TI TPIC83000IPWRQ1

TPIC83000-Q1
www.ti.com
SLDS171 – NOVEMBER 2009
PRESSURE SENSOR SIGNAL CONDITIONING INTERFACE
Check for Samples: TPIC83000-Q1
FEATURES
1
•
•
•
•
•
•
•
•
•
Qualified for Automotive Applications
10-Bit Pressure and Temperature Output
On-Board Temperature Sensor
Programmable Gain / Gain TC1
Programmable Offset / Offset TC1 / TC2
On-Board EEPROM for System Calibration
Operating Temperature Range: –40°C to 85°C
16-Pin TSSOP (PW) Package
UART Interface
APPLICATIONS
•
•
•
PW PACKAGE
(TOP VIEW)
Vcc
1
16
Vdd
VccA
2
15
DGnd
Gnd
3
14
DI
REF1
4
13
DO
GndA
5
12
TST2
SIP
6
11
TST1
Gnd
7
10
TST0
SIN
8
9
ProgV
Occupancy Weight Sensing
Pedal-Pressure Sensing
General Low-Pressure Sensing
DESCRIPTION
The TPIC83000 is a single-channel, signal conditioning device for pressure sensors used in low-pressure
sensing applications such as passenger occupancy indication/detection and pedal pressure sensing. The
pressure sensor can be based on either a strain gauge or piezo-resistive elements configured as a full
Wheatstone bridge. This device provides an analog signal conditioning interface between the pressure sensor
and a microcontroller. The analog front end (AFE) inside the device processes the sensed signals from the
pressure sensor by amplifying the signal and cancelling offset. This processed signal is then converted into a
14-bit, digital word using a sigma-delta analog-to-digital converter (ADC). The device also has a built-in 12-bit
ADC that is used to sense ambient temperature to compensate for the temperature coefficient of the sensor and
related processing circuitry. The compensated digital data is transferred to the microprocessor via a built-in
UART interface.
ORDERING INFORMATION (1)
TA
–40°C to 85°C
(1)
(2)
PACKAGE
TSSOP – PW
(2)
Reel of 2000
ORDERABLE PART NUMBER
TPIC83000IPWRQ1
TOP-SIDE MARKING
TPIC83000I
For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI
web site at www.ti.com.
Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Copyright © 2009, Texas Instruments Incorporated
TPIC83000-Q1
SLDS171 – NOVEMBER 2009
www.ti.com
Functional Block Diagram
PROGV
IC
HV
generator
EEPROM
VCC
Temperature
sensor
Over -Pressure
detector
ADC
12bit
DO
LOGIC
(DSP)
SIP
Amp.
SIN
Amp.
Amp.
DI
ADC
14bit
input error
detector
GND
I/O
i/f
OSC
TST0 TST1 TST2
REFI
TST0 TST1 TST2
TERMINAL FUNCTIONS
NAME
NO.
TYPE
(1)
DESCRIPTION
Vcc
1
I
5-V input analog supply
VccA
2
I
ADC positive reference
Gnd
3
I
Ground (analog)
REFI
4
I
Current reference ( Vbg / R )
GndA
5
I
ADC negative reference
SIP
6
I / PD
Gnd
7
I
SIN
8
I / PD
Negative sensor input
ProgV
9
O / PD
EEPROM programming voltage monitor
(2)
10
I/O
Test (analog / digital)
TST1 (NC) (2)
11
I/O
Test (analog / digital)
TST2 (NC) (2)
12
I/O
Test (digital)
DO
13
O
UART interface output
DI
14
I
UART interface input
DGnd
15
I
Digital ground
Vdd
16
I
5-V digital supply
TST0 (NC)
(1)
(2)
2
Positive sensor input
Ground (analog)
I = input, O = output, PD = pulldown, PU = pullup
These pins are to be used for TI internal test purposes only and must be "no connection" in the system application. No signal traces
should be connected to the NC pins.
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPIC83000-Q1
TPIC83000-Q1
www.ti.com
SLDS171 – NOVEMBER 2009
FUNCTIONAL DESCRIPTION
The TPIC83000 is designed for detection of low-pressure variations in many automotive applications. This device
provides analog interface signal conditioning between a piezo-resistive or strain gauge pressure sensor and a
microcontroller. The input amplifiers process the voltage from the sensor and amplify this voltage before feeding
it to the 14-bit sigma-delta ADC for signal conditioning. Once the signal is converted into a digital format, this
converted value of the analog signal is processed and transmitted to the microcontroller via the UART interface.
There is also a 12-bit ADC to sense ambient temperature, which is used to compensate for non-ideality of the
sensor and associated circuitry due to temperature.
Vcc
VccA
Vdd
TST2
Vdd
Digital block
Vcc
Vcc
SIP
-
SIN
Open/Short
Sensor faults
Vcc
SIP
+
-
Shorts
Coarse
Offset
+
+
+
-
-
-
Vcc
Mux
Ampout- [2:0]
Dweight
ADC clock [13:0]
Signal
generator
Conditioning
Vcc
Dtemp
[11:0]
Vbg
Vptat
Vcc
Filter
Sigma Delta
ADC
ADC clock
generator
Vcc
Current mirror
TrimBG [4:0]
EEPROM
control logic
-
Clk2.458MHz
TrimOsc [6:0]
REF1
DI
DO
Vcc
2.458MHz
Oscillator
+
Trim
Control
Registers
EEPROM
Vdd
Vcc
GND GNDA
Filter
Sigma Delta
ADC
Bandgap
PTAT
generator
Ampout+ [2:0]
TST1
Control bus
to ALL
Clk2.458MHz
blocks
Master
control logic
PUC
Vcc
Vcc
TST0
Test
Mode
Diagnostics
Vcc
Vcc
Vcc
SIN
Overweight
bit
-
Vcc
SIP
Short
Cpuv
Vcc
+
SIN
Open
Programmable
offset
Open
+
UART I/F
Charge
pump
Cpuv
Vcc
PROGV
Power On Reset
DGND
PUC
GND
Figure 1. Detailed Functional Block Diagram
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPIC83000-Q1
3
TPIC83000-Q1
SLDS171 – NOVEMBER 2009
www.ti.com
Function Pin Description
Supply Voltage (Vcc)
This terminal is the input supply for the analog circuits, typically 5 V +5%/-10% tolerant. A noise filter
capacitor of 4.7 μF (typical) is required on this terminal to ensure stability of the internal circuits.
Ground (Gnd)
This terminal is connected to the system ground.
Ground (DGnd)
This terminal is connected to the system ground.
ADC Reference Voltage (VccA)
This terminal is the input reference for the ADC, typically 5 V. A noise filter capacitor of 0.1 μF (typical) is
required on this terminal to ensure stability of the internal circuits.
Supply Voltage (Vdd)
This terminal is the input supply for the digital circuits, typically 5-V tolerant. A capacitor of 4.7 μF (typical) is
required on this terminal to ensure stability of the internal circuits.
ADC Reference Voltage (GNDA)
This terminal is the input reference for the ADC, typically 0 V.
Gauge OUTPUT (SIP)
The SIP is a positive sensor output. This is the input to the amplifier used for the signal conditioning.
Gauge OUTPUT (SIN)
The SIN is a negative sensor output. This is the input to the amplifier used for the signal conditioning.
Data Input/Data Output (DI/DO)
The DI and DO is the UART communication interface, reporting information back to the microprocessor. This
is an open-drain output with the output set to high-impedance mode when other DO in the system is
activated. The output is by default in RX mode.
Reference Supply (REFI)
Internally generated reference voltage appears as resistor (10 kΩ) is connected to this pin to set up
reference current for internal oscillator.
Internal oscillator frequency fosc = 2 × (VBG/R) / (VBG ×Ctrim)
VBG = Bandgap voltage (VREFI)
Ctrim = Internally trimmed capacitor
EEPROM Supply (PROGV)
This terminal is the supply for EEPROM program. A capacitor of ~1 nF is required on this terminal.
4
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPIC83000-Q1
TPIC83000-Q1
www.ti.com
SLDS171 – NOVEMBER 2009
Principles of Operation
The system transfer equation is shown in Equation 1.
2
Gain × (1 + (TCGain1 × Temp))
VDIOdigital = (Vinput – VOS – (TCVOS2 × Temp) – (TCVOS2 × Temp ) ×
VccA × 1024
(1)
Where
Vinput = Voltage input to the Logic (DSP) block. This voltage is the same as the output of the Analog Front
End
VDIOdigital = Digital output of the logic (DSP) block
Temp = Difference between ambient temperature and room temperature
VOS = Offset adjust
TCVOS1 = Offset TC1 adjust
TCVOS2 = Offset TC2 adjust
Gain = Gain
TCGain1 = Gain TC1 adjust
VccA = ADC reference
VDIOdigital = 0 for lower clamp (TA = –40°C to 85°C)
VDIOdigital = 1023 for upper clamp (TA = –40°C to 85°C)
The range and resolution of the parameters is given in Table 1.
Table 1. Output Parameters
ITEM
Input coarse offset
Input fine offset
Input offset first-order
temperature
coefficient
Input offset
second-order
temperature
coefficient
Gain
Gain first-order
temperature
coefficient
SYMBOL
BIT NO.
ADJUSTMENT
RANGE
DEFAULT
TRVOSC
9
±120 mV
0 mV
TRVOSF
TRTCVOS1
TRTCVOS2
TRGAIN
TRTCGAIN1
8
7
7
9
6
0 to 4 × 510 μV
(±25 μV/°C) × 3
±40 nV/°C2
100 + 25%
-900 to 0 ppm/°C
0 μV
0 μV/°C
0 μV/°C2
100%
0 ppm/°C
DECIMAL
VALUE
BINARY
VALUE
ADJUSTMENT
VALUE
511
111111111
+120 mV
256
100000000
0 mV
0
0
-120 mV
255
11111111
4 × 510 μV
0
0
0
63
1111111
(+25 μV/°C) × 3
0
0
-64
10000000
0
63
1111111
40 nV/°C2
0
0
0
-64
10000000
-40 nV/°C2
255
1111111
125%
0
0
100%
-255
10000000
75%
0
0
0 ppm/°C
-63
1
-900 ppm/°C
(-25 μV/°C) × 3
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPIC83000-Q1
5
TPIC83000-Q1
SLDS171 – NOVEMBER 2009
www.ti.com
DETAILED FUNCTIONAL DESCRIPTION
Pre-Amplifier (Front End)
Due to initial large offset in the pressure sensor output, the analog front end has an offset correction as needed.
Fault Detection
Sensor inputs SIP, SIN
The following faults are detected and a fault bit set in a register. The minimum fault detection filter time is 5 ms.
There are 1-μA pulldown current source on the SIP and SIN terminals. Fault detection capabilities of this device
are for both SIP and SIN sensor inputs. The following type of faults are reported and sent to the DIAG bits.
• Shorts to Vcc
• Shorts to Gnd
• Open piezo-resistive or strain gauge (i.e., open-circuit between SIP and SIN inputs)
ADC
The ADC is a 14-bit with resolution of ±3 LSB (10 bit).
Digital I/O
•
•
•
•
•
I/O data transfer via DI/DO pins.
Refer to data format communications between microprocessor to IC: Mode selection (microprocessor → IC)
chart.
DI/DO interface become active only when specified data format and protocol are used.
Start bit is used to initiate the communication: DI/DO repeats Rx-Tx-Rx-Tx, to realize one pin Tx-Rx
communication. When sensor, temperature, diagnostics, and trimming data are requested, DI/DO remain in
Rx mode until all frames are sent.
DI/DO output current capability is 5 mA at low level.
Memory
•
•
•
•
EEPROM : Read/Write cycle is less than 25 times
Data retention: 15 years at 90°C
Data fault detection (CRC8)
Fault write/erase prevention
EEROM Write
•
•
•
6
Generate programming voltage after receiving the write RQ.
Output Diag during the write
EEROM write sequence
1. Send data to appropriate bank or field
2. Send WE = 1
(a) Calculate new CRC
(b) Set charge pump on
(c) Reload all registers from EEPROM
(d) Check CRC value
3. Read Diag register to confirm PROG_OK = 1
4. Send WE = 0 (≥ 15 ms must elapse for write sequence to complete before microprocessor can disable
EEPROM write)
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPIC83000-Q1
TPIC83000-Q1
www.ti.com
SLDS171 – NOVEMBER 2009
System Configuration/Programming
See the "Baud Rate Settings" table (Table 21).
Programming Voltage
•
•
•
•
Internally generated programming voltage
Only active during the write mode
The programming voltage can be monitored at PROGV pin.
15-ms sec timer / internal undervoltage comparator to guarantee required programming time and voltage
level. (12.5 V, 15 ms + system response time > 20 ms)
Temperature Sensor
•
Output data linearly proportional to temperature.
Internal Oscillator
•
•
•
2.458 MHz
External resistor is used for current reference
10 kΩ
Sensor Output
•
•
•
•
Input signal from sensor is analog/digitally processed and output 10-bit word via DIO
Linear region: output is linear to the sensor input. Clamp region: output is at the clamp value.
Output and DIAG data can be requested every 100 ms.
Refer to Data format communications between microprocessor to IC Mode selection (microprocessor → IC)
chart.
Data Transfer Format
See Table 16.
Data Output Request (Sensor vs Calibration Mode)
Sensor Mode
1. Receive sensor position ID
2. Output pressure or temperature + DIAG + MODE information
Calibration Mode
A data access mode can be selected by setting ACSUNT
Bank Mode (ACSUNT = 1)
1. Receive sensor position ID + command
2. Receive Bank address
3. Available output is: 1. Sensor output + diagnostics, 2. Temperature, 3. ADC output, 4. Configuration baud
rate, 5. Sensor ID + Position ID, 6. Over-pressure setting, 7. Calibration setting, 8 Temperature data, 9.
Over-pressure setting history, 10. Calibration history, 11. Mode data
Field Mode (ACSUNT = 0)
1. Receive sensor position ID + Command
2. Receive Field address
3. Available output is: 1. Sensor + diagnostics, 2. Temperature, 3. ADC output, 4. Mode data
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPIC83000-Q1
7
TPIC83000-Q1
SLDS171 – NOVEMBER 2009
www.ti.com
Programmable Input Over-Level Detection
Table 2. Input Over-Level Detection Ranges
MIN
MAX
Pressure range
PARAMETER
-19.94 mV
-6.93 mV
VSIP – VSIN TRHSGAIN = 5
Programmable threshold level
-21.35 mV
-7.43 mV
TRHSGAIN = 4
0.8 ms
3.2 ms
Deglitch filter time
Programmable step size
NOTE
EEPROM programmable
EEPROM programmable
TRHSGAIN = 4
0.93 mV
Over Pressure
Input
(differential)
VIHS
Negative Pressure
Comparator Output
Output
DIAG
Deglitch time
Acknowledge
Time
Figure 2. Detection of Negative Pressure Condition
Power Sequence
Power Up
• The IC starts functioning if Vcc is more than UVcc + HVcc (~4 V).
• Power on reset for digital circuit is ~2.5 V.
• EEPROM data loaded to registers
• DO is held low for ~10 ms.
Power Down
• When Vcc is less than UVcc, disable DO.
Glitch on Vcc
• Deglitch time : 320 ns (typical)
• Functionality during the glitch : disable DO
• Functionality after Vcc recovery: same as the Power up. EEPROM data is reloaded to registers if the glitch is
lower than 2.5 V (typ).
8
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPIC83000-Q1
TPIC83000-Q1
www.ti.com
SLDS171 – NOVEMBER 2009
UART Communication
Communication Protocol
• Protocol: UART
• Transfer Rate: See Table 21
• Data transfer: See Table 21
• Internal Oscillator : 38.4k x 16 x 4 = 2.458 MHz
• Data length = 8 bit, Start bit = 1 bit, Stop bit = 1, Parity = even
• Error detection: parity error, over run error, framing error. Ignore the frame when error is detected.
• Time out for "packet not done" is 13 bit. Ignore received data. No response.
• NU: IC to microprocessor is 0. microprocessor to IC 1 or 0.
• Interval Rx-Rx = 2 bit to 13 bit, Rx-Tx = 1.5 bit, Tx-Tx = 2 bit
RX
Start
b0
b1
b2
b3
TX
b4
b5
b6
b7
Parity Stop
Start
b0
b1
b2
b3
b5
b4
b6
b7
Parity Stop Stop
b6
b7
Parity Stop Stop
RX-TX = 1.5 bit
TX
Start
b0
b1
b2
b3
TX
b4
b5
b6
b7
Parity Stop
Start
b0
b1
b2
b3
b5
b4
RX-TX = 2 bit
RX Data Sampling Timing
0
7
15 0
7
15 0
Internal
Common Clock
Acknowledge
bit is valid
Acknowledge
Start bit is valid
Start Bit
DI/DO
LSB
Output Data Timing
0
7
15 0
7
15 0
Internal
Common Clock
Acknowledge
bit is valid
DI/DO
Start Bit
Acknowledge
Start bit is valid
LSB
Figure 3. UART Communication Frames, Sampling, and Timing
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPIC83000-Q1
9
TPIC83000-Q1
SLDS171 – NOVEMBER 2009
www.ti.com
Device Communication Modes
The TPIC83000 is a pressure sensing conditioning device that interfaces with a microprocessor. The TPIC83000
has register addressing that is partitioned into seven bank mode addresses (labeled 00h to 06h) and 27 field
mode addresses (labeled 00h to 1Ah) as shown in Table 3 and Table 4. Bank addresses 00h to 05h are located
in the EEPROM, and bank address 06h is located in the logic (DSP) block. Field addresses 00h to 16h are
located in the EEPROM, and field addresses 17h to 1Ah are located in the logic (DSP) block. See Table 3 and
Table 4 for details.
Table 3. EEPROM Map
BANK
FIELD
MODE
MODE
ADDRESS ADDRESS
(1)
DATA FIELD
FIELD NAME
DESCRIPTION
READ/
WRITE
DEFAULT
0
0000
00000
Sensor ID(43:0)
SENID
Sensor ID
R/W
-
00001
PositionID(1:0)
PSNID
Position ID
R/W
0
0001
00010
TRHS(3:0)
TRHS
Over-pressure comparator threshold
R/W
1101
-
00011
TRDELAY(1:0)
TRDELAY
Over-pressure comparator timer
R/W
10
-
00100
TRHSGAIN(2:0)
TRHSGAIN
Over-pressure comparator gain adjust
R/W
0
0010
00101
Config(3:0)
CONFBPS
Baud rate
R/W
10
0011
00110
TRVOS(16:8)
TRVOSC
Input coarse offset
R/W
TRVOSC[16:8] =
TEMP2[11:3] (1)
-
00111
TRVOS(7:0)
TRVOSF
Input fine offset
R/W
10000000
R/W
0
0
-
01000
TC1OFF(6:0)
TRTCVOS1
Input offset first-order temperature
coefficient
-
01001
TC2OFF(6:0)
TRTCVOS2
Input offset second-order temperature
coefficient
R/W
-
01010
GAIN(8:0)
TRGAIN
Gain adjust
R/W
0
-
01011
TCGAIN(5:0)
TRTCGAIN1
Gain first-order temperature coefficient
R/W
100010
0100
01100
TEMPOUT0(11:0)
TEMP0
Temperature sensor data 1
R/W
0
-
01101
TEMPOUT1(11:0)
TEMP1
Temperature sensor data 2
R/W
VPHS
-
01110
TEMPOUT2(11:0)
TEMP2
Temperature sensor data 3
R/W
0
MTRHS
History of over-pressure comparator
threshold
R
N/A
0101
01111
MTRHS(3:0)
-
10000
MTR DELAY(1:0)
MTRDELAY
History of over-pressure comparator timer
R
N/A
-
10001
MTRHSGAIN(2:0)
MTRHSGAIN
History of over-pressure comparator gain
R
N/A
-
10010
MTR VOS(16:0)
MTRVOSC
History of input coarse offset
R
N/A
-
10011
MTC1OFF(6:0)
MTRTCVOS1
History of input fine offset
R
N/A
R
N/A
-
10100
MTC2OFF(6:0)
MTRTCVOS2
History of offset first order temperature
coefficient
-
10101
MGAIN(8:0)
MTRGAIN
History of offset second order temperature
coefficient
R
N/A
-
10110
MTCGAIN(5:0)
MTRTCGAIN1
History of gain first order temperature
coefficient
R
N/A
EED-1: All units are shipped with EEPROM values shown in "Default" column.
Table 4. Logic (DSP) Map
BANK
FIELD
MODE
MODE
ADDRESS ADDRESS
(1)
10
DATA FIELD
FIELD NAME
DESCRIPTION
READ/
WRITE
DEFAULT
0110
10111
OUTDATA(9:0)
OUTDATA
Sensor pressure data
R
0
-
11000
OUTTEMP(9:0)
OUTTEMP
Sensor temperature data
R
0
-
11001
ADCDAT(13:0)
ADCDAT
Sensor pressure data from ADC
R
0
-
11010
ADCTMP(11:0)
ADCTMP
Sensor temperature data from ADC
R
0
1000
-
DIAG/UART
Diagnostics and UART
W/R
0
(1)
EED-1: All units are shipped with EEPROM values shown in Default column.
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPIC83000-Q1
TPIC83000-Q1
www.ti.com
SLDS171 – NOVEMBER 2009
The TPIC83000 has two primary modes in which it can be configured to communicate with the microprocessor:
Sensor mode and Calibration mode (see Figure 4). In Sensor mode, the microprocessor requests pressure data
from the device that is stored in designated registers of the Logic (DSP) block of the TPIC83000 as well as
requests the device to switch from sensor mode to calibration mode. In Calibration mode, the microprocessor
can request pressure and temperature data (i.e., Data Request mode), read data from the device (i.e.,
Calibration Read mode), write data to the device (i.e., Calibration Write mode), as well as allow the IC to switch
back to Sensor mode from Calibration mode if desired (i.e., Mode Select mode). The data that is read, written, or
requested in Calibration mode is accessed through registers that are located in either the Logic (DSP) or
EEPROM.
The Logic (DSP) block and EEPROM of the TPIC83000 have registers that are accessible through addressing
schemes. The two (2) addressing schemes that are used in the TPIC83000 are called Bank mode and Field
mode addressing. Bank and Field mode addressing are only valid in Calibration mode. Sensor mode is restricted
to only sending 10-bit resolution, pressure data to the microprocessor from the Logic (DSP) block. In other
words, in Sensor mode, the pressure data comes from the same register in the Logic (DSP) block regardless of
whether the device is set for Bank or Field addressing. However, in Calibration mode, the amount of data send
via UART bus is dependent on whether the IC is in Bank or Field mode. For example, looking at the EEPROM
Map in Table 3, if you wanted to know the position ID configured in the device, you would just access address
00001 in Field Mode. However, if the IC was in Bank Mode, to access this same information, you would have
access address 00000 and the microprocessor would simultaneously receive the Sensor ID and Position ID
before the next set of instructions is set over the UART bus.
Mode
Calibration
Bank Mode Addressing
(addresses 00h to 06h)
Sensor
Field Mode Addressing
(Addresses 00h to 1Ah)
Data Request
Data Request
Calibration Write
Calibration Write
Calibration Read
Calibration Read
Mode Select
Mode Select
Pressure Data Only
(OUTDATA Register, 10 bit)
Figure 4. Explanation of Device Modes and Addressing Schemes
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPIC83000-Q1
11
TPIC83000-Q1
SLDS171 – NOVEMBER 2009
www.ti.com
Sensor Mode
In the Sensor Mode, the microprocessor sends a command frame to the TPIC83000 in Sensor mode and the
TPIC83000 responds with a data frame. Note that in sensor mode, the data frame immediately follows the
command frame. The following section explains the command and data frames in detail along with the meaning
and action of each bit in these frames.
7
6
5
4
3
2
1
0
PSNID(1)
PSNID(0)
WORDID
ACOVLD
ACOVIN
DISPSN
ACTMODE
ACSUNT
PSNID[1:0]
Bits 7-6
WORDID
Bit 5
ACOVLD
Bit 4
ACOVIN
Bit 3
DISPSN
Bit 2
ACTMODE
Bit 1
ACSUNT
Bit 0
Position ID of device on UART bus. Each device process information for one sensor. Four sensors can be
sensed on the UART bus. Position settings are defined in the EEPROM map.
00
Position 0
01
Position 1
10
Position 2
11
Position 3
Frame ID of command byte. Sensor mode has only one command frame. Therefore, for sensor mode, always
= 0.
Acknowledge bit for DIAG1
0
Do not reset DIAG1
1
Reset DIAG1
Acknowledge bit for DIAG0
0
Do not reset DIAG0
1
Reset DIAG0
Enable or disable position ID match
Recognizes device-specific commands vs global command. Compares position ID of command frame with
EEPROM position ID (in device). The command frame position ID is specified in bits 7 and 6 of each frame.
The EEPROM position ID is stored inthe PSNID field in the EEPROM map.
0
Decode command frame only if position IDs match
1
Indicates global command. All devices decode command frame.
Sets device to sensor or calibration mode after current command is completed.
0
Sensor mode
1
Calibration mode
Sets device to field addressing mode or bank addressing mode. Can be accessed only in calibration mode.
0
Bank addressing mode
1
Field addressing mode
Figure 5. Sensor Mode Command Frame Description
12
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPIC83000-Q1
TPIC83000-Q1
www.ti.com
SLDS171 – NOVEMBER 2009
7
6
5
4
3
2
1
0
PSNID(1)
ACOVLD
PSNID(0)
ACOVIN
WORDID
WORDID
OUTDATA(9)
OUTDATA(4)
OUTDATA(8)
OUTDATA(3)
OUTDATA(7)
OUTDATA(2)
OUTDATA(6)
OUTDATA(1)
OUTDATA(5)
OUTDATA(0)
First Frame
PSNID[1:0]
Bits 7-6
WORDID
Bit 5
OUTDATA(9:5)
Bits 4-0
Second Frame
ACOVLD
Bit 7
ACOVIN
Bit 6
WORDID
Bit 5
OUTDATA(4:0)
Bits 4-0
Position ID of device on UART bus. Each device process information for one sensor. Four sensors can be
sensed on the UART bus. Position settings are defined in the EEPROM map.
00
Position 0
01
Position 1
10
Position 2
11
Position 3
Frame ID of command byte. Sensor mode has only one command frame. Therefore, for sensor mode,
always = 0.
Top five MSB of pressure data
In sensor mode, data is processed with 10-bit resolution. The data is sent on the UART bus in 5-bit
increments until all data is transmitted. For example, if the data is 0100100011, the first five bits sent are
01001 and the second five bits sent are 00011.
Detection of over-pressure condition and CRC or input voltage error
0
No error detected
1
Error detected
Detection of CRC or input voltage error across SIP and SIN pins
0
No error detected
1
Error detected
Frame ID of command byte. Sensor mode has only one command frame. Therefore, for sensor mode,
always = 0.
Bottom five bits of pressure data
Figure 6. Sensor Mode Data Frame Description
Table 5. Sensor Mode Command Frame Profile (RX)
DATA NAME
FRAME NO.
B7 (MSB)
B6
B5
B4
B3
B2
B1
B0 (LSB)
TX request
1
PSNID(1)
PSNID(0)
WORD ID
ACOVLD
ACOVIN
DISPSN
ACTMODE
ACSUNT
Table 6. Sensor Mode Data Frame Profile (TX)
DATA NAME
FRAME NO.
B7 (MSB)
B6
B5
B4
B3
B2
B1
B0 (LSB)
1
PSNID(1)
PSNID(0)
ACTMODE
OUTDATA(9)
OUTDATA(8)
OUTDATA(7)
OUTDATA(6)
OUTDATA(5)
2
DIAG(1)
DIAG(0)
ACSUNT
OUTDATA(4)
OUTDATA(3)
OUTDATA(2)
OUTDATA(1)
OUTDATA(0)
Sensor OUT+ DIAG
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPIC83000-Q1
13
TPIC83000-Q1
SLDS171 – NOVEMBER 2009
www.ti.com
Table 7. Bit Descriptions for Sensor Mode Command and Data Frames
CONTROL BIT
VALUE
DISPSN
ACTMODE (left in Value)
WORD ID (right in Value)
ACSUNT
Command ID
WE
DIAG FLAG
0
Position ID matching is enabled and IC respond only when the ID is matched
(default)
1
Ignore position ID
0
Sensor mode(Default)
1
Invalid command
10
Calibration mode
11
Invalid command
0
Band access (default)
1
Field access
00
Data TX request (Default)
01
Write Request
10
Read request
11
Mode selection request
0
EEPROM Write disabled (Default)
1
EEPROM Write Enabled
NORMAL
FAULT/CLEAR
DIAG(1)
0
1
Over-pressure fault condition detected (DIAG1 = 1)
DIAG(0)
0
1
CRC or input voltage error fault detected (DIAG0 = 1)
ACOVLD
0
1
Clear DIAG1 bit (ACOVLD = 1)
ACOVIN
0
1
Clear DIAG0 bit (ACOVIN = 1) (1)
POSITION ID
VALUE
PSNID(1:0)
(1)
00
ID:0
01
ID:1
10
ID:2
11
ID:3
Default
If DIAG0 is high (i.e., DIAG0 = 1) because of CRC error, DIAG0 cannot be cleared by ACOVIN.
Table 8. Overview of Self-Diagnostic and UART Errors
Function
Self diagnostics
UART error
(1)
14
DIAG
Register item
Default
Condition
Clear
DIAG1
Over-pressure
0
Over-pressure condition
ACOVLD = 1 or PUC
DIAG0
CRC Error
0
CRC error exists
WE = 0 or PUC
DIAG0
Input fault
(1)
Input voltage error exists
ACOVIN = 1 or PUC
—
PROG_OK
0
Programming voltage = 12.5 V, 15 ms
WE = 0
Frame error
0
Framing error exists
ACVOIN = 1
Over run error
0
Over run error exists
ACVOIN = 1
Parity error
0
Parity error exists
ACVOIN = 1
DIAG0 may be set to one depending upon Vcc / SIN / SIP power up condition.
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPIC83000-Q1
TPIC83000-Q1
www.ti.com
SLDS171 – NOVEMBER 2009
Calibration Mode
In calibration mode, microprocessor transmits data to the TPIC83000 in two parts: command frames and data
frames. The data frame immediately follows the command frame. However, unlike Sensor mode, a complete
instruction in Calibration mode needs two command frames and at least two data frames. Calibration mode
consists of four "sub-modes" called Calibration Write, Data Request, Calibration Read, and Mode Select modes.
Furthermore, access to information in the EEPROM and Logic (DSP) registers is dependent upon whether the
device is in Bank or Field addressing mode. Table 9 summarizes the four Calibration Mode command frames.
The following section explains the command and data frames in detail along with the meaning and action of each
bit in these frames.
Table 9. Calibration Mode Profile of Command Frames (1)
Microprocessor→IC
DATA NAME
Data Request
Calibration Read
Calibration Mode Select
Calibration Write
(1)
(2)
(3)
(4)
(5)
(6)
PSNID
FLAG
MODE TYPE
(2) (3) (4) (5)
POSITION ID
IGNORE
DIAG ACKNOWLEDGE
FRAME
NO.
B7 (MSB)
B6
B5
1
PSNID(1)
PSNID(0)
1
0
0
DISPSN
ACVOLD
ACVOIN
2
PSNID(1)
PSNID(0)
0
NU
RQADCTMP
RQADCDAT
RQTEMP
RQDATA
1
PSNID(1)
PSNID(0)
1
1
0
DISPSN
NU
NU
2
PSNID(1)
PSNID(0)
0
1
PSNID(1)
PSNID(0)
1
1
1
DISPSN
NU
NU
2
PSNID(1)
PSNID(0)
0
NU
NU
ACSUNT (6)
ACTMODE (6)
WE
1
PSNID(1)
PSNID(0)
1
0
1
DISPSN
NU
NU
2
PSNID(1)
PSNID(0)
0
B4
B3
B2
B1
B0 (LSB)
Address (5 bit)
Address (5 bit)
The request should be ignored when invalid address is received
Baud rate should be updated after all data is received
For mode selection request, if WE = 1 and (ACSUNT and ACTMODE) = "old value" , there is no response from IC. Otherwise IC
respond with "old ACSUNT and ACTMODE and WE" data then change mode and/or set WE = 1.
RQADCTMP: Request 12-bit temperature data
RQADCDAT: Request 14-bit pressure data
RQTEMP: Request 10-bit temperature data
RQDATA: Request 10-bit pressure data
NU = not used
All modes should be updated after all data is received.
The command frame profiles are the same in both field and bank addressing modes.
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPIC83000-Q1
15
TPIC83000-Q1
SLDS171 – NOVEMBER 2009
www.ti.com
Calibration Mode - Data Request
Data Request Command Frames
7
6
5
PSNID(1)
PSNID(1)
PSNID(0)
PSNID(0)
WORDID
WORDID
First Frame
PSNID[1:0]
Bits 7-6
WORDID
MODETYPE
Bit 5
Bits 4-3
DISPSN
Bit 2
ACOVLD
Bit 1
ACOVIN
Bit 0
16
4
3
MODETYPE
NU
RQADCTMP
2
1
0
DISPSN
RQADCDAT
ACOVLD
RQTEMP
ACOVIN
RQDATA
Position ID of device on UART bus. Each device process information for one sensor. Four sensors can be
sensed on the UART bus. Position settings are defined in the EEPROM map.
00
Position 0
01
Position 1
10
Position 2
11
Position 3
Frame ID of byte. 1 indicates frame 1 of 2.
Select mode type within calibration mode
00
Data request
01
Calibration write
10
Calibration read
11
Mode select
Disable or enable position ID matching
0
Decode command only if position IDs match
1
Indicates global command. All devices decode command frame.
Acknowledge bit for DIAG1. Can be set to 1 only in Data Request mode (when bits 4:3 are 00). Must be set to
0 for the other mode types.
0
Do not reset DIAG1
1
Reset DIAG1
Acknowledge bit for DIAG0. Can be set to 1 only in Data Request mode (when bits 4:3 are 00). Must be set to
0 for the other mode types.
0
Do not reset DIAG0
1
Reset DIAG0
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPIC83000-Q1
TPIC83000-Q1
www.ti.com
SLDS171 – NOVEMBER 2009
Second Frame
PSNID[1:0]
Bits 7-6
WORDID
NU
RQADCTMP
Bit 5
Bit 4
Bit 3
RQADCDAT
Bit 2
RQTEMP
Bit 1
RQDATA
Bit 0
Position ID of device on UART bus. Each device process information for one sensor. Four sensors can be
sensed on the UART bus. Position settings are defined in the EEPROM map.
00
Position 0
01
Position 1
10
Position 2
11
Position 3
Frame ID of byte. 0 indicates frame 2 of 2.
Not used. Set to 0.
Microcontroller request for 12-bit temperature data from device.
0
Do not send data in following data frames
1
Send data in following data frames
Microcontroller request for 14-bit pressure data from device.
0
Do not send data in following data frames
1
Send data in following data frames
Microcontroller request for 10-bit temperature data from device.
0
Do not send data in following data frames
1
Send data in following data frames
Microcontroller request for 10-bit pressure data from device.
0
Do not send data in following data frames
1
Send data in following data frames
Figure 7. Data Request Command Frames
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPIC83000-Q1
17
TPIC83000-Q1
SLDS171 – NOVEMBER 2009
www.ti.com
Data Request Data Frames
7
6
5
4
3
2
1
0
D13
D5
D12
D4
D11
D3
D10
D2
D9
D1
D8
D0
D7
DIAG1
D6
DIAG0
First Frame
D[13:6]
Bits 7-0
Data length ranges from 10 to 14 bits. Data is sent starting with D13, and any unused trailing bits are set to 0.
Data requested in the preceding command frame is sent in the order shown below, with the data request of
highest priority is sent in the first two data frames, and any lower-priority requests sent in order in following
two-frame sets.
Priority
1
2
3
4
Second Frame
D[5:0]
Bits 7-2
DIAG1
Bit 1
DIAG0
Bit 0
Description
Pressure data in 10-bit format
Temperature data in 10-bit format
Pressure data in 14-bit format
Temperature data in 12-bit format
See D[13:6] description.
Over-pressure fault condition
0
Fault not detected
1
Fault detected
CRC or input voltage error fault
0
Fault not detected
1
Fault detected
Figure 8. Data Request Data Frames
Table 10. Profile of Data Request Data Frames (Field Mode Addressing)
FIELD NAME
(BANK
ADDRESS)
FIELD
MODE
ADDRESS
B5
B7 (MSB)
Tx RQ
Tx RQ
B1
B0 (LSB)
B1
B0
OUT
DATA(9)
OUT
DATA(8)
OUT
DATA(7)
OUT
DATA(6)
OUT
DATA(5)
OUT
DATA(4)
OUT
DATA(3)
OUT
DATA(2)
2
OUT
DATA(1)
OUT
DATA(0)
NU
NU
NU
NU
DIAG(1)
DIAG(0)
1
OUT
TEMP(9)
OUT
TEMP(8)
OUT
TEMP(7)
OUT
TEMP(6)
OUT
TEMP(5)
OUT
TEMP(4)
OUT
TEMP(3)
OUT
TEMP(2)
2
OUT
TEMP(1)
OUT
TEMP(0)
NU
NU
NU
NU
DIAG(1)
DIAG(0)
ADCDAT
(9:0)
Tx RQ
Tx RQ
1
ADCDAT(13)
ADCDAT(12)
ADCDAT(11)
ADCDAT(10)
ADCDAT(9)
ADCDAT(8)
ADCDAT(7)
Tx RQ
2
ADCDAT(5)
ADCDAT(4)
ADCDAT(3)
ADCDAT(2)
ADCDAT(1)
ADCDAT(0)
DIAG(1)
DIAG(0)
Tx RQ
1
ADC
TMP(11)
ADC
TMP(10)
ADCTMP(9)
ADCTMP(8)
ADCTMP(7)
ADCTMP(6)
ADCTMP(5)
ADCTMP(4)
2
ADCTMP(3)
ADCTMP(2)
ADCTMP(1)
ADCTMP(0)
NU
NU
DIAG(1)
DIAG(0)
ADC pressure out
ADC temperature
out
B2
1
(9:0)
+(1:0)
Temperature out
B3
DATA 8 BIT)
Tx RQ
Sensor + DIAG
B4
B6
(13:0)
(11:0)
Tx RQ
Table 11. Profile of Data Request Data Frames (Bank Mode Addressing)
FIELD NAME
(BANK
ADDRESS)
FIELD
MODE
ADDRESS
LENGTH
FRAME
NO.
TX RQ
Sensor OUT +
Diag
TX RQ
Temperature out
B5
B4
B3
B2
B1
B0 (LSB)
DATA
OUT
DATA(9)
OUT
DATA(8)
OUT
DATA(7)
OUT
DATA(6)
OUT
DATA(5)
OUT
DATA(4)
OUT
DATA(3)
OUT
DATA(2)
2
OUT
DATA(1)
OUT
DATA(0)
NU
NU
NU
NU
DIAG(1)
DIAG(0)
1
OUT
TEMP(9)
OUT
TEMP(8)
OUT TEM(7)
OUT
TEMP(6)
OUT
TEMP(5)
OUT
TEMP(4)
OUT
TEMP(3)
OUT
TEMP(2)
2
OUT
TEMP(1)
OUT
TEMP(0)
NU
NU
NU
NU
DIAG(1)
DIAG(0)
1
ADCDAT(13)
ADCDAT(12)
ADCDAT(11)
ADCDAT(10)
ADCDAT(9)
ADCDAT(8)
ADCDAT(7)
ADCDAT(6)
2
ADCDAT(5)
ADCDAT(4)
ADCDAT(3)
ADCDAT(2)
ADCDAT(1)
ADCDAT(0)
DIAG(1)
DIAG(0)
(9:0)
TX RQ
TX RQ
ADC pressure out
(13:0)
TX RQ
18
B6
1
(9:0)
+ (1:0)
TX RQ
B7 (MSB)
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPIC83000-Q1
TPIC83000-Q1
www.ti.com
SLDS171 – NOVEMBER 2009
Table 11. Profile of Data Request Data Frames (Bank Mode Addressing) (continued)
FIELD NAME
(BANK
ADDRESS)
ADC temperature
out
FIELD
MODE
ADDRESS
LENGTH
TX RQ
FRAME
NO.
B6
B5
B4
B3
B2
B1
B0 (LSB)
DATA
1
ADC
TMP(11)
ADC
TMP(10)
ADC TMP(9)
ADC TMP(8)
ADC TMP(7)
ADC TMP(6)
ADC TMP(5)
ADC TMP(4)
2
ADC TMP(3)
ADC TMP(2)
ADC TMP(1)
ADC TMP(0)
NU
NU
DIAG(1)
DIAG(0)
(11:0)
TX RQ
B7 (MSB)
Calibration Mode – Data Write
Calibration Write Command Frames
7
6
5
PSNID(1)
PSNID(1)
PSNID(0)
PSNID(0)
WORDID
WORDID
First Frame
PSNID[1:0]
Bits 7-6
WORDID
MODETYPE
Bit 5
Bits 4-3
DISPSN
Bit 2
Reserved
Bits 1-0
Second Frame
PSNID[1:0]
Bits 7-6
WORDID
ADDR[4:0]
Bit 5
Bits 4-0
4
3
MODETYPE
ADDR4
ADDR3
2
1
0
DISPSN
ADDR2
0
ADDR1
0
ADDR0
Position ID of device on UART bus. Each device process information for one sensor. Four sensors can be
sensed on the UART bus. Position settings are defined in the EEPROM map.
00
Position 0
01
Position 1
10
Position 2
11
Position 3
Frame ID of byte. 1 indicates frame 1 of 2.
Select mode type within calibration mode
00
Data request
01
Calibration write
10
Calibration read
11
Mode select
Disable or enable position ID matching
0
Decode command only if position IDs match
1
Indicates global command. All devices decode command frame.
Must be set to 0.
Position ID of device on UART bus. Each device process information for one sensor. Four sensors can be
sensed on the UART bus. Position settings are defined in the EEPROM map.
00
Position 0
01
Position 1
10
Position 2
11
Position 3
Frame ID of byte. 0 indicates frame 2 of 2.
Address for bank or field mode addressing. See Table 3 for list of valid addresses.
Figure 9. Calibration Write Command Frames
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPIC83000-Q1
19
TPIC83000-Q1
SLDS171 – NOVEMBER 2009
www.ti.com
Calibration Write Data Frames
7
6
5
4
3
2
1
0
PSNID(1)
PSNID(0)
NU
D43
D42
D41
D40
D39
D2
D1
D0
0
•
•
•
PSNID(1)
PSNID(0)
NU
D3
Frames 3 through (n – 1) (where n = 5 to 11)
PSNID[1:0]
Bits 7-6
Position ID of device on UART bus. Each device process information for one sensor. Four sensors can be
sensed on the UART bus. Position settings are defined in the EEPROM map.
00
Position 0
01
Position 1
10
Position 2
11
Position 3
NU
Bit 5
Not used. Set to 0.
Dx
Bits 4-0
Top five bits of bank or field data. See Table 3 and Table 4 for valid addresses and types of data.
Frame n (where n = 4 to 11)
PSNID[1:0]
Bits 7-6
Position ID of device on UART bus. Each device process information for one sensor. Four sensors can be
sensed on the UART bus. Position settings are defined in the EEPROM map.
00
Position 0
01
Position 1
10
Position 2
11
Position 3
NU
Bit 5
Not used. Set to 0.
Dx
Bits 4-0
Next or last five bits of bank or field data. See Table 3 and Table 4 for valid addresses and types of data. Data
length for each calibration write frame is 5 bits. Maximum number of frames that can be written from one
command is nine; therefore, maximum data length is 44 bits.
Figure 10. Calibration Write Data Frames
20
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPIC83000-Q1
TPIC83000-Q1
www.ti.com
SLDS171 – NOVEMBER 2009
Table 12. Profile of Calibration Write Data Frames (Field Addressing Mode)
DATA NAME
Data
FRAME NO.
B7 (MSB)
B6
B5
3
PSNID(1)
PSNID(0)
0
B4
B3
B2
B1
B0 (LSB)
Data (5 bit)
3
SENID(43)
SENID(42)
SENID(41)
SENID(40)
SENID(39)
4
SENID(38)
SENID(37)
SENID(36)
SENID(35)
SENID(34)
5
SENID(33)
SENID(32)
SENID(31)
SENID(30)
SENID(29)
6
SENID(28)
SENID(27)
SENID(26)
SENID(25)
SENID(24)
7
SENID(23)
SENID(22)
SENID(21)
SENID(20)
SENID(19)
8
SENID(18)
SENID(17)
SENID(16)
SENID(15)
SENID(14)
9
SENID(13)
SENID(12)
SENID(11)
SENID(10)
SENID(9)
10
SENID(8)
SENID(7)
SENID(6)
SENID(5)
SENID(4)
11
SENID(3)
SENID(2)
SENID(1)
SENID(0)
NU
Position ID
3
PSNID(1)
PSNID(0)
NU
NU
NU
OP threshold
3
TRHS(3)
TRHS(2)
TRHS(1)
TRHS(0)
NU
OP timer
3
TRDELAY(1)
TRDELAY(0)
NU
NU
NU
OP gain
3
TRHSGAIN(2)
TRHSGAIN(1)
TRHSGAIN(0)
NU
NU
Baud rate
3
CONF BPS(3)
CONF BPS(2)
CONF BPS(1)
CONF BPS(0)
NU
3
TRV OSC(16)
TRV OSC(15)
TRV OSC(14)
TRV OSC(13)
TRV OSC(12)
4
TRV OSC(11)
TRV OSC(10)
TRV OSC(9)
TRV OSC(8)
NU
3
TRVOSF(7)
TRVOSF(6)
TRVOSF(5)
TRVOSF(4)
TRVOSF(3)
Sensor ID
Input coarse offset
Input fine offset
4
TRVOSF(2)
TRVOSF(1)
TRVOSF(0)
NU
NU
Input offset first order
temperature coefficient
3
PSNID(1)
PSNID(0)
0
TRTC VOS1(6)
TRTC VOS1(5)
TRTC VOS1(4)
TRTC VOS1(3)
TRTC VOS1(2)
4
TRTC VOS1(1)
TRTC VOS1(0)
NU
NU
NU
Input offset second order
temperature coefficient
3
TRTC VOS2(6)
TRTC VOS2(5)
TRTC VOS2(4)
TRTC VOS2(3)
TRTC VOS2(2)
4
TRTC VOS2(1)
TRTC VOS2(0)
NU
NU
NU
3
TRGAIN(8)
TRGAIN(7)
TRGAIN(6)
TRGAIN(5)
TRGAIN(4)
GAIN adjust
Gain first order
temperature coefficient
Temperature sensor out 1
Temperature sensor out 2
Temperature sensor out 3
4
TRGAIN(3)
TRGAIN(2)
TRGAIN(1)
TRGAIN(0)
NU
3
TRTC GAIN1(5)
TRTC GAIN1(4)
TRTC GAIN1(3)
TRTC GAIN1(2)
TRTC GAIN1(1)
4
TRTC GAIN1(0)
NU
NU
NU
NU
3
TEMP0(11)
TEMP0(10)
TEMP0(9)
TEMP0(8)
TEMP0(7)
4
TEMP0(6)
TEMP0(5)
TEMP0(4)
TEMP0(3)
TEMP0(2)
5
TEMP0(1)
TEMP0(0)
NU
NU
NU
3
TEMP1(11)
TEMP1(10)
TEMP1(9)
TEMP1(8)
TEMP1(7)
4
TEMP1(6)
TEMP1(5)
TEMP1(4)
TEMP1(3)
TEMP1(2)
5
TEMP1(1)
TEMP1(0)
NU
NU
NU
3
TEMP2(11)
TEMP2(10)
TEMP2(9)
TEMP2(8)
TEMP2(7)
4
TEMP2(6)
TEMP2(5)
TEMP2(4)
TEMP2(3)
TEMP2(2)
5
TEMP2(1)
TEMP2(0)
NU
NU
NU
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPIC83000-Q1
21
TPIC83000-Q1
SLDS171 – NOVEMBER 2009
www.ti.com
Table 13. Profile of Calibration Write Data Frames (Bank Addressing Mode)
DATA NAME
Data (Bank Address)
FRAME NO.
3
B7 (MSB)
B6
B5
PSNID(1)
PSNID(0)
0
B4
B3
B2
B1
B0 (LSB)
data 5bit
3
SENID(43)
SENID(42)
SENID(41)
SENID(40)
SENID(39)
4
SENID(38)
SENID(37)
SENID(36)
SENID(35)
SENID(34)
5
SENID(33)
SENID(32)
SENID(31)
SENID(30)
SENID(29)
6
SENID(28)
SENID(27)
SENID(26)
SENID(25)
SENID(24)
7
SENID(23)
SENID(22)
SENID(21)
SENID(20)
SENID(19)
8
SENID(18)
SENID(17)
SENID(16)
SENID(15)
SENID(14)
9
SENID(13)
SENID(12)
SENID(11)
SENID(10)
SENID(9)
10
SENID(8)
SENID(7)
SENID(6)
SENID(5)
SENID(4)
11
SENID(3)
SENID(2)
SENID(1)
SENID(0)
NU
PSN ID(0)
12
PSNID(1)
PSNID(0)
NU
NU
NU
OP threshold (1)
3
TRHS(3)
TRHS(2)
TRHS(1)
TRHS(0)
NU
OP timer (1)
4
TRDELAY(1)
TRDELAY(0)
NU
NU
NU
OP gain (1)
5
TRHSGAIN(2)
TRHSGAIN(1)
TRHSGAIN(0)
NU
NU
Baud rate (2)
3
CONF BPS(3)
CONF BPS(2)
CONF BPS(1)
CONF BPS(0)
NU
3
TRV OSC(16)
TRV OSC(15)
TRV OSC(14)
TRV OSC(13)
TRV OSC(12)
4
TRV OSC(11)
TRV OSC(10)
TRV OSC(9)
TRV OSC(8)
NU
5
TRVOSF(7)
TRVOSF(6)
TRVOSF(5)
TRVOSF(4)
TRVOSF(3)
Sensor ID (0)
PSNID(1)
PSNID(0)
0
Input coarse offset (3)
Input fine offset (3)
6
TRVOSF(2)
TRVOSF(1)
TRVOSF(0)
NU
NU
Input offset first order
temperature coefficient (3)
7
TRTC VOS1(6)
TRTC VOS1(5)
TRTC VOS1(4)
TRTC VOS1(3)
TRTC VOS1(2)
8
TRTC VOS1(1)
TRTC VOS1(0)
NU
NU
NU
Input offset second order
temperature coefficient (3)
9
TRTC VOS2(6)
TRTC VOS2(5)
TRTC VOS2(4)
TRTC VOS2(3)
TRTC VOS2(2)
TRTC VOS2(1)
TRTC VOS2(0)
NU
NU
NU
TRGAIN(8)
TRGAIN(7)
TRGAIN(6)
TRGAIN(5)
TRGAIN(4)
10
11
PSNID(1)
PSNID(0)
0
Gain adjust (3)
Gain first order
temperature coefficient (3)
Temperature sensor out 1
(4)
Temperature sensor out 2
(4)
Temperature sensor out 3
(4)
12
TRGAIN(3)
TRGAIN(2)
TRGAIN(1)
TRGAIN(0)
NU
13
TRTC GAIN1(5)
TRTC GAIN1(4)
TRTC GAIN1(3)
TRTC GAIN1(2)
TRTC GAIN1(1)
14
TRTC GAIN1(0)
NU
NU
NU
NU
3
TEMP0(11)
TEMP0(10)
TEMP0(9)
TEMP0(8)
TEMP0(7)
4
TEMP0(6)
TEMP0(5)
TEMP0(4)
TEMP0(3)
TEMP0(2)
5
TEMP0(1)
TEMP0(0)
NU
NU
NU
6
TEMP1(11)
TEMP1(10)
TEMP1(9)
TEMP1(8)
TEMP1(7)
7
TEMP1(6)
TEMP1(5)
TEMP1(4)
TEMP1(3)
TEMP1(2)
8
TEMP1(1)
TEMP1(0)
NU
NU
NU
9
TEMP2(11)
TEMP2(10)
TEMP2(9)
TEMP2(8)
TEMP2(7)
10
TEMP2(6)
TEMP2(5)
TEMP2(4)
TEMP2(3)
TEMP2(2)
11
TEMP2(1)
TEMP2(0)
NU
NU
NU
3
0
0
0
0
0
4
0
0
0
0
0
5
0
0
0
0
Fastdis
6
Stbit
EO
Pdis
0
0
DIAG/UART
PSNID(1)
PSNID(0)
0
Table 14. DIAG/UART Register (Bank Address = 8)
ITEM
Pdis
Parity disable
1 = Disable
0 = Enable
EO
Parity even or odd
1 = Odd
0 = Even
Stbit
Stop bit length
1 = 2 bit
0 = 1 bit
Fastdis
22
DESCRIPTION
Test mode baud rate
1 = Normal
0 = 153 kHz
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPIC83000-Q1
TPIC83000-Q1
www.ti.com
SLDS171 – NOVEMBER 2009
Table 15. TPIC83000 Response and Mode Update Timing for Calibration Write Mode
ITEM
ID / Calibration / Temperature
History
Mode / Setting
RESPONSE
SETTING / MODE UPDATE
TIMING
SENID
NEW VALUE
After IC's response
PSNID
Current value
WE = 1
TRHS
New value
SYMBOL
TRDELAY
New value
TRHSGAIN
New value
CONFBPS
New value
TRVOSC
New value
TRVOSF
New value
TRTCVOS1
New value
TRTCVOS2
New value
TRGAIN
New value
TRTCGAIN1
New value
TEMP0
New value
TEMP1
New value
TEMP2
New value
MTRHS
N/A
MTRDELAY
N/A
MTRHSGAIN
N/A
MTRVOSC
N/A
MTRVOSF
N/A
MTRTCVOS1
N/A
MTRTCVOS2
N/A
MTRGAIN
N/A
MTRTCGAIN1
N/A
ACTMODE
Current value
ACSUNT
Current value
WE
Current value
After IC's response
WE = 1
After IC's response
(No response for WE = 1)
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPIC83000-Q1
23
TPIC83000-Q1
SLDS171 – NOVEMBER 2009
www.ti.com
Calibration Mode – Calibration Read
Calibration Read Command Frames
7
6
5
PSNID(1)
PSNID(1)
PSNID(0)
PSNID(0)
WORDID
WORDID
First Frame
PSNID[1:0]
Bits 7-6
WORDID
MODETYPE
Bit 5
Bits 4-3
DISPSN
Bit 2
Reserved
Bits 1-0
Second Frame
PSNID[1:0]
Bits 7-6
WORDID
ADDR[4:0]
Bit 5
Bits 4-0
4
3
MODETYPE
ADDR4
ADDR3
2
1
DISPSN
ADDR2
0
Reserved
ADDR1
ADDR0
Position ID of device on UART bus. Each device process information for one sensor. Four sensors can be
sensed on the UART bus. Position settings are defined in the EEPROM map.
00
Position 0
01
Position 1
10
Position 2
11
Position 3
Frame ID of byte. 1 indicates frame 1 of 2.
Select mode type within calibration mode
00
Data request
01
Calibration write
10
Calibration read
11
Mode select
Disable or enable position ID matching
0
Decode command only if position IDs match
1
Indicates global command. All devices decode command frame.
Must be set to 0.
Position ID of device on UART bus. Each device process information for one sensor. Four sensors can be
sensed on the UART bus. Position settings are defined in the EEPROM map.
00
Position 0
01
Position 1
10
Position 2
11
Position 3
Frame ID of byte. 0 indicates frame 2 of 2.
Address for bank or field mode addressing. See Table 3 for list of valid addresses.
Figure 11. Calibration Read Command Frames
Table 16. Data Format Actual Values for Data Request Mode
ITEM
SYMBOL
DATA
LENGTH
OUTDATA
10
NOTE/CONDITION
Input = -2.275 mV, 0 mV, 4.095 mV
Pressure data
Pressure ADC data
Temperature data
Temperature ADC data
24
ADCDAT
OUTTEMP
ADCTMP
14
10
12
Gain = nominal
BINARY VALUE
DECIMAL VALUE
11 1111 1111
1023
01 0110 1101
365
00 0000 0000
0
Input = -2.275 mV, 0 mV, 4.095 mV
00 1111 1011 1010
4026
Gain = nominal
00 0000 0000 0000
0
Twos compliment
11 0111 0100 0100
-2236
TA = 85°C
01 1000 1100
TA = 25°C
00 0000 0000
0
TA = -40°C
10 0101 0011
-429
TA = 85°C
0110 0011 0001
1585
TA = 25°C
0000 0000 0000
0
TA = -40°C
1001 0100 1011
-1717
Submit Documentation Feedback
396
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPIC83000-Q1
TPIC83000-Q1
www.ti.com
SLDS171 – NOVEMBER 2009
Calibration Read Data Frames
7
6
5
4
3
2
1
0
D43
D42
D41
D40
D39
D38
D37
D36
NU
NU
NU
NU
•
•
•
D3
First Frame
Dx
D2
D1
D0
Bits 7-0
Microcontroller reads data from the designated address in the device (from EEPROM). See Table 3 for list of
valid addresses.
Second through (n – 1) Frame (where n = 2 to 6)
Dx
Bits 7-0
Microcontroller reads data from the designated address in the device (from EEPROM). The number of frames
sent depends on the size of the data.
Frame n (where n = 2 to 6)
Dx
Bits 7-4
Microcontroller reads data from the designated address in the device (from EEPROM).
NU
Bits 3-0
Not used. Set to 0.
Figure 12. Calibration Read Data Frames
Table 17. Profile of Calibration Read Data Frames (Field Mode Addressing)
FIELD NAME
(BANK ADDRESS)
Sensor ID
FIELD
MODE
ADDRESS
0000
LENGTH
FRAME
NO.
B7 (MSB)
B6
B5
B4
B3
B2
B1
B0 (LSB)
DATA
1
SENID(43)
SENID(42)
SENID(41)
SENID(40)
SENID(39)
SENID(38)
SENID(37)
SENID(36)
2
SENID(35)
SENID(34)
SENID(33)
SENID(32)
SENID(31)
SENID(30)
SENID(29)
SENID(28)
3
SENID(27)
SENID(26)
SENID(25)
SENID(24)
SENID(23)
SENID(22)
SENID(21)
SENID(20)
4
SENID(19)
SENID(18)
SENID(17)
SENID(16)
SENID(15)
SENID(14)
SENID(13)
SENID(12)
5
SENID(11)
SENID(10)
SENID(9)
SENID(8)
SENID(7)
SENID(6)
SENID(5)
SENID(4)
6
SENID(3)
SENID(2)
SENID(1)
SENID(0)
NU
NU
NU
NU
(43:0)
Position ID
0001
(1:0)
1
PSNID(1)
PSNID(0)
NU
NU
NU
NU
NU
NU
OP threshold
0010
(3:0)
1
TRHS(3)
TRHS(2)
TRHS(1)
TRHS(0)
NU
NU
NU
NU
OP timer
0011
(1:0)
1
TRDELAY(1)
TRDELAY(0)
NU
NU
NU
NU
NU
NU
1
TRHSGAIN(
2)
TRHSGAIN(
1)
TRHSGAIN(
0)
NU
NU
NU
NU
NU
1
CONF
BPS(3)
CONF
BPS(2)
CONF
BPS(1)
CONF
BPS(0)
NU
NU
NU
NU
1
TRV
OSC(16)
TRV
OSC(15)
TRV
OSC(14)
TRV
OSC(13)
TRV
OSC(12)
TRV
OSC(11)
TRV
OSC(10)
TRV OSC(9)
2
TRVOSC
NU
NU
NU
NU
NU
NU
NU
OP gain
0100
(2:0)
Baud rate
0101
(3:0)
Input Coarse offset
0110
(16:8)
Input fine offset
0111
(7:0)
1
TRVOSF(7)
TRVOSF(6)
TRVOSF(5)
TRVOSF(4)
TRVOSF(3)
TRVOSF(2)
TRVOSF(1)
TRVOSF()
Input offset first
order temperature
coefficient
1000
(6:0)
1
TRTC
VOS1(6)
TRTCVOS1
TRTC
VOS1(4)
TRTC
VOS1(3)
TRTC
VOS1(2)
TRTC
VOS1(1)
TRTC
VOS1(0)
NU
Input offset second
order temperature
coefficient
1001
(6:0)
1
TRTC
VOS2(6)
TRTC
VOS2(5)
TRTC
VOS2(4)
TRTC
VOS2(3)
TRTC
VOS2(2)
TRTC
VOS2(1)
TRTC
VOS2(0)
NU
1
TRGAIN(8)
TRGAIN(7)
TRGAIN(6)
TRGAIN(5)
TRGAIN(4)
TRGAIN(3)
TRGAIN(2)
TRGAIN(1)
Gain adjust
1010
(8:0)
2
TRGAIN(0)
NU
NU
NU
NU
NU
NU
NU
1
TRTC
GAIN1(5)
TRTC
GAIN1(4)
TRTC
GAIN1(3)
TRTC
GAIN1(2)
TRTC
GAIN1(1)
TRTC
GAIN1(0)
NU
NU
1
TEMP0(11)
TEMP0(10)
TEMP0(9)
TEMP0(8)
TEMP0(7)
TEMP0(6)
TEMP0(5)
TEMP0(4)
2
TEMP0(3)
TEMP0(2)
TEMP0(1)
TEMP0(0)
NU
NU
NU
NU
1
TEMP1(11)
TEMP1(10)
TEMP1(9)
TEMP1(8)
TEMP1(7)
TEMP1(6)
TEMP1(5)
TEMP1(4)
Gain first order
temperature
coefficient
1011
(5:0)
Temperature sensor
OUT 1
1100
(11:0)
Temperature sensor
OUT 2
1101
(11:0)
Temperature sensor
OUT 3
1110
(11:0)
History of OP
threshold
1111
(3:0)
2
TEMP1(3)
TEMP1(2)
TEMP1(1)
TEMP1(0)
NU
NU
NU
NU
1
TEMP2(11)
TEMP2(10)
TEMP2(9)
TEMP2(8)
TEMP2(7)
TEMP2(6)
TEMP2(5)
TEMP2(4)
2
TEMP2(3)
TEMP2(2)
TEMP2(1)
TEMP2(0)
NU
NU
NU
NU
1
MTRHS(3)
MTRHS(2)
MTRHS(1)
MTRHS(0)
NU
NU
NU
NU
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPIC83000-Q1
25
TPIC83000-Q1
SLDS171 – NOVEMBER 2009
www.ti.com
Table 17. Profile of Calibration Read Data Frames (Field Mode Addressing) (continued)
FIELD
MODE
ADDRESS
LENGTH
History of OP timer
10000
(1:0)
1
MTR
DELAY(1)
MTR
DELAY(0)
NU
History OP gain
10001
(2:0)
1
MTRHS
GAIN(2)
MTRHS
GAIN(1)
MTRHS
GAIN(0)
NU
NU
NU
NU
NU
1
MTR
VOS(17)
MTR
VOS(16)
MTR
VOS(15)
MTR
VOS(14)
MTR
VOS(13)
MTR
VOS(12)
MTR
VOS(11)
MTR
VOS(10)
2
MTR VOS(9)
MTR VOS(8)
MTR VOS(7)
MTR VOS(6)
MTR VOS(5)
MTR VOS(4)
MTR VOS(3)
MTR VOS(2)
3
MTR VOS(1)
MTR VOS(0)
NU
NU
NU
NU
NU
NU
FIELD NAME
(BANK ADDRESS)
History of Input
offset
10010
FRAME
NO.
(17:0)
B7 (MSB)
B6
B5
B4
B3
B2
B1
B0 (LSB)
NU
NU
NU
NU
DATA
NU
History of Input
offset first order
temperature
coefficient
10011
(6:0)
1
MTRTC
VOS1(6)
MTRTC
VOS1(5)
MTRTC
VOS1(4)
MTRTC
VOS1(3)
MTRTC
VOS1(2)
MTRTC
VOS1(1)
MTRTC
VOS1(0)
NU
History of Input
offset 2nd order
temperature
coefficient
10100
(6:0)
1
MTRTC
VOS2(6)
MTRTC
VOS2(5)
MTRTC
VOS2(4)
MTRTC
VOS2(3)
MTRTC
VOS2(2)
MTRTC
VOS2(1)
MTRTC
VOS2(0)
NU
History of Gain
adjust
1
MTRGAIN(8)
MTRGAIN(7)
MTRGAIN(6)
MTRGAIN(5)
MTRGAIN(4)
MTRGAIN(3)
MTRGAIN(2)
MTRGAIN(1)
10101
(8:0)
2
MTRGAIN(0)
NU
NU
NU
NU
NU
NU
NU
History of Gain first
order temperature
coefficient
10110
1
MTRTC
GAIN1(5)
MTRTC
GAIN1(4)
MTRTC
GAIN1(3)
MTRTC
GAIN1(2)
MTRTC
GAIN1(1)
MTRTC
GAIN1(0)
NU
NU
(5:0)
Table 18. Profile of Calibration Read Data Frames (Bank Mode Addressing)
FIELD NAME
(BANK ADDRESS)
Sensor ID 0
FIELD
MODE
ADDRESS
00000
LENGTH
FRAME
NO.
B7 (MSB)
B6
B5
B4
B3
B2
B1
B0 (LSB)
DATA
1
SENID(43)
SENID(42)
SENID(41)
SENID(40)
SENID(39)
SENID(38)
SENID(37)
SENID(36)
2
SENID(35)
SENID(34)
SENID(33)
SENID(32)
SENID(31)
SENID(30)
SENID(29)
SENID(28)
3
SENID(27)
SENID(26)
SENID(25)
SENID(24)
SENID(23)
SENID(22)
SENID(21)
SENID(20)
4
SENID(19)
SENID(18)
SENID(17)
SENID(16)
SENID(15)
SENID(14)
SENID(13)
SENID(12)
5
SENID(11)
SENID(10)
SENID(9)
SENID(8)
SENID(7)
SENID(6)
SENID(5)
SENID(4)
6
SENID(3)
SENID(2)
SENID(1)
SENID(0)
NU
NU
NU
NU
(43:0)
Position ID (0)
(1:0)
7
PSNID(1)
PSNID(0)
NU
NU
NU
NU
NU
NU
OP threshold(1)
(3:0)
1
TRHS(3)
TRHS(2)
TRHS(1)
TRHS(0)
NU
NU
NU
NU
OP timer(1)
(1:0)
2
TRDELAY(1)
TRDELAY(0)
NU
NU
NU
NU
NU
NU
(2:0)
3
TRHS
GAIN(2)
TRHS
GAIN(1)
TRHS
GAIN(0)
NU
NU
NU
NU
NU
(3:0)
1
CONF
BPS(3)
CONF
BPS(2)
CONF
BPS(1)
CONF
BPS(0)
NU
NU
TRV
OSC(10)
NU
(16:8)
1
TRV
OSC(16)
TRV
OSC(15)
TRV
OSC(14)
TRV
OSC(13)
TRV
OSC(12)
TRV
OSC(11)
NU
TRV OSC(9)
2
TRV OSC(8)
NU
NU
NU
NU
NU
TRVOSF(1)
NU
TRVOSF(0)
00001
OP gain(1)
Baud rate(2)
00010
Input coarse offset
(3)
Input fine offset(3)
(7:0)
3
TRVOSF(7)
TRVOSF(6)
TRVOSF(5)
TRVOSF(4)
TRVOSF(3)
TRVOSF(2)
TRTC
VOS1(1)
Input offset first
order temperature
coefficient(3)
(6:0)
4
TRTC
VOS1(6)
TRTC
VOS1(5)
TRTC
VOS1(4)
TRTC
VOS1(3)
TRTC
VOS1(2)
TRTC
VOS1(1)
TRTC
VOS2(0)
NU
Input offset second
order temperature
coefficient(3)
(6:0)
5
TRTC
VOS2(6)
TRTC
VOS2(5)
TRTC
VOS2(4)
TRTC
VOS2(3)
TRTC
VOS2(2)
TRTC
VOS2(1)
TRGAIN(2)
NU
6
TRGAIN(8)
TRGAIN(7)
TRGAIN(6)
TRGAIN(5)
TRGAIN(4)
TRGAIN(3)
NU
TRGAIN(1)
Gain adjust(3)
(8:0)
7
TRGAIN(0)
NU
NU
NU
NU
NU
NU
NU
(5:0)
8
TRTC
GAIN1(5)
TRTC
GAIN1(4)
TRTC
GAIN1(3)
TRTC
GAIN1(2)
TRTC
GAIN1(1)
TRTC
GAIN1(0)
TEMP0(5)
NU
Temperature sensor
OUT 1 (4)
(11:0)
1
TEMP0(11)
TEMP0(10)
TEMP0(9)
TEMP0(8)
TEMP0(7)
TEMP0(6)
NU
TEMP0(4)
2
TEMP0(3)
TEMP0(2)
TEMP0(1)
TEMP0(0)
NU
NU
TEMP1(5)
NU
Temperature sensor
OUT 2 (4)
(11:0)
3
TEMP1(11)
TEMP1(10)
TEMP1(9)
TEMP1(8)
TEMP1(7)
TEMP1(6)
NU
TEMP1(4)
00011
Gain first order
temperature
coefficient(3)
Temperature sensor
OUT 3 (4)
26
00100
(11:0)
4
TEMP1(3)
TEMP1(2)
TEMP1(1)
TEMP1(0)
NU
NU
TEMP2(5)
NU
5
TEMP2(11)
TEMP2(10)
TEMP2(9)
TEMP2(8)
TEMP2(7)
TEMP2(6)
NU
TEMP2(4)
6
TEMP2(3)
TEMP2(2)
TEMP2(1)
TEMP2(0)
NU
NU
NU
NU
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPIC83000-Q1
TPIC83000-Q1
www.ti.com
SLDS171 – NOVEMBER 2009
Table 18. Profile of Calibration Read Data Frames (Bank Mode Addressing) (continued)
FIELD NAME
(BANK ADDRESS)
History of OP
threshold (5)
History of OP timer
(6)
History OP gain (6)
History of input
offset(6)
FIELD
MODE
ADDRESS
LENGTH
00101
(3:0)
1
MTRHS(3)
MTRHS(2)
(1:0)
2
MTR
DELAY(1)
FRAME
NO.
(2:0)
(16:0)
B7 (MSB)
B6
B5
B4
B3
B2
B1
B0 (LSB)
DATA
MTRHS(1)
MTRHS(0)
NU
NU
NU
MTR
DELAY(0)
NU
NU
NU
NU
NU
NU
3
MTRHS
GAIN(2)
MTRHS
GAIN(1)
MTRHS
GAIN(0)
NU
NU
NU
NU
NU
4
MTR
VOS(17)
MTR
VOS(16)
MTR
VOS(15)
MTR
VOS(14)
MTR
VOS(13)
MTR
VOS(12)
MTR
VOS(11)
MTR
VOS(10)
5
MTR VOS(9)
MTR VOS(8)
MTR VOS(7)
MTR VOS(6)
MTR VOS(5)
MTR VOS(4)
MTR VOS(3)
MTR VOS(2)
6
MTR VOS(1)
MTR VOS(0)
NU
NU
NU
NU
NU
NU
History of Input
offset first order
temperature
coefficient(6)
(6:0)
7
MTRTC
VOS1(6)
MTRTC
VOS1(5)
MTRTC
VOS1(4)
MTRTC
VOS1(3)
MTRTC
VOS1(2)
MTRTC
VOS1(1)
MTRTC
VOS1(0)
NU
History of Input
offset 2nd order
temperature
coefficient(6)
(6:0)
8
MTRTC
VOS2(6)
MTRTC
VOS2(5)
MTRTC
VOS2(4)
MTRTC
VOS2(3)
MTRTC
VOS2(2)
MTRTC
VOS2(1)
MTRTC
VOS2(0)
NU
History of Gain
adjust(6)
(8:0)
History of Gain first
order temperature
coefficient(6)
9
MTRGAIN(8)
MTRGAIN(7)
MTRGAIN(6)
MTRGAIN(5)
MTRGAIN(4)
MTRGAIN(3)
MTRGAIN(2)
MTRGAIN(1)
10
MTRGAIN(0)
NU
NU
NU
NU
NU
NU
NU
(5:0)
11
MTRTC
GAIN1(5)
MTRTC
GAIN1(4)
MTRTC
GAIN1(3)
MTRTC
GAIN1(2)
MTRTC
GAIN1(1)
MTRTC
GAIN1(0)
NU
NU
(7:0)
1
Reserved
DG1
ECRC
PROG_OK
EIVCM
EFRAME
EOVER
EPAR
(7:0)
2
Reserved
Reserved
Reserved
Reserved
Fastdis
Stbit
EO
Pdis
DIAG/UART
Table 19. DIAG/UART Register (Bank Address = 8)
ITEM
DG1
ECRC
PROG_OK
EIVCM
DESCRIPTION
Over pressure flag
CRC error
PROGV pin monitor
SIP and SIN pin common mode voltage error
EFRAME
Framing error
EOVER
Over run error
EPAR
Parity error
Pdis
Parity disable
EO
Parity even or odd
Stbit
Stop bit setting
Fastdis
Reserved
Test mode baud rate disable
Reserved
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPIC83000-Q1
27
TPIC83000-Q1
SLDS171 – NOVEMBER 2009
www.ti.com
Calibration Mode – Mode Select
Mode Select Command Frames
7
6
5
PSNID(1)
PSNID(1)
PSNID(0)
PSNID(0)
WORDID
WORDID
First Frame
PSNID[1:0]
Bits 7-6
WORDID
MODETYPE
Bit 5
Bits 4-3
DISPSN
Bit 2
Reserved
Bits 1-0
Second Frame
PSNID[1:0]
Bits 7-6
WORDID
NU
ACSUNT
Bit 5
Bits 4-3
Bit 0
ACTMODE
Bit 1
WE
Bit 0
4
3
2
NU
DISPSN
ACSUNT
MODETYPE
NU
1
0
Reserved
ACTMODE
WE
Position ID of device on UART bus. Each device process information for one sensor. Four sensors can be
sensed on the UART bus. Position settings are defined in the EEPROM map.
00
Position 0
01
Position 1
10
Position 2
11
Position 3
Frame ID of byte. 1 indicates frame 1 of 2.
Select mode type within calibration mode
00
Data request
01
Calibration write
10
Calibration read
11
Mode select
Disable or enable position ID matching
0
Decode command only if position IDs match
1
Indicates global command. All devices decode command frame.
Must be set to 0.
Position ID of device on UART bus. Each device process information for one sensor. Four sensors can be
sensed on the UART bus. Position settings are defined in the EEPROM map.
00
Position 0
01
Position 1
10
Position 2
11
Position 3
Frame ID of byte. 0 indicates frame 2 of 2.
Not use. Set to 0.
Sets device to field addressing mode or bank addressing mode. Can be accessed only in calibration mode.
0
Bank addressing mode
1
Field addressing mode
Sets device to sensor or calibration mode after current command is completed.
0
Sensor mode
1
Calibration mode
Disable/enable write to EEPROM (see EEPROM Write for details)
0
EEPROM write disabled (default)
1
EEPROM write enabled
Figure 13. Mode Select Command Frames
28
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPIC83000-Q1
TPIC83000-Q1
www.ti.com
SLDS171 – NOVEMBER 2009
Mode Select Data Frames
7
6
5
4
3
2
1
0
NU
NU
NU
NU
NU
ACSUNT
ACTMODE
WE
NU
ACSUNT
Bits 7-3
Bit 0
ACTMODE
Bit 1
WE
Bit 0
Not use. Set to 0.
Reports field addressing mode or bank addressing mode
0
Bank addressing mode
1
Field addressing mode
Reports sensor or calibration mode
0
Sensor mode
1
Calibration mode
Reports status of disable/enable write to EEPROM (see EEPROM Write for details)
0
EEPROM write disabled (default)
1
EEPROM write enabled
Figure 14. Mode Select Data Frames
Table 20. Profile of Mode Select Data Frames (Field and Bank Mode Addressing)
FIELD NAME (BANK
ADDRESS)
FIELD
MODE
ADDRESS
LENGTH
Mode registers read
-
-
FRAME
NO.
1
B7 (MSB)
B6
B5
B4
B3
B2
B1
B0 (LSB)
NU
ACSUNT
ACTMODE
WE
DATA
NU
NU
NU
NU
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPIC83000-Q1
29
TPIC83000-Q1
SLDS171 – NOVEMBER 2009
www.ti.com
Device Configuration and Thresholds
The following tables show the actual data settings needed in the specific control bits for setting the baud rates
and threshold levels for the TPIC83000. These settings can only be implemented in Calibration mode.
Table 21. Baud Rate Settings
BAUD RATE
CONF BPS(3:0)
DATA
TYPICAL
VALUE
COMMUNICATION CLOCK
0000
500 bps
2.458 MHz / 307 = 8.0 kHz
0001
750 bps
2.458 MHz / 205 = 12.0 kHz
0010
1000 bps
2.458 MHz / 154 = 16.0 kHz
0011
1250 bps
2.458 MHz / 123 = 20.0 kHz
0100
1500 bps
2.458 MHz / 102 = 24.0 kHz
0101
1750 bps
2.458 MHz / 88 = 27.9 kHz
0110
2000 bps
2.458 MHz / 77 = 31.9 kHz
0111
2250 bps
2.458 MHz / 68 = 36.1 kHz
1000
2500 bps
2.458 MHz / 61 = 40.0 kHz
1001
2750 bps
2.458 MHz / 56 = 43.9 kHz
1010
3000 bps
2.458 MHz / 51 = 48.2 kHz
1011
3250 bps
2.458 MHz / 47 = 52.3 kHz
1100
4800 bps
2.458 MHz / 32 = 76.8 kHz
1101
9600 bps
2.458 MHz / 16 = 153.6 kHz
1110
19.2 kbps
2.458 MHz / 8 = 307.3 kHz
1111
38.4 kbps
2.458 MHz / 4 = 614.5 kHz
Table 22. Over-Pressure Gain Settings via TRHSGAIN Control Bits
OVER-PRESSURE GAIN
TRHSGAIN(2:0)
30
DATA
MIN VALUE
TYPICAL VALUE
0000
2.2
0001
2.4
0010
2.6
0011
2.8
0100
3
0101
3.2
0110
3.4
0111
3.6
Submit Documentation Feedback
MAX VALUE
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPIC83000-Q1
TPIC83000-Q1
www.ti.com
SLDS171 – NOVEMBER 2009
Table 23. Over-Pressure Thresholds at Over-Pressure Gain = 2.2
OVER-PRESSURE THRESHOLD
TRHS(3:0)
TRHSGAIN = 0
Error due to coarse offset value should be
taken into account.
Input referred.
DATA
MIN VALUE
TYPICAL VALUE
MAX VALUE
0000
-20%
9.41 mV
20%
0001
-20%
10.59 mV
20%
0010
-20%
11.77 mV
20%
0011
-20%
12.93 mV
20%
0100
-20%
14.11 mV
20%
0101
-20%
15.29 mV
20%
0110
-20%
16.47 mV
20%
0111
-20%
17.64 mV
20%
1000
-10%
18.82 mV
10%
1001
-10%
20.00 mV
10%
1010
-10%
21.17 mV
10%
1011
-10%
22.34 mV
10%
1100
-10%
23.52 mV
10%
1101
-10%
24.70 mV
10%
1110
-10%
25.88 mV
10%
1111
-10%
27.06 mV
10%
Table 24. Over-Pressure Thresholds at Over-Pressure Gain = 2.4
OVER-PRESSURE THRESHOLD
TRHS(3:0)
TRHSGAIN = 1
Error due to coarse offset value should be
taken into account.
Input referred.
DATA
MIN VALUE
TYPICAL VALUE
MAX VALUE
0000
-20%
8.92 mV
20%
0001
-20%
10.03 mV
20%
0010
-20%
11.15 mV
20%
0011
-20%
12.25 mV
20%
0100
-20%
13.37 mV
20%
0101
-20%
14.48 mV
20%
0110
-20%
15.60 mV
20%
0111
-20%
16.72 mV
20%
1000
-10%
17.83 mV
10%
1001
-10%
18.95 mV
10%
1010
-10%
20.05 mV
10%
1011
-10%
21.17 mV
10%
1100
-10%
22.28 mV
10%
1101
-10%
23.40 mV
10%
1110
-10%
24.52 mV
10%
1111
-10%
25.63 mV
10%
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPIC83000-Q1
31
TPIC83000-Q1
SLDS171 – NOVEMBER 2009
www.ti.com
Table 25. Over-Pressure Thresholds at Over-Pressure Gain = 2.6
OVER-PRESSURE THRESHOLD
TRHS(3:0)
TRHSGAIN = 2
Error due to coarse offset value should be
taken into account.
Input referred.
DATA
MIN VALUE
TYPICAL VALUE
MAX VALUE
0000
-20%
8.42 mV
20%
0001
-20%
9.47 mV
20%
0010
-20%
10.53 mV
20%
0011
-20%
11.57 mV
20%
0100
-20%
12.63 mV
20%
0101
-20%
13.67 mV
20%
0110
-20%
14.73 mV
20%
0111
-20%
15.78 mV
20%
1000
-10%
16.84 mV
10%
1001
-10%
17.89 mV
10%
1010
-10%
18.94 mV
10%
1011
-10%
19.99 mV
10%
1100
-10%
21.04 mV
10%
1101
-10%
22.10 mV
10%
1110
-10%
23.15 mV
10%
1111
-10%
24.21 mV
10%
Table 26. Over-Pressure Thresholds at Over-Pressure Gain = 2.8
OVER-PRESSURE THRESHOLD
TRHS(3:0)
TRHSGAIN = 3
Error due to coarse offset value should be
taken into account.
Input referred.
32
DATA
MIN VALUE
TYPICAL VALUE
MAX VALUE
0000
-20%
7.93 mV
20%
0001
-20%
8.92 mV
20%
0010
-20%
9.91 mV
20%
0011
-20%
10.89 mV
20%
0100
-20%
11.88 mV
20%
0101
-20%
12.87 mV
20%
0110
-20%
13.87 mV
20%
0111
-20%
14.86 mV
20%
1000
-10%
15.85 mV
10%
1001
-10%
16.84 mV
10%
1010
-10%
17.82 mV
10%
1011
-10%
18.82 mV
10%
1100
-10%
19.81 mV
10%
1101
-10%
20.80 mV
10%
1110
-10%
21.79 mV
10%
1111
-10%
22.78 mV
10%
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPIC83000-Q1
TPIC83000-Q1
www.ti.com
SLDS171 – NOVEMBER 2009
Table 27. Over-Pressure Thresholds at Over-Pressure Gain = 3.0
OVER-PRESSURE THRESHOLD
TRHS(3:0)
TRHSGAIN = 4
Error due to coarse offset value should be
taken into account.
Input referred.
DATA
MIN VALUE
TYPICAL VALUE
MAX VALUE
0000
-20%
7.43 mV
20%
0001
-20%
8.36 mV
20%
0010
-20%
9.29 mV
20%
0011
-20%
10.21 mV
20%
0100
-20%
11.14 mV
20%
0101
-20%
12.07 mV
20%
0110
-20%
13.00 mV
20%
0111
-20%
13.93 mV
20%
1000
-10%
14.86 mV
10%
1001
-10%
15.79 mV
10%
1010
-10%
16.71 mV
10%
1011
-10%
17.64 mV
10%
1100
-10%
18.57 mV
10%
1101
-10%
19.50 mV
10%
1110
-10%
20.43 mV
10%
1111
-10%
21.36 mV
10%
Table 28. Over-Pressure Thresholds at Over-Pressure Gain = 3.2
OVER-PRESSURE THRESHOLD
TRHS(3:0)
TRHSGAIN = 5
Error due to coarse offset value should be
taken into account.
Input referred.
DATA
MIN VALUE
TYPICAL VALUE
MAX VALUE
0000
-20%
6.93 mV
20%
0001
-20%
7.80 mV
20%
0010
-20%
8.67 mV
20%
0011
-20%
9.53 mV
20%
0100
-20%
10.40 mV
20%
0101
-20%
11.27 mV
20%
0110
-20%
12.13 mV
20%
0111
-20%
13.00 mV
20%
1000
-10%
13.87 mV
10%
1001
-10%
14.73 mV
10%
1010
-10%
15.59 mV
10%
1011
-10%
16.46 mV
10%
1100
-10%
17.33 mV
10%
1101
-10%
18.2 mV
10%
1110
-10%
19.07 mV
10%
1111
-10%
19.94 mV
10%
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPIC83000-Q1
33
TPIC83000-Q1
SLDS171 – NOVEMBER 2009
www.ti.com
Table 29. Over-Pressure Thresholds at Over-Pressure Gain = 3.4
OVER-PRESSURE THRESHOLD
TRHS(3:0)
TRHSGAIN = 6
Error due to coarse offset value should be
taken into account.
Input referred.
DATA
MIN VALUE
TYPICAL VALUE
MAX VALUE
0000
-20%
6.44 mV
20%
0001
-20%
7.25 mV
20%
0010
-20%
8.05 mV
20%
0011
-20%
8.84 mV
20%
0100
-20%
9.65 mV
20%
0101
-20%
10.46 mV
20%
0110
-20%
11.27 mV
20%
0111
-20%
12.07 mV
20%
1000
-10%
12.87 mV
10%
1001
-10%
13.69 mV
10%
1010
-10%
14.48 mV
10%
1011
-10%
15.29 mV
10%
1100
-10%
16.09 mV
10%
1101
-10%
16.90 mV
10%
1110
-10%
17.71 mV
10%
1111
-10%
18.51 mV
10%
Table 30. Over-Pressure Thresholds at Over-Pressure Gain = 3.6
OVER-PRESSURE THRESHOLD
TRHS(3:0)
TRHSGAIN = 7
Error due to coarse offset value should be
taken into account.
Input referred.
DATA
MIN VALUE
TYPICAL VALUE
MAX VALUE
0000
-20%
5.94 mV
20%
0001
-20%
6.69 mV
20%
0010
-20%
7.43 mV
20%
0011
-20%
8.17 mV
20%
0100
-20%
8.91 mV
20%
0101
-20%
9.66 mV
20%
0110
-20%
10.4 mV
20%
0111
-20%
11.14 mV
20%
1000
-10%
11.89 mV
10%
1001
-10%
12.63 mV
10%
1010
-10%
13.37 mV
10%
1011
-10%
14.11 mV
10%
1100
-10%
14.85 mV
10%
1101
-10%
15.60 mV
10%
1110
-10%
16.34 mV
10%
1111
-10%
17.08 mV
10%
Table 31. Over-Pressure Timer Configuration via TRDELAY Control Bits
OVER-PRESSURE
TIMER
TRDELAY(1:0)
34
DATA
MIN VALUE
TYPICAL VALUE
MAX VALUE
00
(2/2.458 MHz) × 1000 × 0.9
(2/2.458 MHz) × 1000 s
(2/2.458 MHz) × 1000 × 1.1
01
(2/2.458 MHz) × 2000 × 0.9
(2/2.458 MHz) × 2000 s
(2/2.458 MHz) × 2000 × 1.1
10
(2/2.458 MHz) × 3000 × 0.9
(2/2.458 MHz) × 3000 s
(2/2.458 MHz) × 3000 × 1.1
11
(2/2.458 MHz) × 4000 × 0.9
(2/2.458 MHz) × 4000 s
(2/2.458 MHz) × 4000 × 1.1
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPIC83000-Q1
TPIC83000-Q1
www.ti.com
SLDS171 – NOVEMBER 2009
Table 32. Default Settings for Temperature Sensor (Data 2) With Respect to Over-Pressure Comparator
Timer and Gain Adjust
TEST CONDITIONS
OP-1
TEMP1[5:0]
12.483 mV≤VPHS ≤ 12.57 mV
TRHS = 8, TRHSGAIN = 5
10
12.57 mV < VPHS ≤ 13.44 mV
TRHS = 8, TRHSGAIN = 5
9
13.44 mV < VPHS ≤ 14.30 mV
TRHS = 8, TRHSGAIN = 5
8
14.30 mV < VPHS ≤ 15.257 mV
TRHS = 8, TRHSGAIN = 5
OP-2
7
TEMP1[9:6]
16.38 mV < VPHS ≤ 16.895 mV
TRHS = 13, TRHSGAIN = 5
15
16.895 mV < VPHS ≤ 17.765 mV
TRHS = 13, TRHSGAIN = 5
14
17.765 mV < VPHS ≤ 18.635 mV
TRHS = 13, TRHSGAIN = 5
13
18.635 mV < VPHS ≤ 19.505 mV
TRHS = 13, TRHSGAIN = 5
12
19.505 mV < VPHS ≤ 20.020 mV
TRHS = 13, TRHSGAIN = 5
11
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPIC83000-Q1
35
TPIC83000-Q1
SLDS171 – NOVEMBER 2009
www.ti.com
ABSOLUTE MAXIMUM RATINGS (1)
over operating free-air temperature range (unless otherwise noted)
Vcc/Vdd
Regulated input (2)
(3)
(2) (4)
DO
Output
DI
Input (2)
SIN/SIP
Input voltage (2)
PD
(4)
(3)
VALUE
UNIT
–0.3 to 7
V
–0.3 to 7
V
–0.3 to 7
V
–0.3 to Vcc + 0.3
V
Continuous power dissipation
71
mW
θJA
Thermal impedance, junction to ambient
100
°C/W
ESD1 (5)
Electrostatic discharge (6)
±2
kV
–200 (Minimum)
V
ESD2 (7)
Electrostatic discharge on all terminals
200 (Maximum)
V
TOP
Operating ambient temperature range
–40 to 85
°C
TS
Storage temperature range
–40 to 125
°C
TJ
Maximum junction temperature
150
°C
(1)
(2)
(3)
(4)
(5)
(6)
(7)
Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltage values are with respect to GND.
Absolute negative voltage on these pins not to go below –0.5 V. This is to prevent the ESD diode from forward-biasing during normal
operation.
Absolute negative voltage on these pins not to go below –1.0 V. This is to prevent the ESD diode from forward-biasing during normal
operation.
ESD1: DO pin with 220 Ω and 1 nF (cannot be disruptive or destructive)
The human body model is a 100 pF capacitor discharged through a 1.5-kΩ resistor into each pin
ESD2: On all other terminals 0 Ω with 200 pF
RECOMMENDED OPERATING CONDITIONS
Vdd, Vcc,
VccA
Regulated input
DO
Output
DI
Input
SIN, SIP
Amplifier input voltage
CProgV
Programming voltage capacitor for charge pump
RrefI
Current reference setting
QVcc
Low ESR capacitance on Vcc line
TA
Operating ambient temperature
36
MIN
NOM
MAX
UNIT
4.5
5
5.25
V
0
Vdd
V
0
Vdd
V
Vcc/2 –
0.2
Vcc/2 +
0.2
V
500
1500
10
μF
1
–40
Submit Documentation Feedback
pF
kΩ
85
°C
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPIC83000-Q1
TPIC83000-Q1
www.ti.com
SLDS171 – NOVEMBER 2009
ELECTRICAL CHARACTERISTICS – POWER SUPPLY
Vdd = Vcc = VccA = 5 V +5%/–10%, TA = –40°C to 85°C (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
4.5
5.0
5.25
V
Power Supply
Vcc
Vdd
VccA
Power supply voltage
Vcc = 5 V, TA = 25°C
IVcc
IVdd
IVccA
10
All specified operating conditions
Total current consumption of all three supplies
Vcc = 5 V, TA = 25°C,
EEPROM programming mode
mA
13
mA
13.5
mA
3.8
V
Power-On Reset
UVcc (1)
(2)
HVcc
TPOR (1)
(1)
(2)
Vcc undervoltage detection threshold
DO = 0
Vcc undervoltage detection hysteresis
Vcc = Vdd = VccA
(2)
3.5
3.7
0.2
See Figure 15
9.54
10.6
V
11.66
ms
MAX
UNIT
1.3-ms timer between PUC (power up clear, Vcc = 2.5 V) to UVCC
PUC clears digital logic core. UVcc holds DO to low state. After UVCC condition cleared, DO is low for TPOR.
UVcc
Vcc
HVcc
TPOR
DO
Figure 15. Power-On Reset Voltage and Timing Thresholds
ELECTRICAL CHARACTERISTICS – INPUT AMPLIFIER (SIP, SIN)
Vdd = Vcc = VccA = 5 V +5%/–10%, TA = –40°C to 85°C (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VICOM
Input common mode range SIP and SIN
ΔDO/ΔVcm (10-bit scale)
<1-bit error at output
VIDF (1)
Input differential voltage between SIP and
SIN
Coarse offset range
VOS
Input offset voltage
Vcc = 5 V, VSIP = VSIN = 2.5 V
ISI
Input offset current
Rin = 500 k, VSIP = VSIN = Vcc/2
IS
Input sink current
SIP = SIN = Vcc/2
CSI
Amplifier input load capacitance
SIP to Gnd
SIN to Gnd
SIP to SIN
(1)
MIN
TYP
Vcc/2 –0.2
Vcc/2 +0.2
–120
120
mV
–20
20
μV
–0.2
0.2
μA
2.5
μA
0.1
μF
0.5
1
V
This is typical coarse offset range correction range. Refer to the coarse offset DAC section for accuracy information.
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPIC83000-Q1
37
TPIC83000-Q1
SLDS171 – NOVEMBER 2009
www.ti.com
ELECTRICAL CHARACTERISTICS – CALIBRATION AND FAULT DETECTION
Vdd = Vcc = VccA = 5 V +5%/–10%, TA = –40°C to 85°C (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
120
mV
Calibration
Input offset trim range
–120
Input offset trimming step
Vos
Input offset trimming resolution
VOSC (coarse)
Vin = 0, Gain = Nom
VOSF (fine)
Vin = 0, Gain = Nom
Input offset TC1 trim range +
VO(TCVos1 = 63 or –64) –VO(TCVos1 = 0)
Input offset TC1 trim step
mV
bits
72
96
LSB
–99
–74
–48
LSB
LSB/
Code
1.14
7
VO(TCVos2 = 63 or –64) –VO(TCVos2 = 0)
Input offset TC2 trim range –
bits
12
24
35
–35
–24
–12
Input offset TC2 trim step
0.38
7
Programmable gain range
With respect to Analog Gain
Gain programming step
75
Gain TC1 trimming range
125
9
VO(TCGain1 = 1) – VO(TCGain1 = 0)
–44
Gain TC1 trimming step
–35
LSB
bits
0.1
Vin = SIP – SIN
Gain programming resolution
LSB
LSB/
Code
Vin = 0, GAIN = Mid, TA = 85°C
Input offset TC2 trimming
resolution
TCGain1
132
328
Vin = 0, GAIN = Mid, TA = 85°C,
Input offset TC2 trim range +
Gain
bits
48
Input offset TC1 trimming
resolution
TCVos2
μV
17
–132
Input offset TC1 trim range –
TCVos1
8
%
%
bits
–20
LSB
LSB/
Code
0.55
Gain TC1 number of bits
Vin = 1.1/ 300 V, GAIN = Mid, TA = 85°C
6
bits
VIOVL
Input under levels
SIP and SIN
0.1
Vcc
0.3
Vcc
V
VIOVH
Input over levels
SIP and SIN
0.7
Vcc
0.9
Vcc
V
TIOV
Input fault deglitch timer
SIP and SIN
4.5
5.5
ms
VIHS
Typical excess pressure detection
programmable range
SIP and SIN
TRHSGAIN = 5
TRHS = 0 to 15
–19.94
–6.93
mV
VPHS
Typical programmable step
accuracy
SIP and SIN
–1.1
1.1
mV
VRHS
Typical programmable step
SIP and SIN
TRHSGAIN = 5
TIOW
Deglitch timer programmable range TRDELAY = 3
TIOWE
Over-pressure deglitch time error
SIP and SIN
TSF
Supply glitch time
Vcc < 2.5 V
Fault Detection
38
Submit Documentation Feedback
5
0.87
mV
(2/
2.458 MHz)
× 4000
–10
0
320
s
10
%
ns
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPIC83000-Q1
TPIC83000-Q1
www.ti.com
SLDS171 – NOVEMBER 2009
ELECTRICAL CHARACTERISTICS – EEPROM
Vdd = Vcc = VccA = 5 V +5%/–10%, TA = –40°C to 85°C (unless otherwise noted)
PARAMETER
TEST CONDITIONS
Write cycle
MIN
TYP
DIO and PROGV
MAX
UNIT
25
times
120
ms
16.5
ms
Write time
EEPROM write time
Tprog_ok + system response time
DIO and PROGV
Tprog_ok + system response time
PROG_OK timer
Tporg_ok
PROGV > VPROG
13.5
Programming voltage
VPROG
PROGV
12.5
18
V
–40
85
°C
Write TA
20
15
ELECTRICAL CHARACTERISTICS – AFE
Vdd = Vcc = VccA = 5 V +5%/–10%, TA = –40°C to 85°C (unless otherwise noted)
MIN
TYP
MAX
Av
Analog front end gain
PARAMETER
At TST1 and TST0, Vin = ±3 mV, TA = 25°C
TEST CONDITIONS
285
300
321
UNIT
V/V
ASIG
Signal path absolute error
Vin = ±3 mV
-16
16
LSB
RE4085
Ratiometric error at -40°C and
85°C
DIO Pin, Vcc = 4.92±50 mV, Gain = Max
-13
13
LSB
TCVO1
Output temperature drift
Input = GND, Temp = -40°C to 25°C, the offset TCs
are set to the middle, Gain = Max
-15
15
LSB
TCVO2
Output temperature drift
Input = GND, Temp = 25°C to 85°C, the offset TCs
are set to the middle, Gain = Max
-10
10
LSB
TCAG
Analog front end gain
temperature drift
At TST1 and TST0, Vin = ±3 mV
-0.5
0
0.5
%
TCVIONL
Output drift, second order
TCVO1 – TCVO2
-20
0
20
LSB
GAINNL
Gain non linearity
At TST1/ TST0, Vin = -3 mV, 1 mV
-20
0
20
mV
OUTB
Measured
GAINNL
OUTA + OUTB
2
Calculated
OUTA
In-Out Range
InputA
InputA + InputB
InputB
2
Figure 16. Analog Front-End Gain Non-Linearity (Measured vs Calculated)
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPIC83000-Q1
39
TPIC83000-Q1
SLDS171 – NOVEMBER 2009
www.ti.com
ELECTRICAL CHARACTERISTICS – Data Input-Output (DI/DO)
Vdd = Vcc = VccA = 5 V +5%/–10%, TA = –40°C to 85°C (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
Data Input-Output (DI/DO)
LD
Data length
Word length
VDOL
Output low level
Isink = 5 mA
VDOH
Output high level
External pullup
CDIO
Capacitive load
No Oscillation
Isink2
Output sink current
Rx mode, High impedance (Z state)
DOH
Output high clamp
DOL
Output low clamp
DOER
Accuracy
VDIL
Input low level
VDIH
Input high level
RDI1
Input resistance
Pullup / DI = 2.5 V / 0 V
ID1
Input leakage
DI = Vcc
DO rise / fall time for 500
to 2250 baud rate
TRFDO1
(1)
TRFDO2 (1)
10
Bits
0.1 Vcc
V
0.9 Vcc
V
1000
pF
0
1
μA
1
%FS
1023
0
Include life-time drift
-1
0.3 Vcc
0.7 Vcc
V
V
30
50
70
kΩ
1
μA
fosc = 2.458 MHz, C = 1 nF, CONFBPS < 8
4.7
μs
DO rise / fall time for 2500
fosc = 2.458 MHz, C = 1 nF, CONFBPS > 7
to 38.4k baud rate
1
μs
Data Input-Output Tx, Rx requirements
fosc
Internal clock frequency
fcomclk
Internal communication
clock frequency
fosc = 2.458 MHz, At TST1 in test mode
tstrto
Start bit output time
tstrt1
Start bit decision time
tstpo
Stop bit
TA = -40, 85°C, REFI = 10 kΩ
2.25
BR
2.65
MHz
× 16
Hz
fosc = 2.458 MHz
1/ baud rate
ms
fosc = 2.458 MHz
(BR (2)
(2)
× 16)
× 16)
ms
(2)
ms
× 16)
× 16)
ms
8/
16 / (BR
fosc = 2.458 MHz
1/ BR
(BR (2)
(2)
8/
16 / (BR
tstpi
Stop bit decision time
fosc = 2.458 MHz
trxtx
RX-TX interval
fosc = 2.458 MHz
1
ttxtx
TX-TX interval
fosc = 2.458 MHz
1.5
(1)
(2)
2.4575
(2)
1.5 2
bit
2 2.5
bit
External R and C need to be chosen so that total communication speed error is less than (4.5% - system error ).
BR = baud rate
ELECTRICAL CHARACTERISTICS – REFI
Vdd = Vcc = VccA = 5 V +5%/–10%, TA = –40°C to 85°C (unless otherwise noted)
MIN
TYP
MAX
VREFI
Voltage across REFI pin
PARAMETER
R = 10 kΩ
1.425
1.5
1.575
V
IREFI
Current out of REFI pin
R = 10 kΩ
142.5
150
157.5
μA
CREFI
Maximum capacitance
20
pF
40
TEST CONDITIONS
Submit Documentation Feedback
UNIT
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPIC83000-Q1
TPIC83000-Q1
www.ti.com
SLDS171 – NOVEMBER 2009
APPLICATION INFORMATION
5V
0.1 µF
4.7 µF
Vcc
Vdd
VccA
0.1 µF
DGnd
Gnd
10 kW
REFI
TPIC83000
DO
GndA
TST2
SIP
TST1
Gnd
TST0
SIN
Microcontroller
DI
5V
1 kW
PROGV
5V
0.1 nF
Figure 17. General Application Circuit
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPIC83000-Q1
41
PACKAGE OPTION ADDENDUM
www.ti.com
2-Nov-2009
PACKAGING INFORMATION
Status (1)
Package
Type
Package
Drawing
TPIC83000IPWRQ1
ACTIVE
TSSOP
PW
16
TPIC8300IPWRQ1
PREVIEW
TSSOP
PW
16
Orderable Device
Pins Package Eco Plan (2)
Qty
2000
Lead/Ball Finish
TBD
CU NIPDAU
TBD
Call TI
MSL Peak Temp (3)
Level-1-240C-UNLIM
Call TI
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 1
MECHANICAL DATA
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999
PW (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PINS SHOWN
0,30
0,19
0,65
14
0,10 M
8
0,15 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
1
7
0°– 8°
A
0,75
0,50
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,10
8
14
16
20
24
28
A MAX
3,10
5,10
5,10
6,60
7,90
9,80
A MIN
2,90
4,90
4,90
6,40
7,70
9,60
DIM
4040064/F 01/97
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DLP® Products
www.dlp.com
Communications and
Telecom
www.ti.com/communications
DSP
dsp.ti.com
Computers and
Peripherals
www.ti.com/computers
Clocks and Timers
www.ti.com/clocks
Consumer Electronics
www.ti.com/consumer-apps
Interface
interface.ti.com
Energy
www.ti.com/energy
Logic
logic.ti.com
Industrial
www.ti.com/industrial
Power Mgmt
power.ti.com
Medical
www.ti.com/medical
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
RFID
www.ti-rfid.com
Space, Avionics &
Defense
www.ti.com/space-avionics-defense
RF/IF and ZigBee® Solutions www.ti.com/lprf
Video and Imaging
www.ti.com/video
Wireless
www.ti.com/wireless-apps
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2010, Texas Instruments Incorporated