bus. Position settings are defined in the EEPROM map. 00 Position 0 01 Position 1 10 Position 2 11 Position 3 Frame ID of command byte. Sensor mode has only one command frame. Therefore, for sensor mode, always = 0. Acknowledge bit for DIAG1 0 Do not reset DIAG1 1 Reset DIAG1 Acknowledge bit for DIAG0 0 Do not reset DIAG0 1 Reset DIAG0 Enable or disable position ID match Recognizes device-specific commands vs global command. Compares position ID of command frame with EEPROM position ID (in device). The command frame position ID is specified in bits 7 and 6 of each frame. The EEPROM position ID is stored inthe PSNID field in the EEPROM map. 0 Decode command frame only if position IDs match 1 Indicates global command. All devices decode command frame. Sets device to sensor or calibration mode after current command is completed. 0 Sensor mode 1 Calibration mode Sets device to field addressing mode or bank addressing mode. Can be accessed only in calibration mode. 0 Bank addressing mode 1 Field addressing mode Figure 5. Sensor Mode Command Frame Description 12 Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TPIC83000-Q1 TPIC83000-Q1 www.ti.com SLDS171 – NOVEMBER 2009 7 6 5 4 3 2 1 0 PSNID(1) ACOVLD PSNID(0) ACOVIN WORDID WORDID OUTDATA(9) OUTDATA(4) OUTDATA(8) OUTDATA(3) OUTDATA(7) OUTDATA(2) OUTDATA(6) OUTDATA(1) OUTDATA(5) OUTDATA(0) First Frame PSNID[1:0] Bits 7-6 WORDID Bit 5 OUTDATA(9:5) Bits 4-0 Second Frame ACOVLD Bit 7 ACOVIN Bit 6 WORDID Bit 5 OUTDATA(4:0) Bits 4-0 Position ID of device on UART bus. Each device process information for one sensor. Four sensors can be sensed on the UART bus. Position settings are defined in the EEPROM map. 00 Position 0 01 Position 1 10 Position 2 11 Position 3 Frame ID of command byte. Sensor mode has only one command frame. Therefore, for sensor mode, always = 0. Top five MSB of pressure data In sensor mode, data is processed with 10-bit resolution. The data is sent on the UART bus in 5-bit increments until all data is transmitted. For example, if the data is 0100100011, the first five bits sent are 01001 and the second five bits sent are 00011. Detection of over-pressure condition and CRC or input voltage error 0 No error detected 1 Error detected Detection of CRC or input voltage error across SIP and SIN pins 0 No error detected 1 Error detected Frame ID of command byte. Sensor mode has only one command frame. Therefore, for sensor mode, always = 0. Bottom five bits of pressure data Figure 6. Sensor Mode Data Frame Description Table 5. Sensor Mode Command Frame Profile (RX) DATA NAME FRAME NO. B7 (MSB) B6 B5 B4 B3 B2 B1 B0 (LSB) TX request 1 PSNID(1) PSNID(0) WORD ID ACOVLD ACOVIN DISPSN ACTMODE ACSUNT Table 6. Sensor Mode Data Frame Profile (TX) DATA NAME FRAME NO. B7 (MSB) B6 B5 B4 B3 B2 B1 B0 (LSB) 1 PSNID(1) PSNID(0) ACTMODE OUTDATA(9) OUTDATA(8) OUTDATA(7) OUTDATA(6) OUTDATA(5) 2 DIAG(1) DIAG(0) ACSUNT OUTDATA(4) OUTDATA(3) OUTDATA(2) OUTDATA(1) OUTDATA(0) Sensor OUT+ DIAG Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TPIC83000-Q1 13 TPIC83000-Q1 SLDS171 – NOVEMBER 2009 www.ti.com Table 7. Bit Descriptions for Sensor Mode Command and Data Frames CONTROL BIT VALUE DISPSN ACTMODE (left in Value) WORD ID (right in Value) ACSUNT Command ID WE DIAG FLAG 0 Position ID matching is enabled and IC respond only when the ID is matched (default) 1 Ignore position ID 0 Sensor mode(Default) 1 Invalid command 10 Calibration mode 11 Invalid command 0 Band access (default) 1 Field access 00 Data TX request (Default) 01 Write Request 10 Read request 11 Mode selection request 0 EEPROM Write disabled (Default) 1 EEPROM Write Enabled NORMAL FAULT/CLEAR DIAG(1) 0 1 Over-pressure fault condition detected (DIAG1 = 1) DIAG(0) 0 1 CRC or input voltage error fault detected (DIAG0 = 1) ACOVLD 0 1 Clear DIAG1 bit (ACOVLD = 1) ACOVIN 0 1 Clear DIAG0 bit (ACOVIN = 1) (1) POSITION ID VALUE PSNID(1:0) (1) 00 ID:0 01 ID:1 10 ID:2 11 ID:3 Default If DIAG0 is high (i.e., DIAG0 = 1) because of CRC error, DIAG0 cannot be cleared by ACOVIN. Table 8. Overview of Self-Diagnostic and UART Errors Function Self diagnostics UART error (1) 14 DIAG Register item Default Condition Clear DIAG1 Over-pressure 0 Over-pressure condition ACOVLD = 1 or PUC DIAG0 CRC Error 0 CRC error exists WE = 0 or PUC DIAG0 Input fault (1) Input voltage error exists ACOVIN = 1 or PUC — PROG_OK 0 Programming voltage = 12.5 V, 15 ms WE = 0 Frame error 0 Framing error exists ACVOIN = 1 Over run error 0 Over run error exists ACVOIN = 1 Parity error 0 Parity error exists ACVOIN = 1 DIAG0 may be set to one depending upon Vcc / SIN / SIP power up condition. Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TPIC83000-Q1 TPIC83000-Q1 www.ti.com SLDS171 – NOVEMBER 2009 Calibration Mode In calibration mode, microprocessor transmits data to the TPIC83000 in two parts: command frames and data frames. The data frame immediately follows the command frame. However, unlike Sensor mode, a complete instruction in Calibration mode needs two command frames and at least two data frames. Calibration mode consists of four "sub-modes" called Calibration Write, Data Request, Calibration Read, and Mode Select modes. Furthermore, access to information in the EEPROM and Logic (DSP) registers is dependent upon whether the device is in Bank or Field addressing mode. Table 9 summarizes the four Calibration Mode command frames. The following section explains the command and data frames in detail along with the meaning and action of each bit in these frames. Table 9. Calibration Mode Profile of Command Frames (1) Microprocessor→IC DATA NAME Data Request Calibration Read Calibration Mode Select Calibration Write (1) (2) (3) (4) (5) (6) PSNID FLAG MODE TYPE (2) (3) (4) (5) POSITION ID IGNORE DIAG ACKNOWLEDGE FRAME NO. B7 (MSB) B6 B5 1 PSNID(1) PSNID(0) 1 0 0 DISPSN ACVOLD ACVOIN 2 PSNID(1) PSNID(0) 0 NU RQADCTMP RQADCDAT RQTEMP RQDATA 1 PSNID(1) PSNID(0) 1 1 0 DISPSN NU NU 2 PSNID(1) PSNID(0) 0 1 PSNID(1) PSNID(0) 1 1 1 DISPSN NU NU 2 PSNID(1) PSNID(0) 0 NU NU ACSUNT (6) ACTMODE (6) WE 1 PSNID(1) PSNID(0) 1 0 1 DISPSN NU NU 2 PSNID(1) PSNID(0) 0 B4 B3 B2 B1 B0 (LSB) Address (5 bit) Address (5 bit) The request should be ignored when invalid address is received Baud rate should be updated after all data is received For mode selection request, if WE = 1 and (ACSUNT and ACTMODE) = "old value" , there is no response from IC. Otherwise IC respond with "old ACSUNT and ACTMODE and WE" data then change mode and/or set WE = 1. RQADCTMP: Request 12-bit temperature data RQADCDAT: Request 14-bit pressure data RQTEMP: Request 10-bit temperature data RQDATA: Request 10-bit pressure data NU = not used All modes should be updated after all data is received. The command frame profiles are the same in both field and bank addressing modes. Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TPIC83000-Q1 15 TPIC83000-Q1 SLDS171 – NOVEMBER 2009 www.ti.com Calibration Mode - Data Request Data Request Command Frames 7 6 5 PSNID(1) PSNID(1) PSNID(0) PSNID(0) WORDID WORDID First Frame PSNID[1:0] Bits 7-6 WORDID MODETYPE Bit 5 Bits 4-3 DISPSN Bit 2 ACOVLD Bit 1 ACOVIN Bit 0 16 4 3 MODETYPE NU RQADCTMP 2 1 0 DISPSN RQADCDAT ACOVLD RQTEMP ACOVIN RQDATA Position ID of device on UART bus. Each device process information for one sensor. Four sensors can be sensed on the UART bus. Position settings are defined in the EEPROM map. 00 Position 0 01 Position 1 10 Position 2 11 Position 3 Frame ID of byte. 1 indicates frame 1 of 2. Select mode type within calibration mode 00 Data request 01 Calibration write 10 Calibration read 11 Mode select Disable or enable position ID matching 0 Decode command only if position IDs match 1 Indicates global command. All devices decode command frame. Acknowledge bit for DIAG1. Can be set to 1 only in Data Request mode (when bits 4:3 are 00). Must be set to 0 for the other mode types. 0 Do not reset DIAG1 1 Reset DIAG1 Acknowledge bit for DIAG0. Can be set to 1 only in Data Request mode (when bits 4:3 are 00). Must be set to 0 for the other mode types. 0 Do not reset DIAG0 1 Reset DIAG0 Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TPIC83000-Q1 TPIC83000-Q1 www.ti.com SLDS171 – NOVEMBER 2009 Second Frame PSNID[1:0] Bits 7-6 WORDID NU RQADCTMP Bit 5 Bit 4 Bit 3 RQADCDAT Bit 2 RQTEMP Bit 1 RQDATA Bit 0 Position ID of device on UART bus. Each device process information for one sensor. Four sensors can be sensed on the UART bus. Position settings are defined in the EEPROM map. 00 Position 0 01 Position 1 10 Position 2 11 Position 3 Frame ID of byte. 0 indicates frame 2 of 2. Not used. Set to 0. Microcontroller request for 12-bit temperature data from device. 0 Do not send data in following data frames 1 Send data in following data frames Microcontroller request for 14-bit pressure data from device. 0 Do not send data in following data frames 1 Send data in following data frames Microcontroller request for 10-bit temperature data from device. 0 Do not send data in following data frames 1 Send data in following data frames Microcontroller request for 10-bit pressure data from device. 0 Do not send data in following data frames 1 Send data in following data frames Figure 7. Data Request Command Frames Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TPIC83000-Q1 17 TPIC83000-Q1 SLDS171 – NOVEMBER 2009 www.ti.com Data Request Data Frames 7 6 5 4 3 2 1 0 D13 D5 D12 D4 D11 D3 D10 D2 D9 D1 D8 D0 D7 DIAG1 D6 DIAG0 First Frame D[13:6] Bits 7-0 Data length ranges from 10 to 14 bits. Data is sent starting with D13, and any unused trailing bits are set to 0. Data requested in the preceding command frame is sent in the order shown below, with the data request of highest priority is sent in the first two data frames, and any lower-priority requests sent in order in following two-frame sets. Priority 1 2 3 4 Second Frame D[5:0] Bits 7-2 DIAG1 Bit 1 DIAG0 Bit 0 Description Pressure data in 10-bit format Temperature data in 10-bit format Pressure data in 14-bit format Temperature data in 12-bit format See D[13:6] description. Over-pressure fault condition 0 Fault not detected 1 Fault detected CRC or input voltage error fault 0 Fault not detected 1 Fault detected Figure 8. Data Request Data Frames Table 10. Profile of Data Request Data Frames (Field Mode Addressing) FIELD NAME (BANK ADDRESS) FIELD MODE ADDRESS B5 B7 (MSB) Tx RQ Tx RQ B1 B0 (LSB) B1 B0 OUT DATA(9) OUT DATA(8) OUT DATA(7) OUT DATA(6) OUT DATA(5) OUT DATA(4) OUT DATA(3) OUT DATA(2) 2 OUT DATA(1) OUT DATA(0) NU NU NU NU DIAG(1) DIAG(0) 1 OUT TEMP(9) OUT TEMP(8) OUT TEMP(7) OUT TEMP(6) OUT TEMP(5) OUT TEMP(4) OUT TEMP(3) OUT TEMP(2) 2 OUT TEMP(1) OUT TEMP(0) NU NU NU NU DIAG(1) DIAG(0) ADCDAT (9:0) Tx RQ Tx RQ 1 ADCDAT(13) ADCDAT(12) ADCDAT(11) ADCDAT(10) ADCDAT(9) ADCDAT(8) ADCDAT(7) Tx RQ 2 ADCDAT(5) ADCDAT(4) ADCDAT(3) ADCDAT(2) ADCDAT(1) ADCDAT(0) DIAG(1) DIAG(0) Tx RQ 1 ADC TMP(11) ADC TMP(10) ADCTMP(9) ADCTMP(8) ADCTMP(7) ADCTMP(6) ADCTMP(5) ADCTMP(4) 2 ADCTMP(3) ADCTMP(2) ADCTMP(1) ADCTMP(0) NU NU DIAG(1) DIAG(0) ADC pressure out ADC temperature out B2 1 (9:0) +(1:0) Temperature out B3 DATA 8 BIT) Tx RQ Sensor + DIAG B4 B6 (13:0) (11:0) Tx RQ Table 11. Profile of Data Request Data Frames (Bank Mode Addressing) FIELD NAME (BANK ADDRESS) FIELD MODE ADDRESS LENGTH FRAME NO. TX RQ Sensor OUT + Diag TX RQ Temperature out B5 B4 B3 B2 B1 B0 (LSB) DATA OUT DATA(9) OUT DATA(8) OUT DATA(7) OUT DATA(6) OUT DATA(5) OUT DATA(4) OUT DATA(3) OUT DATA(2) 2 OUT DATA(1) OUT DATA(0) NU NU NU NU DIAG(1) DIAG(0) 1 OUT TEMP(9) OUT TEMP(8) OUT TEM(7) OUT TEMP(6) OUT TEMP(5) OUT TEMP(4) OUT TEMP(3) OUT TEMP(2) 2 OUT TEMP(1) OUT TEMP(0) NU NU NU NU DIAG(1) DIAG(0) 1 ADCDAT(13) ADCDAT(12) ADCDAT(11) ADCDAT(10) ADCDAT(9) ADCDAT(8) ADCDAT(7) ADCDAT(6) 2 ADCDAT(5) ADCDAT(4) ADCDAT(3) ADCDAT(2) ADCDAT(1) ADCDAT(0) DIAG(1) DIAG(0) (9:0) TX RQ TX RQ ADC pressure out (13:0) TX RQ 18 B6 1 (9:0) + (1:0) TX RQ B7 (MSB) Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TPIC83000-Q1 TPIC83000-Q1 www.ti.com SLDS171 – NOVEMBER 2009 Table 11. Profile of Data Request Data Frames (Bank Mode Addressing) (continued) FIELD NAME (BANK ADDRESS) ADC temperature out FIELD MODE ADDRESS LENGTH TX RQ FRAME NO. B6 B5 B4 B3 B2 B1 B0 (LSB) DATA 1 ADC TMP(11) ADC TMP(10) ADC TMP(9) ADC TMP(8) ADC TMP(7) ADC TMP(6) ADC TMP(5) ADC TMP(4) 2 ADC TMP(3) ADC TMP(2) ADC TMP(1) ADC TMP(0) NU NU DIAG(1) DIAG(0) (11:0) TX RQ B7 (MSB) Calibration Mode – Data Write Calibration Write Command Frames 7 6 5 PSNID(1) PSNID(1) PSNID(0) PSNID(0) WORDID WORDID First Frame PSNID[1:0] Bits 7-6 WORDID MODETYPE Bit 5 Bits 4-3 DISPSN Bit 2 Reserved Bits 1-0 Second Frame PSNID[1:0] Bits 7-6 WORDID ADDR[4:0] Bit 5 Bits 4-0 4 3 MODETYPE ADDR4 ADDR3 2 1 0 DISPSN ADDR2 0 ADDR1 0 ADDR0 Position ID of device on UART bus. Each device process information for one sensor. Four sensors can be sensed on the UART bus. Position settings are defined in the EEPROM map. 00 Position 0 01 Position 1 10 Position 2 11 Position 3 Frame ID of byte. 1 indicates frame 1 of 2. Select mode type within calibration mode 00 Data request 01 Calibration write 10 Calibration read 11 Mode select Disable or enable position ID matching 0 Decode command only if position IDs match 1 Indicates global command. All devices decode command frame. Must be set to 0. Position ID of device on UART bus. Each device process information for one sensor. Four sensors can be sensed on the UART bus. Position settings are defined in the EEPROM map. 00 Position 0 01 Position 1 10 Position 2 11 Position 3 Frame ID of byte. 0 indicates frame 2 of 2. Address for bank or field mode addressing. See Table 3 for list of valid addresses. Figure 9. Calibration Write Command Frames Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TPIC83000-Q1 19 TPIC83000-Q1 SLDS171 – NOVEMBER 2009 www.ti.com Calibration Write Data Frames 7 6 5 4 3 2 1 0 PSNID(1) PSNID(0) NU D43 D42 D41 D40 D39 D2 D1 D0 0 • • • PSNID(1) PSNID(0) NU D3 Frames 3 through (n – 1) (where n = 5 to 11) PSNID[1:0] Bits 7-6 Position ID of device on UART bus. Each device process information for one sensor. Four sensors can be sensed on the UART bus. Position settings are defined in the EEPROM map. 00 Position 0 01 Position 1 10 Position 2 11 Position 3 NU Bit 5 Not used. Set to 0. Dx Bits 4-0 Top five bits of bank or field data. See Table 3 and Table 4 for valid addresses and types of data. Frame n (where n = 4 to 11) PSNID[1:0] Bits 7-6 Position ID of device on UART bus. Each device process information for one sensor. Four sensors can be sensed on the UART bus. Position settings are defined in the EEPROM map. 00 Position 0 01 Position 1 10 Position 2 11 Position 3 NU Bit 5 Not used. Set to 0. Dx Bits 4-0 Next or last five bits of bank or field data. See Table 3 and Table 4 for valid addresses and types of data. Data length for each calibration write frame is 5 bits. Maximum number of frames that can be written from one command is nine; therefore, maximum data length is 44 bits. Figure 10. Calibration Write Data Frames 20 Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TPIC83000-Q1 TPIC83000-Q1 www.ti.com SLDS171 – NOVEMBER 2009 Table 12. Profile of Calibration Write Data Frames (Field Addressing Mode) DATA NAME Data FRAME NO. B7 (MSB) B6 B5 3 PSNID(1) PSNID(0) 0 B4 B3 B2 B1 B0 (LSB) Data (5 bit) 3 SENID(43) SENID(42) SENID(41) SENID(40) SENID(39) 4 SENID(38) SENID(37) SENID(36) SENID(35) SENID(34) 5 SENID(33) SENID(32) SENID(31) SENID(30) SENID(29) 6 SENID(28) SENID(27) SENID(26) SENID(25) SENID(24) 7 SENID(23) SENID(22) SENID(21) SENID(20) SENID(19) 8 SENID(18) SENID(17) SENID(16) SENID(15) SENID(14) 9 SENID(13) SENID(12) SENID(11) SENID(10) SENID(9) 10 SENID(8) SENID(7) SENID(6) SENID(5) SENID(4) 11 SENID(3) SENID(2) SENID(1) SENID(0) NU Position ID 3 PSNID(1) PSNID(0) NU NU NU OP threshold 3 TRHS(3) TRHS(2) TRHS(1) TRHS(0) NU OP timer 3 TRDELAY(1) TRDELAY(0) NU NU NU OP gain 3 TRHSGAIN(2) TRHSGAIN(1) TRHSGAIN(0) NU NU Baud rate 3 CONF BPS(3) CONF BPS(2) CONF BPS(1) CONF BPS(0) NU 3 TRV OSC(16) TRV OSC(15) TRV OSC(14) TRV OSC(13) TRV OSC(12) 4 TRV OSC(11) TRV OSC(10) TRV OSC(9) TRV OSC(8) NU 3 TRVOSF(7) TRVOSF(6) TRVOSF(5) TRVOSF(4) TRVOSF(3) Sensor ID Input coarse offset Input fine offset 4 TRVOSF(2) TRVOSF(1) TRVOSF(0) NU NU Input offset first order temperature coefficient 3 PSNID(1) PSNID(0) 0 TRTC VOS1(6) TRTC VOS1(5) TRTC VOS1(4) TRTC VOS1(3) TRTC VOS1(2) 4 TRTC VOS1(1) TRTC VOS1(0) NU NU NU Input offset second order temperature coefficient 3 TRTC VOS2(6) TRTC VOS2(5) TRTC VOS2(4) TRTC VOS2(3) TRTC VOS2(2) 4 TRTC VOS2(1) TRTC VOS2(0) NU NU NU 3 TRGAIN(8) TRGAIN(7) TRGAIN(6) TRGAIN(5) TRGAIN(4) GAIN adjust Gain first order temperature coefficient Temperature sensor out 1 Temperature sensor out 2 Temperature sensor out 3 4 TRGAIN(3) TRGAIN(2) TRGAIN(1) TRGAIN(0) NU 3 TRTC GAIN1(5) TRTC GAIN1(4) TRTC GAIN1(3) TRTC GAIN1(2) TRTC GAIN1(1) 4 TRTC GAIN1(0) NU NU NU NU 3 TEMP0(11) TEMP0(10) TEMP0(9) TEMP0(8) TEMP0(7) 4 TEMP0(6) TEMP0(5) TEMP0(4) TEMP0(3) TEMP0(2) 5 TEMP0(1) TEMP0(0) NU NU NU 3 TEMP1(11) TEMP1(10) TEMP1(9) TEMP1(8) TEMP1(7) 4 TEMP1(6) TEMP1(5) TEMP1(4) TEMP1(3) TEMP1(2) 5 TEMP1(1) TEMP1(0) NU NU NU 3 TEMP2(11) TEMP2(10) TEMP2(9) TEMP2(8) TEMP2(7) 4 TEMP2(6) TEMP2(5) TEMP2(4) TEMP2(3) TEMP2(2) 5 TEMP2(1) TEMP2(0) NU NU NU Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TPIC83000-Q1 21 TPIC83000-Q1 SLDS171 – NOVEMBER 2009 www.ti.com Table 13. Profile of Calibration Write Data Frames (Bank Addressing Mode) DATA NAME Data (Bank Address) FRAME NO. 3 B7 (MSB) B6 B5 PSNID(1) PSNID(0) 0 B4 B3 B2 B1 B0 (LSB) data 5bit 3 SENID(43) SENID(42) SENID(41) SENID(40) SENID(39) 4 SENID(38) SENID(37) SENID(36) SENID(35) SENID(34) 5 SENID(33) SENID(32) SENID(31) SENID(30) SENID(29) 6 SENID(28) SENID(27) SENID(26) SENID(25) SENID(24) 7 SENID(23) SENID(22) SENID(21) SENID(20) SENID(19) 8 SENID(18) SENID(17) SENID(16) SENID(15) SENID(14) 9 SENID(13) SENID(12) SENID(11) SENID(10) SENID(9) 10 SENID(8) SENID(7) SENID(6) SENID(5) SENID(4) 11 SENID(3) SENID(2) SENID(1) SENID(0) NU PSN ID(0) 12 PSNID(1) PSNID(0) NU NU NU OP threshold (1) 3 TRHS(3) TRHS(2) TRHS(1) TRHS(0) NU OP timer (1) 4 TRDELAY(1) TRDELAY(0) NU NU NU OP gain (1) 5 TRHSGAIN(2) TRHSGAIN(1) TRHSGAIN(0) NU NU Baud rate (2) 3 CONF BPS(3) CONF BPS(2) CONF BPS(1) CONF BPS(0) NU 3 TRV OSC(16) TRV OSC(15) TRV OSC(14) TRV OSC(13) TRV OSC(12) 4 TRV OSC(11) TRV OSC(10) TRV OSC(9) TRV OSC(8) NU 5 TRVOSF(7) TRVOSF(6) TRVOSF(5) TRVOSF(4) TRVOSF(3) Sensor ID (0) PSNID(1) PSNID(0) 0 Input coarse offset (3) Input fine offset (3) 6 TRVOSF(2) TRVOSF(1) TRVOSF(0) NU NU Input offset first order temperature coefficient (3) 7 TRTC VOS1(6) TRTC VOS1(5) TRTC VOS1(4) TRTC VOS1(3) TRTC VOS1(2) 8 TRTC VOS1(1) TRTC VOS1(0) NU NU NU Input offset second order temperature coefficient (3) 9 TRTC VOS2(6) TRTC VOS2(5) TRTC VOS2(4) TRTC VOS2(3) TRTC VOS2(2) TRTC VOS2(1) TRTC VOS2(0) NU NU NU TRGAIN(8) TRGAIN(7) TRGAIN(6) TRGAIN(5) TRGAIN(4) 10 11 PSNID(1) PSNID(0) 0 Gain adjust (3) Gain first order temperature coefficient (3) Temperature sensor out 1 (4) Temperature sensor out 2 (4) Temperature sensor out 3 (4) 12 TRGAIN(3) TRGAIN(2) TRGAIN(1) TRGAIN(0) NU 13 TRTC GAIN1(5) TRTC GAIN1(4) TRTC GAIN1(3) TRTC GAIN1(2) TRTC GAIN1(1) 14 TRTC GAIN1(0) NU NU NU NU 3 TEMP0(11) TEMP0(10) TEMP0(9) TEMP0(8) TEMP0(7) 4 TEMP0(6) TEMP0(5) TEMP0(4) TEMP0(3) TEMP0(2) 5 TEMP0(1) TEMP0(0) NU NU NU 6 TEMP1(11) TEMP1(10) TEMP1(9) TEMP1(8) TEMP1(7) 7 TEMP1(6) TEMP1(5) TEMP1(4) TEMP1(3) TEMP1(2) 8 TEMP1(1) TEMP1(0) NU NU NU 9 TEMP2(11) TEMP2(10) TEMP2(9) TEMP2(8) TEMP2(7) 10 TEMP2(6) TEMP2(5) TEMP2(4) TEMP2(3) TEMP2(2) 11 TEMP2(1) TEMP2(0) NU NU NU 3 0 0 0 0 0 4 0 0 0 0 0 5 0 0 0 0 Fastdis 6 Stbit EO Pdis 0 0 DIAG/UART PSNID(1) PSNID(0) 0 Table 14. DIAG/UART Register (Bank Address = 8) ITEM Pdis Parity disable 1 = Disable 0 = Enable EO Parity even or odd 1 = Odd 0 = Even Stbit Stop bit length 1 = 2 bit 0 = 1 bit Fastdis 22 DESCRIPTION Test mode baud rate 1 = Normal 0 = 153 kHz Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TPIC83000-Q1 TPIC83000-Q1 www.ti.com SLDS171 – NOVEMBER 2009 Table 15. TPIC83000 Response and Mode Update Timing for Calibration Write Mode ITEM ID / Calibration / Temperature History Mode / Setting RESPONSE SETTING / MODE UPDATE TIMING SENID NEW VALUE After IC's response PSNID Current value WE = 1 TRHS New value SYMBOL TRDELAY New value TRHSGAIN New value CONFBPS New value TRVOSC New value TRVOSF New value TRTCVOS1 New value TRTCVOS2 New value TRGAIN New value TRTCGAIN1 New value TEMP0 New value TEMP1 New value TEMP2 New value MTRHS N/A MTRDELAY N/A MTRHSGAIN N/A MTRVOSC N/A MTRVOSF N/A MTRTCVOS1 N/A MTRTCVOS2 N/A MTRGAIN N/A MTRTCGAIN1 N/A ACTMODE Current value ACSUNT Current value WE Current value After IC's response WE = 1 After IC's response (No response for WE = 1) Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TPIC83000-Q1 23 TPIC83000-Q1 SLDS171 – NOVEMBER 2009 www.ti.com Calibration Mode – Calibration Read Calibration Read Command Frames 7 6 5 PSNID(1) PSNID(1) PSNID(0) PSNID(0) WORDID WORDID First Frame PSNID[1:0] Bits 7-6 WORDID MODETYPE Bit 5 Bits 4-3 DISPSN Bit 2 Reserved Bits 1-0 Second Frame PSNID[1:0] Bits 7-6 WORDID ADDR[4:0] Bit 5 Bits 4-0 4 3 MODETYPE ADDR4 ADDR3 2 1 DISPSN ADDR2 0 Reserved ADDR1 ADDR0 Position ID of device on UART bus. Each device process information for one sensor. Four sensors can be sensed on the UART bus. Position settings are defined in the EEPROM map. 00 Position 0 01 Position 1 10 Position 2 11 Position 3 Frame ID of byte. 1 indicates frame 1 of 2. Select mode type within calibration mode 00 Data request 01 Calibration write 10 Calibration read 11 Mode select Disable or enable position ID matching 0 Decode command only if position IDs match 1 Indicates global command. All devices decode command frame. Must be set to 0. Position ID of device on UART bus. Each device process information for one sensor. Four sensors can be sensed on the UART bus. Position settings are defined in the EEPROM map. 00 Position 0 01 Position 1 10 Position 2 11 Position 3 Frame ID of byte. 0 indicates frame 2 of 2. Address for bank or field mode addressing. See Table 3 for list of valid addresses. Figure 11. Calibration Read Command Frames Table 16. Data Format Actual Values for Data Request Mode ITEM SYMBOL DATA LENGTH OUTDATA 10 NOTE/CONDITION Input = -2.275 mV, 0 mV, 4.095 mV Pressure data Pressure ADC data Temperature data Temperature ADC data 24 ADCDAT OUTTEMP ADCTMP 14 10 12 Gain = nominal BINARY VALUE DECIMAL VALUE 11 1111 1111 1023 01 0110 1101 365 00 0000 0000 0 Input = -2.275 mV, 0 mV, 4.095 mV 00 1111 1011 1010 4026 Gain = nominal 00 0000 0000 0000 0 Twos compliment 11 0111 0100 0100 -2236 TA = 85°C 01 1000 1100 TA = 25°C 00 0000 0000 0 TA = -40°C 10 0101 0011 -429 TA = 85°C 0110 0011 0001 1585 TA = 25°C 0000 0000 0000 0 TA = -40°C 1001 0100 1011 -1717 Submit Documentation Feedback 396 Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TPIC83000-Q1 TPIC83000-Q1 www.ti.com SLDS171 – NOVEMBER 2009 Calibration Read Data Frames 7 6 5 4 3 2 1 0 D43 D42 D41 D40 D39 D38 D37 D36 NU NU NU NU • • • D3 First Frame Dx D2 D1 D0 Bits 7-0 Microcontroller reads data from the designated address in the device (from EEPROM). See Table 3 for list of valid addresses. Second through (n – 1) Frame (where n = 2 to 6) Dx Bits 7-0 Microcontroller reads data from the designated address in the device (from EEPROM). The number of frames sent depends on the size of the data. Frame n (where n = 2 to 6) Dx Bits 7-4 Microcontroller reads data from the designated address in the device (from EEPROM). NU Bits 3-0 Not used. Set to 0. Figure 12. Calibration Read Data Frames Table 17. Profile of Calibration Read Data Frames (Field Mode Addressing) FIELD NAME (BANK ADDRESS) Sensor ID FIELD MODE ADDRESS 0000 LENGTH FRAME NO. B7 (MSB) B6 B5 B4 B3 B2 B1 B0 (LSB) DATA 1 SENID(43) SENID(42) SENID(41) SENID(40) SENID(39) SENID(38) SENID(37) SENID(36) 2 SENID(35) SENID(34) SENID(33) SENID(32) SENID(31) SENID(30) SENID(29) SENID(28) 3 SENID(27) SENID(26) SENID(25) SENID(24) SENID(23) SENID(22) SENID(21) SENID(20) 4 SENID(19) SENID(18) SENID(17) SENID(16) SENID(15) SENID(14) SENID(13) SENID(12) 5 SENID(11) SENID(10) SENID(9) SENID(8) SENID(7) SENID(6) SENID(5) SENID(4) 6 SENID(3) SENID(2) SENID(1) SENID(0) NU NU NU NU (43:0) Position ID 0001 (1:0) 1 PSNID(1) PSNID(0) NU NU NU NU NU NU OP threshold 0010 (3:0) 1 TRHS(3) TRHS(2) TRHS(1) TRHS(0) NU NU NU NU OP timer 0011 (1:0) 1 TRDELAY(1) TRDELAY(0) NU NU NU NU NU NU 1 TRHSGAIN( 2) TRHSGAIN( 1) TRHSGAIN( 0) NU NU NU NU NU 1 CONF BPS(3) CONF BPS(2) CONF BPS(1) CONF BPS(0) NU NU NU NU 1 TRV OSC(16) TRV OSC(15) TRV OSC(14) TRV OSC(13) TRV OSC(12) TRV OSC(11) TRV OSC(10) TRV OSC(9) 2 TRVOSC NU NU NU NU NU NU NU OP gain 0100 (2:0) Baud rate 0101 (3:0) Input Coarse offset 0110 (16:8) Input fine offset 0111 (7:0) 1 TRVOSF(7) TRVOSF(6) TRVOSF(5) TRVOSF(4) TRVOSF(3) TRVOSF(2) TRVOSF(1) TRVOSF() Input offset first order temperature coefficient 1000 (6:0) 1 TRTC VOS1(6) TRTCVOS1 TRTC VOS1(4) TRTC VOS1(3) TRTC VOS1(2) TRTC VOS1(1) TRTC VOS1(0) NU Input offset second order temperature coefficient 1001 (6:0) 1 TRTC VOS2(6) TRTC VOS2(5) TRTC VOS2(4) TRTC VOS2(3) TRTC VOS2(2) TRTC VOS2(1) TRTC VOS2(0) NU 1 TRGAIN(8) TRGAIN(7) TRGAIN(6) TRGAIN(5) TRGAIN(4) TRGAIN(3) TRGAIN(2) TRGAIN(1) Gain adjust 1010 (8:0) 2 TRGAIN(0) NU NU NU NU NU NU NU 1 TRTC GAIN1(5) TRTC GAIN1(4) TRTC GAIN1(3) TRTC GAIN1(2) TRTC GAIN1(1) TRTC GAIN1(0) NU NU 1 TEMP0(11) TEMP0(10) TEMP0(9) TEMP0(8) TEMP0(7) TEMP0(6) TEMP0(5) TEMP0(4) 2 TEMP0(3) TEMP0(2) TEMP0(1) TEMP0(0) NU NU NU NU 1 TEMP1(11) TEMP1(10) TEMP1(9) TEMP1(8) TEMP1(7) TEMP1(6) TEMP1(5) TEMP1(4) Gain first order temperature coefficient 1011 (5:0) Temperature sensor OUT 1 1100 (11:0) Temperature sensor OUT 2 1101 (11:0) Temperature sensor OUT 3 1110 (11:0) History of OP threshold 1111 (3:0) 2 TEMP1(3) TEMP1(2) TEMP1(1) TEMP1(0) NU NU NU NU 1 TEMP2(11) TEMP2(10) TEMP2(9) TEMP2(8) TEMP2(7) TEMP2(6) TEMP2(5) TEMP2(4) 2 TEMP2(3) TEMP2(2) TEMP2(1) TEMP2(0) NU NU NU NU 1 MTRHS(3) MTRHS(2) MTRHS(1) MTRHS(0) NU NU NU NU Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TPIC83000-Q1 25 TPIC83000-Q1 SLDS171 – NOVEMBER 2009 www.ti.com Table 17. Profile of Calibration Read Data Frames (Field Mode Addressing) (continued) FIELD MODE ADDRESS LENGTH History of OP timer 10000 (1:0) 1 MTR DELAY(1) MTR DELAY(0) NU History OP gain 10001 (2:0) 1 MTRHS GAIN(2) MTRHS GAIN(1) MTRHS GAIN(0) NU NU NU NU NU 1 MTR VOS(17) MTR VOS(16) MTR VOS(15) MTR VOS(14) MTR VOS(13) MTR VOS(12) MTR VOS(11) MTR VOS(10) 2 MTR VOS(9) MTR VOS(8) MTR VOS(7) MTR VOS(6) MTR VOS(5) MTR VOS(4) MTR VOS(3) MTR VOS(2) 3 MTR VOS(1) MTR VOS(0) NU NU NU NU NU NU FIELD NAME (BANK ADDRESS) History of Input offset 10010 FRAME NO. (17:0) B7 (MSB) B6 B5 B4 B3 B2 B1 B0 (LSB) NU NU NU NU DATA NU History of Input offset first order temperature coefficient 10011 (6:0) 1 MTRTC VOS1(6) MTRTC VOS1(5) MTRTC VOS1(4) MTRTC VOS1(3) MTRTC VOS1(2) MTRTC VOS1(1) MTRTC VOS1(0) NU History of Input offset 2nd order temperature coefficient 10100 (6:0) 1 MTRTC VOS2(6) MTRTC VOS2(5) MTRTC VOS2(4) MTRTC VOS2(3) MTRTC VOS2(2) MTRTC VOS2(1) MTRTC VOS2(0) NU History of Gain adjust 1 MTRGAIN(8) MTRGAIN(7) MTRGAIN(6) MTRGAIN(5) MTRGAIN(4) MTRGAIN(3) MTRGAIN(2) MTRGAIN(1) 10101 (8:0) 2 MTRGAIN(0) NU NU NU NU NU NU NU History of Gain first order temperature coefficient 10110 1 MTRTC GAIN1(5) MTRTC GAIN1(4) MTRTC GAIN1(3) MTRTC GAIN1(2) MTRTC GAIN1(1) MTRTC GAIN1(0) NU NU (5:0) Table 18. Profile of Calibration Read Data Frames (Bank Mode Addressing) FIELD NAME (BANK ADDRESS) Sensor ID 0 FIELD MODE ADDRESS 00000 LENGTH FRAME NO. B7 (MSB) B6 B5 B4 B3 B2 B1 B0 (LSB) DATA 1 SENID(43) SENID(42) SENID(41) SENID(40) SENID(39) SENID(38) SENID(37) SENID(36) 2 SENID(35) SENID(34) SENID(33) SENID(32) SENID(31) SENID(30) SENID(29) SENID(28) 3 SENID(27) SENID(26) SENID(25) SENID(24) SENID(23) SENID(22) SENID(21) SENID(20) 4 SENID(19) SENID(18) SENID(17) SENID(16) SENID(15) SENID(14) SENID(13) SENID(12) 5 SENID(11) SENID(10) SENID(9) SENID(8) SENID(7) SENID(6) SENID(5) SENID(4) 6 SENID(3) SENID(2) SENID(1) SENID(0) NU NU NU NU (43:0) Position ID (0) (1:0) 7 PSNID(1) PSNID(0) NU NU NU NU NU NU OP threshold(1) (3:0) 1 TRHS(3) TRHS(2) TRHS(1) TRHS(0) NU NU NU NU OP timer(1) (1:0) 2 TRDELAY(1) TRDELAY(0) NU NU NU NU NU NU (2:0) 3 TRHS GAIN(2) TRHS GAIN(1) TRHS GAIN(0) NU NU NU NU NU (3:0) 1 CONF BPS(3) CONF BPS(2) CONF BPS(1) CONF BPS(0) NU NU TRV OSC(10) NU (16:8) 1 TRV OSC(16) TRV OSC(15) TRV OSC(14) TRV OSC(13) TRV OSC(12) TRV OSC(11) NU TRV OSC(9) 2 TRV OSC(8) NU NU NU NU NU TRVOSF(1) NU TRVOSF(0) 00001 OP gain(1) Baud rate(2) 00010 Input coarse offset (3) Input fine offset(3) (7:0) 3 TRVOSF(7) TRVOSF(6) TRVOSF(5) TRVOSF(4) TRVOSF(3) TRVOSF(2) TRTC VOS1(1) Input offset first order temperature coefficient(3) (6:0) 4 TRTC VOS1(6) TRTC VOS1(5) TRTC VOS1(4) TRTC VOS1(3) TRTC VOS1(2) TRTC VOS1(1) TRTC VOS2(0) NU Input offset second order temperature coefficient(3) (6:0) 5 TRTC VOS2(6) TRTC VOS2(5) TRTC VOS2(4) TRTC VOS2(3) TRTC VOS2(2) TRTC VOS2(1) TRGAIN(2) NU 6 TRGAIN(8) TRGAIN(7) TRGAIN(6) TRGAIN(5) TRGAIN(4) TRGAIN(3) NU TRGAIN(1) Gain adjust(3) (8:0) 7 TRGAIN(0) NU NU NU NU NU NU NU (5:0) 8 TRTC GAIN1(5) TRTC GAIN1(4) TRTC GAIN1(3) TRTC GAIN1(2) TRTC GAIN1(1) TRTC GAIN1(0) TEMP0(5) NU Temperature sensor OUT 1 (4) (11:0) 1 TEMP0(11) TEMP0(10) TEMP0(9) TEMP0(8) TEMP0(7) TEMP0(6) NU TEMP0(4) 2 TEMP0(3) TEMP0(2) TEMP0(1) TEMP0(0) NU NU TEMP1(5) NU Temperature sensor OUT 2 (4) (11:0) 3 TEMP1(11) TEMP1(10) TEMP1(9) TEMP1(8) TEMP1(7) TEMP1(6) NU TEMP1(4) 00011 Gain first order temperature coefficient(3) Temperature sensor OUT 3 (4) 26 00100 (11:0) 4 TEMP1(3) TEMP1(2) TEMP1(1) TEMP1(0) NU NU TEMP2(5) NU 5 TEMP2(11) TEMP2(10) TEMP2(9) TEMP2(8) TEMP2(7) TEMP2(6) NU TEMP2(4) 6 TEMP2(3) TEMP2(2) TEMP2(1) TEMP2(0) NU NU NU NU Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TPIC83000-Q1 TPIC83000-Q1 www.ti.com SLDS171 – NOVEMBER 2009 Table 18. Profile of Calibration Read Data Frames (Bank Mode Addressing) (continued) FIELD NAME (BANK ADDRESS) History of OP threshold (5) History of OP timer (6) History OP gain (6) History of input offset(6) FIELD MODE ADDRESS LENGTH 00101 (3:0) 1 MTRHS(3) MTRHS(2) (1:0) 2 MTR DELAY(1) FRAME NO. (2:0) (16:0) B7 (MSB) B6 B5 B4 B3 B2 B1 B0 (LSB) DATA MTRHS(1) MTRHS(0) NU NU NU MTR DELAY(0) NU NU NU NU NU NU 3 MTRHS GAIN(2) MTRHS GAIN(1) MTRHS GAIN(0) NU NU NU NU NU 4 MTR VOS(17) MTR VOS(16) MTR VOS(15) MTR VOS(14) MTR VOS(13) MTR VOS(12) MTR VOS(11) MTR VOS(10) 5 MTR VOS(9) MTR VOS(8) MTR VOS(7) MTR VOS(6) MTR VOS(5) MTR VOS(4) MTR VOS(3) MTR VOS(2) 6 MTR VOS(1) MTR VOS(0) NU NU NU NU NU NU History of Input offset first order temperature coefficient(6) (6:0) 7 MTRTC VOS1(6) MTRTC VOS1(5) MTRTC VOS1(4) MTRTC VOS1(3) MTRTC VOS1(2) MTRTC VOS1(1) MTRTC VOS1(0) NU History of Input offset 2nd order temperature coefficient(6) (6:0) 8 MTRTC VOS2(6) MTRTC VOS2(5) MTRTC VOS2(4) MTRTC VOS2(3) MTRTC VOS2(2) MTRTC VOS2(1) MTRTC VOS2(0) NU History of Gain adjust(6) (8:0) History of Gain first order temperature coefficient(6) 9 MTRGAIN(8) MTRGAIN(7) MTRGAIN(6) MTRGAIN(5) MTRGAIN(4) MTRGAIN(3) MTRGAIN(2) MTRGAIN(1) 10 MTRGAIN(0) NU NU NU NU NU NU NU (5:0) 11 MTRTC GAIN1(5) MTRTC GAIN1(4) MTRTC GAIN1(3) MTRTC GAIN1(2) MTRTC GAIN1(1) MTRTC GAIN1(0) NU NU (7:0) 1 Reserved DG1 ECRC PROG_OK EIVCM EFRAME EOVER EPAR (7:0) 2 Reserved Reserved Reserved Reserved Fastdis Stbit EO Pdis DIAG/UART Table 19. DIAG/UART Register (Bank Address = 8) ITEM DG1 ECRC PROG_OK EIVCM DESCRIPTION Over pressure flag CRC error PROGV pin monitor SIP and SIN pin common mode voltage error EFRAME Framing error EOVER Over run error EPAR Parity error Pdis Parity disable EO Parity even or odd Stbit Stop bit setting Fastdis Reserved Test mode baud rate disable Reserved Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TPIC83000-Q1 27 TPIC83000-Q1 SLDS171 – NOVEMBER 2009 www.ti.com Calibration Mode – Mode Select Mode Select Command Frames 7 6 5 PSNID(1) PSNID(1) PSNID(0) PSNID(0) WORDID WORDID First Frame PSNID[1:0] Bits 7-6 WORDID MODETYPE Bit 5 Bits 4-3 DISPSN Bit 2 Reserved Bits 1-0 Second Frame PSNID[1:0] Bits 7-6 WORDID NU ACSUNT Bit 5 Bits 4-3 Bit 0 ACTMODE Bit 1 WE Bit 0 4 3 2 NU DISPSN ACSUNT MODETYPE NU 1 0 Reserved ACTMODE WE Position ID of device on UART bus. Each device process information for one sensor. Four sensors can be sensed on the UART bus. Position settings are defined in the EEPROM map. 00 Position 0 01 Position 1 10 Position 2 11 Position 3 Frame ID of byte. 1 indicates frame 1 of 2. Select mode type within calibration mode 00 Data request 01 Calibration write 10 Calibration read 11 Mode select Disable or enable position ID matching 0 Decode command only if position IDs match 1 Indicates global command. All devices decode command frame. Must be set to 0. Position ID of device on UART bus. Each device process information for one sensor. Four sensors can be sensed on the UART bus. Position settings are defined in the EEPROM map. 00 Position 0 01 Position 1 10 Position 2 11 Position 3 Frame ID of byte. 0 indicates frame 2 of 2. Not use. Set to 0. Sets device to field addressing mode or bank addressing mode. Can be accessed only in calibration mode. 0 Bank addressing mode 1 Field addressing mode Sets device to sensor or calibration mode after current command is completed. 0 Sensor mode 1 Calibration mode Disable/enable write to EEPROM (see EEPROM Write for details) 0 EEPROM write disabled (default) 1 EEPROM write enabled Figure 13. Mode Select Command Frames 28 Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TPIC83000-Q1 TPIC83000-Q1 www.ti.com SLDS171 – NOVEMBER 2009 Mode Select Data Frames 7 6 5 4 3 2 1 0 NU NU NU NU NU ACSUNT ACTMODE WE NU ACSUNT Bits 7-3 Bit 0 ACTMODE Bit 1 WE Bit 0 Not use. Set to 0. Reports field addressing mode or bank addressing mode 0 Bank addressing mode 1 Field addressing mode Reports sensor or calibration mode 0 Sensor mode 1 Calibration mode Reports status of disable/enable write to EEPROM (see EEPROM Write for details) 0 EEPROM write disabled (default) 1 EEPROM write enabled Figure 14. Mode Select Data Frames Table 20. Profile of Mode Select Data Frames (Field and Bank Mode Addressing) FIELD NAME (BANK ADDRESS) FIELD MODE ADDRESS LENGTH Mode registers read - - FRAME NO. 1 B7 (MSB) B6 B5 B4 B3 B2 B1 B0 (LSB) NU ACSUNT ACTMODE WE DATA NU NU NU NU Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TPIC83000-Q1 29 TPIC83000-Q1 SLDS171 – NOVEMBER 2009 www.ti.com Device Configuration and Thresholds The following tables show the actual data settings needed in the specific control bits for setting the baud rates and threshold levels for the TPIC83000. These settings can only be implemented in Calibration mode. Table 21. Baud Rate Settings BAUD RATE CONF BPS(3:0) DATA TYPICAL VALUE COMMUNICATION CLOCK 0000 500 bps 2.458 MHz / 307 = 8.0 kHz 0001 750 bps 2.458 MHz / 205 = 12.0 kHz 0010 1000 bps 2.458 MHz / 154 = 16.0 kHz 0011 1250 bps 2.458 MHz / 123 = 20.0 kHz 0100 1500 bps 2.458 MHz / 102 = 24.0 kHz 0101 1750 bps 2.458 MHz / 88 = 27.9 kHz 0110 2000 bps 2.458 MHz / 77 = 31.9 kHz 0111 2250 bps 2.458 MHz / 68 = 36.1 kHz 1000 2500 bps 2.458 MHz / 61 = 40.0 kHz 1001 2750 bps 2.458 MHz / 56 = 43.9 kHz 1010 3000 bps 2.458 MHz / 51 = 48.2 kHz 1011 3250 bps 2.458 MHz / 47 = 52.3 kHz 1100 4800 bps 2.458 MHz / 32 = 76.8 kHz 1101 9600 bps 2.458 MHz / 16 = 153.6 kHz 1110 19.2 kbps 2.458 MHz / 8 = 307.3 kHz 1111 38.4 kbps 2.458 MHz / 4 = 614.5 kHz Table 22. Over-Pressure Gain Settings via TRHSGAIN Control Bits OVER-PRESSURE GAIN TRHSGAIN(2:0) 30 DATA MIN VALUE TYPICAL VALUE 0000 2.2 0001 2.4 0010 2.6 0011 2.8 0100 3 0101 3.2 0110 3.4 0111 3.6 Submit Documentation Feedback MAX VALUE Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TPIC83000-Q1 TPIC83000-Q1 www.ti.com SLDS171 – NOVEMBER 2009 Table 23. Over-Pressure Thresholds at Over-Pressure Gain = 2.2 OVER-PRESSURE THRESHOLD TRHS(3:0) TRHSGAIN = 0 Error due to coarse offset value should be taken into account. Input referred. DATA MIN VALUE TYPICAL VALUE MAX VALUE 0000 -20% 9.41 mV 20% 0001 -20% 10.59 mV 20% 0010 -20% 11.77 mV 20% 0011 -20% 12.93 mV 20% 0100 -20% 14.11 mV 20% 0101 -20% 15.29 mV 20% 0110 -20% 16.47 mV 20% 0111 -20% 17.64 mV 20% 1000 -10% 18.82 mV 10% 1001 -10% 20.00 mV 10% 1010 -10% 21.17 mV 10% 1011 -10% 22.34 mV 10% 1100 -10% 23.52 mV 10% 1101 -10% 24.70 mV 10% 1110 -10% 25.88 mV 10% 1111 -10% 27.06 mV 10% Table 24. Over-Pressure Thresholds at Over-Pressure Gain = 2.4 OVER-PRESSURE THRESHOLD TRHS(3:0) TRHSGAIN = 1 Error due to coarse offset value should be taken into account. Input referred. DATA MIN VALUE TYPICAL VALUE MAX VALUE 0000 -20% 8.92 mV 20% 0001 -20% 10.03 mV 20% 0010 -20% 11.15 mV 20% 0011 -20% 12.25 mV 20% 0100 -20% 13.37 mV 20% 0101 -20% 14.48 mV 20% 0110 -20% 15.60 mV 20% 0111 -20% 16.72 mV 20% 1000 -10% 17.83 mV 10% 1001 -10% 18.95 mV 10% 1010 -10% 20.05 mV 10% 1011 -10% 21.17 mV 10% 1100 -10% 22.28 mV 10% 1101 -10% 23.40 mV 10% 1110 -10% 24.52 mV 10% 1111 -10% 25.63 mV 10% Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TPIC83000-Q1 31 TPIC83000-Q1 SLDS171 – NOVEMBER 2009 www.ti.com Table 25. Over-Pressure Thresholds at Over-Pressure Gain = 2.6 OVER-PRESSURE THRESHOLD TRHS(3:0) TRHSGAIN = 2 Error due to coarse offset value should be taken into account. Input referred. DATA MIN VALUE TYPICAL VALUE MAX VALUE 0000 -20% 8.42 mV 20% 0001 -20% 9.47 mV 20% 0010 -20% 10.53 mV 20% 0011 -20% 11.57 mV 20% 0100 -20% 12.63 mV 20% 0101 -20% 13.67 mV 20% 0110 -20% 14.73 mV 20% 0111 -20% 15.78 mV 20% 1000 -10% 16.84 mV 10% 1001 -10% 17.89 mV 10% 1010 -10% 18.94 mV 10% 1011 -10% 19.99 mV 10% 1100 -10% 21.04 mV 10% 1101 -10% 22.10 mV 10% 1110 -10% 23.15 mV 10% 1111 -10% 24.21 mV 10% Table 26. Over-Pressure Thresholds at Over-Pressure Gain = 2.8 OVER-PRESSURE THRESHOLD TRHS(3:0) TRHSGAIN = 3 Error due to coarse offset value should be taken into account. Input referred. 32 DATA MIN VALUE TYPICAL VALUE MAX VALUE 0000 -20% 7.93 mV 20% 0001 -20% 8.92 mV 20% 0010 -20% 9.91 mV 20% 0011 -20% 10.89 mV 20% 0100 -20% 11.88 mV 20% 0101 -20% 12.87 mV 20% 0110 -20% 13.87 mV 20% 0111 -20% 14.86 mV 20% 1000 -10% 15.85 mV 10% 1001 -10% 16.84 mV 10% 1010 -10% 17.82 mV 10% 1011 -10% 18.82 mV 10% 1100 -10% 19.81 mV 10% 1101 -10% 20.80 mV 10% 1110 -10% 21.79 mV 10% 1111 -10% 22.78 mV 10% Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TPIC83000-Q1 TPIC83000-Q1 www.ti.com SLDS171 – NOVEMBER 2009 Table 27. Over-Pressure Thresholds at Over-Pressure Gain = 3.0 OVER-PRESSURE THRESHOLD TRHS(3:0) TRHSGAIN = 4 Error due to coarse offset value should be taken into account. Input referred. DATA MIN VALUE TYPICAL VALUE MAX VALUE 0000 -20% 7.43 mV 20% 0001 -20% 8.36 mV 20% 0010 -20% 9.29 mV 20% 0011 -20% 10.21 mV 20% 0100 -20% 11.14 mV 20% 0101 -20% 12.07 mV 20% 0110 -20% 13.00 mV 20% 0111 -20% 13.93 mV 20% 1000 -10% 14.86 mV 10% 1001 -10% 15.79 mV 10% 1010 -10% 16.71 mV 10% 1011 -10% 17.64 mV 10% 1100 -10% 18.57 mV 10% 1101 -10% 19.50 mV 10% 1110 -10% 20.43 mV 10% 1111 -10% 21.36 mV 10% Table 28. Over-Pressure Thresholds at Over-Pressure Gain = 3.2 OVER-PRESSURE THRESHOLD TRHS(3:0) TRHSGAIN = 5 Error due to coarse offset value should be taken into account. Input referred. DATA MIN VALUE TYPICAL VALUE MAX VALUE 0000 -20% 6.93 mV 20% 0001 -20% 7.80 mV 20% 0010 -20% 8.67 mV 20% 0011 -20% 9.53 mV 20% 0100 -20% 10.40 mV 20% 0101 -20% 11.27 mV 20% 0110 -20% 12.13 mV 20% 0111 -20% 13.00 mV 20% 1000 -10% 13.87 mV 10% 1001 -10% 14.73 mV 10% 1010 -10% 15.59 mV 10% 1011 -10% 16.46 mV 10% 1100 -10% 17.33 mV 10% 1101 -10% 18.2 mV 10% 1110 -10% 19.07 mV 10% 1111 -10% 19.94 mV 10% Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TPIC83000-Q1 33 TPIC83000-Q1 SLDS171 – NOVEMBER 2009 www.ti.com Table 29. Over-Pressure Thresholds at Over-Pressure Gain = 3.4 OVER-PRESSURE THRESHOLD TRHS(3:0) TRHSGAIN = 6 Error due to coarse offset value should be taken into account. Input referred. DATA MIN VALUE TYPICAL VALUE MAX VALUE 0000 -20% 6.44 mV 20% 0001 -20% 7.25 mV 20% 0010 -20% 8.05 mV 20% 0011 -20% 8.84 mV 20% 0100 -20% 9.65 mV 20% 0101 -20% 10.46 mV 20% 0110 -20% 11.27 mV 20% 0111 -20% 12.07 mV 20% 1000 -10% 12.87 mV 10% 1001 -10% 13.69 mV 10% 1010 -10% 14.48 mV 10% 1011 -10% 15.29 mV 10% 1100 -10% 16.09 mV 10% 1101 -10% 16.90 mV 10% 1110 -10% 17.71 mV 10% 1111 -10% 18.51 mV 10% Table 30. Over-Pressure Thresholds at Over-Pressure Gain = 3.6 OVER-PRESSURE THRESHOLD TRHS(3:0) TRHSGAIN = 7 Error due to coarse offset value should be taken into account. Input referred. DATA MIN VALUE TYPICAL VALUE MAX VALUE 0000 -20% 5.94 mV 20% 0001 -20% 6.69 mV 20% 0010 -20% 7.43 mV 20% 0011 -20% 8.17 mV 20% 0100 -20% 8.91 mV 20% 0101 -20% 9.66 mV 20% 0110 -20% 10.4 mV 20% 0111 -20% 11.14 mV 20% 1000 -10% 11.89 mV 10% 1001 -10% 12.63 mV 10% 1010 -10% 13.37 mV 10% 1011 -10% 14.11 mV 10% 1100 -10% 14.85 mV 10% 1101 -10% 15.60 mV 10% 1110 -10% 16.34 mV 10% 1111 -10% 17.08 mV 10% Table 31. Over-Pressure Timer Configuration via TRDELAY Control Bits OVER-PRESSURE TIMER TRDELAY(1:0) 34 DATA MIN VALUE TYPICAL VALUE MAX VALUE 00 (2/2.458 MHz) × 1000 × 0.9 (2/2.458 MHz) × 1000 s (2/2.458 MHz) × 1000 × 1.1 01 (2/2.458 MHz) × 2000 × 0.9 (2/2.458 MHz) × 2000 s (2/2.458 MHz) × 2000 × 1.1 10 (2/2.458 MHz) × 3000 × 0.9 (2/2.458 MHz) × 3000 s (2/2.458 MHz) × 3000 × 1.1 11 (2/2.458 MHz) × 4000 × 0.9 (2/2.458 MHz) × 4000 s (2/2.458 MHz) × 4000 × 1.1 Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TPIC83000-Q1 TPIC83000-Q1 www.ti.com SLDS171 – NOVEMBER 2009 Table 32. Default Settings for Temperature Sensor (Data 2) With Respect to Over-Pressure Comparator Timer and Gain Adjust TEST CONDITIONS OP-1 TEMP1[5:0] 12.483 mV≤VPHS ≤ 12.57 mV TRHS = 8, TRHSGAIN = 5 10 12.57 mV < VPHS ≤ 13.44 mV TRHS = 8, TRHSGAIN = 5 9 13.44 mV < VPHS ≤ 14.30 mV TRHS = 8, TRHSGAIN = 5 8 14.30 mV < VPHS ≤ 15.257 mV TRHS = 8, TRHSGAIN = 5 OP-2 7 TEMP1[9:6] 16.38 mV < VPHS ≤ 16.895 mV TRHS = 13, TRHSGAIN = 5 15 16.895 mV < VPHS ≤ 17.765 mV TRHS = 13, TRHSGAIN = 5 14 17.765 mV < VPHS ≤ 18.635 mV TRHS = 13, TRHSGAIN = 5 13 18.635 mV < VPHS ≤ 19.505 mV TRHS = 13, TRHSGAIN = 5 12 19.505 mV < VPHS ≤ 20.020 mV TRHS = 13, TRHSGAIN = 5 11 Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TPIC83000-Q1 35 TPIC83000-Q1 SLDS171 – NOVEMBER 2009 www.ti.com ABSOLUTE MAXIMUM RATINGS (1) over operating free-air temperature range (unless otherwise noted) Vcc/Vdd Regulated input (2) (3) (2) (4) DO Output DI Input (2) SIN/SIP Input voltage (2) PD (4) (3) VALUE UNIT –0.3 to 7 V –0.3 to 7 V –0.3 to 7 V –0.3 to Vcc + 0.3 V Continuous power dissipation 71 mW θJA Thermal impedance, junction to ambient 100 °C/W ESD1 (5) Electrostatic discharge (6) ±2 kV –200 (Minimum) V ESD2 (7) Electrostatic discharge on all terminals 200 (Maximum) V TOP Operating ambient temperature range –40 to 85 °C TS Storage temperature range –40 to 125 °C TJ Maximum junction temperature 150 °C (1) (2) (3) (4) (5) (6) (7) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to GND. Absolute negative voltage on these pins not to go below –0.5 V. This is to prevent the ESD diode from forward-biasing during normal operation. Absolute negative voltage on these pins not to go below –1.0 V. This is to prevent the ESD diode from forward-biasing during normal operation. ESD1: DO pin with 220 Ω and 1 nF (cannot be disruptive or destructive) The human body model is a 100 pF capacitor discharged through a 1.5-kΩ resistor into each pin ESD2: On all other terminals 0 Ω with 200 pF RECOMMENDED OPERATING CONDITIONS Vdd, Vcc, VccA Regulated input DO Output DI Input SIN, SIP Amplifier input voltage CProgV Programming voltage capacitor for charge pump RrefI Current reference setting QVcc Low ESR capacitance on Vcc line TA Operating ambient temperature 36 MIN NOM MAX UNIT 4.5 5 5.25 V 0 Vdd V 0 Vdd V Vcc/2 – 0.2 Vcc/2 + 0.2 V 500 1500 10 μF 1 –40 Submit Documentation Feedback pF kΩ 85 °C Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TPIC83000-Q1 TPIC83000-Q1 www.ti.com SLDS171 – NOVEMBER 2009 ELECTRICAL CHARACTERISTICS – POWER SUPPLY Vdd = Vcc = VccA = 5 V +5%/–10%, TA = –40°C to 85°C (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 4.5 5.0 5.25 V Power Supply Vcc Vdd VccA Power supply voltage Vcc = 5 V, TA = 25°C IVcc IVdd IVccA 10 All specified operating conditions Total current consumption of all three supplies Vcc = 5 V, TA = 25°C, EEPROM programming mode mA 13 mA 13.5 mA 3.8 V Power-On Reset UVcc (1) (2) HVcc TPOR (1) (1) (2) Vcc undervoltage detection threshold DO = 0 Vcc undervoltage detection hysteresis Vcc = Vdd = VccA (2) 3.5 3.7 0.2 See Figure 15 9.54 10.6 V 11.66 ms MAX UNIT 1.3-ms timer between PUC (power up clear, Vcc = 2.5 V) to UVCC PUC clears digital logic core. UVcc holds DO to low state. After UVCC condition cleared, DO is low for TPOR. UVcc Vcc HVcc TPOR DO Figure 15. Power-On Reset Voltage and Timing Thresholds ELECTRICAL CHARACTERISTICS – INPUT AMPLIFIER (SIP, SIN) Vdd = Vcc = VccA = 5 V +5%/–10%, TA = –40°C to 85°C (unless otherwise noted) PARAMETER TEST CONDITIONS VICOM Input common mode range SIP and SIN ΔDO/ΔVcm (10-bit scale) <1-bit error at output VIDF (1) Input differential voltage between SIP and SIN Coarse offset range VOS Input offset voltage Vcc = 5 V, VSIP = VSIN = 2.5 V ISI Input offset current Rin = 500 k, VSIP = VSIN = Vcc/2 IS Input sink current SIP = SIN = Vcc/2 CSI Amplifier input load capacitance SIP to Gnd SIN to Gnd SIP to SIN (1) MIN TYP Vcc/2 –0.2 Vcc/2 +0.2 –120 120 mV –20 20 μV –0.2 0.2 μA 2.5 μA 0.1 μF 0.5 1 V This is typical coarse offset range correction range. Refer to the coarse offset DAC section for accuracy information. Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TPIC83000-Q1 37 TPIC83000-Q1 SLDS171 – NOVEMBER 2009 www.ti.com ELECTRICAL CHARACTERISTICS – CALIBRATION AND FAULT DETECTION Vdd = Vcc = VccA = 5 V +5%/–10%, TA = –40°C to 85°C (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 120 mV Calibration Input offset trim range –120 Input offset trimming step Vos Input offset trimming resolution VOSC (coarse) Vin = 0, Gain = Nom VOSF (fine) Vin = 0, Gain = Nom Input offset TC1 trim range + VO(TCVos1 = 63 or –64) –VO(TCVos1 = 0) Input offset TC1 trim step mV bits 72 96 LSB –99 –74 –48 LSB LSB/ Code 1.14 7 VO(TCVos2 = 63 or –64) –VO(TCVos2 = 0) Input offset TC2 trim range – bits 12 24 35 –35 –24 –12 Input offset TC2 trim step 0.38 7 Programmable gain range With respect to Analog Gain Gain programming step 75 Gain TC1 trimming range 125 9 VO(TCGain1 = 1) – VO(TCGain1 = 0) –44 Gain TC1 trimming step –35 LSB bits 0.1 Vin = SIP – SIN Gain programming resolution LSB LSB/ Code Vin = 0, GAIN = Mid, TA = 85°C Input offset TC2 trimming resolution TCGain1 132 328 Vin = 0, GAIN = Mid, TA = 85°C, Input offset TC2 trim range + Gain bits 48 Input offset TC1 trimming resolution TCVos2 μV 17 –132 Input offset TC1 trim range – TCVos1 8 % % bits –20 LSB LSB/ Code 0.55 Gain TC1 number of bits Vin = 1.1/ 300 V, GAIN = Mid, TA = 85°C 6 bits VIOVL Input under levels SIP and SIN 0.1 Vcc 0.3 Vcc V VIOVH Input over levels SIP and SIN 0.7 Vcc 0.9 Vcc V TIOV Input fault deglitch timer SIP and SIN 4.5 5.5 ms VIHS Typical excess pressure detection programmable range SIP and SIN TRHSGAIN = 5 TRHS = 0 to 15 –19.94 –6.93 mV VPHS Typical programmable step accuracy SIP and SIN –1.1 1.1 mV VRHS Typical programmable step SIP and SIN TRHSGAIN = 5 TIOW Deglitch timer programmable range TRDELAY = 3 TIOWE Over-pressure deglitch time error SIP and SIN TSF Supply glitch time Vcc < 2.5 V Fault Detection 38 Submit Documentation Feedback 5 0.87 mV (2/ 2.458 MHz) × 4000 –10 0 320 s 10 % ns Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TPIC83000-Q1 TPIC83000-Q1 www.ti.com SLDS171 – NOVEMBER 2009 ELECTRICAL CHARACTERISTICS – EEPROM Vdd = Vcc = VccA = 5 V +5%/–10%, TA = –40°C to 85°C (unless otherwise noted) PARAMETER TEST CONDITIONS Write cycle MIN TYP DIO and PROGV MAX UNIT 25 times 120 ms 16.5 ms Write time EEPROM write time Tprog_ok + system response time DIO and PROGV Tprog_ok + system response time PROG_OK timer Tporg_ok PROGV > VPROG 13.5 Programming voltage VPROG PROGV 12.5 18 V –40 85 °C Write TA 20 15 ELECTRICAL CHARACTERISTICS – AFE Vdd = Vcc = VccA = 5 V +5%/–10%, TA = –40°C to 85°C (unless otherwise noted) MIN TYP MAX Av Analog front end gain PARAMETER At TST1 and TST0, Vin = ±3 mV, TA = 25°C TEST CONDITIONS 285 300 321 UNIT V/V ASIG Signal path absolute error Vin = ±3 mV -16 16 LSB RE4085 Ratiometric error at -40°C and 85°C DIO Pin, Vcc = 4.92±50 mV, Gain = Max -13 13 LSB TCVO1 Output temperature drift Input = GND, Temp = -40°C to 25°C, the offset TCs are set to the middle, Gain = Max -15 15 LSB TCVO2 Output temperature drift Input = GND, Temp = 25°C to 85°C, the offset TCs are set to the middle, Gain = Max -10 10 LSB TCAG Analog front end gain temperature drift At TST1 and TST0, Vin = ±3 mV -0.5 0 0.5 % TCVIONL Output drift, second order TCVO1 – TCVO2 -20 0 20 LSB GAINNL Gain non linearity At TST1/ TST0, Vin = -3 mV, 1 mV -20 0 20 mV OUTB Measured GAINNL OUTA + OUTB 2 Calculated OUTA In-Out Range InputA InputA + InputB InputB 2 Figure 16. Analog Front-End Gain Non-Linearity (Measured vs Calculated) Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TPIC83000-Q1 39 TPIC83000-Q1 SLDS171 – NOVEMBER 2009 www.ti.com ELECTRICAL CHARACTERISTICS – Data Input-Output (DI/DO) Vdd = Vcc = VccA = 5 V +5%/–10%, TA = –40°C to 85°C (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT Data Input-Output (DI/DO) LD Data length Word length VDOL Output low level Isink = 5 mA VDOH Output high level External pullup CDIO Capacitive load No Oscillation Isink2 Output sink current Rx mode, High impedance (Z state) DOH Output high clamp DOL Output low clamp DOER Accuracy VDIL Input low level VDIH Input high level RDI1 Input resistance Pullup / DI = 2.5 V / 0 V ID1 Input leakage DI = Vcc DO rise / fall time for 500 to 2250 baud rate TRFDO1 (1) TRFDO2 (1) 10 Bits 0.1 Vcc V 0.9 Vcc V 1000 pF 0 1 μA 1 %FS 1023 0 Include life-time drift -1 0.3 Vcc 0.7 Vcc V V 30 50 70 kΩ 1 μA fosc = 2.458 MHz, C = 1 nF, CONFBPS < 8 4.7 μs DO rise / fall time for 2500 fosc = 2.458 MHz, C = 1 nF, CONFBPS > 7 to 38.4k baud rate 1 μs Data Input-Output Tx, Rx requirements fosc Internal clock frequency fcomclk Internal communication clock frequency fosc = 2.458 MHz, At TST1 in test mode tstrto Start bit output time tstrt1 Start bit decision time tstpo Stop bit TA = -40, 85°C, REFI = 10 kΩ 2.25 BR 2.65 MHz × 16 Hz fosc = 2.458 MHz 1/ baud rate ms fosc = 2.458 MHz (BR (2) (2) × 16) × 16) ms (2) ms × 16) × 16) ms 8/ 16 / (BR fosc = 2.458 MHz 1/ BR (BR (2) (2) 8/ 16 / (BR tstpi Stop bit decision time fosc = 2.458 MHz trxtx RX-TX interval fosc = 2.458 MHz 1 ttxtx TX-TX interval fosc = 2.458 MHz 1.5 (1) (2) 2.4575 (2) 1.5 2 bit 2 2.5 bit External R and C need to be chosen so that total communication speed error is less than (4.5% - system error ). BR = baud rate ELECTRICAL CHARACTERISTICS – REFI Vdd = Vcc = VccA = 5 V +5%/–10%, TA = –40°C to 85°C (unless otherwise noted) MIN TYP MAX VREFI Voltage across REFI pin PARAMETER R = 10 kΩ 1.425 1.5 1.575 V IREFI Current out of REFI pin R = 10 kΩ 142.5 150 157.5 μA CREFI Maximum capacitance 20 pF 40 TEST CONDITIONS Submit Documentation Feedback UNIT Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TPIC83000-Q1 TPIC83000-Q1 www.ti.com SLDS171 – NOVEMBER 2009 APPLICATION INFORMATION 5V 0.1 µF 4.7 µF Vcc Vdd VccA 0.1 µF DGnd Gnd 10 kW REFI TPIC83000 DO GndA TST2 SIP TST1 Gnd TST0 SIN Microcontroller DI 5V 1 kW PROGV 5V 0.1 nF Figure 17. General Application Circuit Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TPIC83000-Q1 41 PACKAGE OPTION ADDENDUM www.ti.com 2-Nov-2009 PACKAGING INFORMATION Status (1) Package Type Package Drawing TPIC83000IPWRQ1 ACTIVE TSSOP PW 16 TPIC8300IPWRQ1 PREVIEW TSSOP PW 16 Orderable Device Pins Package Eco Plan (2) Qty 2000 Lead/Ball Finish TBD CU NIPDAU TBD Call TI MSL Peak Temp (3) Level-1-240C-UNLIM Call TI (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 1 MECHANICAL DATA MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999 PW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 14 PINS SHOWN 0,30 0,19 0,65 14 0,10 M 8 0,15 NOM 4,50 4,30 6,60 6,20 Gage Plane 0,25 1 7 0°– 8° A 0,75 0,50 Seating Plane 0,15 0,05 1,20 MAX PINS ** 0,10 8 14 16 20 24 28 A MAX 3,10 5,10 5,10 6,60 7,90 9,80 A MIN 2,90 4,90 4,90 6,40 7,70 9,60 DIM 4040064/F 01/97 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0,15. Falls within JEDEC MO-153 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive DLP® Products www.dlp.com Communications and Telecom www.ti.com/communications DSP dsp.ti.com Computers and Peripherals www.ti.com/computers Clocks and Timers www.ti.com/clocks Consumer Electronics www.ti.com/consumer-apps Interface interface.ti.com Energy www.ti.com/energy Logic logic.ti.com Industrial www.ti.com/industrial Power Mgmt power.ti.com Medical www.ti.com/medical Microcontrollers microcontroller.ti.com Security www.ti.com/security RFID www.ti-rfid.com Space, Avionics & Defense www.ti.com/space-avionics-defense RF/IF and ZigBee® Solutions www.ti.com/lprf Video and Imaging www.ti.com/video Wireless www.ti.com/wireless-apps Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2010, Texas Instruments Incorporated