ONSEMI MC14538BCP

MC14538B
Dual Precision
Retriggerable/Resettable
Monostable Multivibrator
The MC14538B is a dual, retriggerable, resettable monostable
multivibrator. It may be triggered from either edge of an input pulse,
and produces an accurate output pulse over a wide range of widths, the
duration and accuracy of which are determined by the external timing
components, CX and RX.
Output Pulse Width = (Cx) (Rx) where:
Rx is in kW
Cx is in mF
•
•
•
•
•
•
•
•
•
http://onsemi.com
MARKING
DIAGRAMS
Unlimited Rise and Fall Time Allowed on the A Trigger Input
Pulse Width Range = 10 µs to 10 s
Latched Trigger Inputs
Separate Latched Reset Inputs
3.0 Vdc to 18 Vdc Operational Limits
Triggerable from Positive (A Input) or Negative–Going Edge
(B–Input)
Capable of Driving Two Low–power TTL Loads or One Low–power
Schottky TTL Load Over the Rated Temperature Range
Pin–for–pin Compatible with MC14528B and CD4528B (CD4098)
Use the MC54/74HC4538A for Pulse Widths Less Than 10 µs with
Supplies Up to 6 V.
Unit
– 0.5 to +18.0
V
– 0.5 to VDD + 0.5
V
Input or Output Current
(DC or Transient) per Pin
±10
mA
PD
Power Dissipation,
per Package (Note 3.)
500
mW
TA
Operating Temperature Range
– 55 to +125
°C
Tstg
Storage Temperature Range
– 65 to +150
°C
TL
Lead Temperature
(8–Second Soldering)
260
°C
Vin, Vout
Iin, Iout
DC Supply Voltage Range
Input or Output Voltage Range
(DC or Transient)
2. Maximum Ratings are those values beyond which damage to the device
may occur.
3. Temperature Derating:
Plastic “P and D/DW” Packages: – 7.0 mW/_C From 65_C To 125_C
This device contains protection circuitry to guard against damage due to high
static voltages or electric fields. However, precautions must be taken to avoid
applications of any voltage higher than maximum rated voltages to this
high–impedance circuit. For proper operation, Vin and Vout should be constrained
to the range VSS
(Vin or Vout)
VDD.
Unused inputs must always be tied to an appropriate logic voltage level (e.g.,
either VSS or VDD). Unused outputs must be left open.
v
v
 Semiconductor Components Industries, LLC, 2000
March, 2000 – Rev. 3
1
16
14538B
AWLYWW
1
16
TSSOP–16
DT SUFFIX
CASE 948F
14
538B
ALYW
1
16
14538B
SOIC–16
DW SUFFIX
CASE 751G
AWLYYWW
1
16
SOEIAJ–16
F SUFFIX
CASE 966
Value
VDD
Parameter
MC14538BCP
AWLYYWW
SOIC–16
D SUFFIX
CASE 751B
MAXIMUM RATINGS (Voltages Referenced to VSS) (Note 2.)
Symbol
16
PDIP–16
P SUFFIX
CASE 648
1
MC14538B
AWLYWW
1
A
= Assembly Location
WL or L = Wafer Lot
YY or Y = Year
WW or W = Work Week
ORDERING INFORMATION
Device
Package
Shipping
MC14538BCP
PDIP–16
2000/Box
MC14538BD
SOIC–16
48/Rail
MC14538BDR2
SOIC–16
2500/Tape & Reel
MC14538BDT
TSSOP–16
96/Rail
MC14538BDTR2
TSSOP–16 2500/Tape & Reel
MC14538BDW
SOIC–16
47/Rail
MC14538BDWR2
SOIC–16
1000/Tape & Reel
MC14538BF
SOEIAJ–16
See Note 1.
MC14538BFEL
SOEIAJ–16
See Note 1.
1. For ordering information on the EIAJ version of
the SOIC packages, please contact your local
ON Semiconductor representative.
Publication Order Number:
MC14538B/D
MC14538B
PIN ASSIGNMENT
VSS
1
16
VDD
CX/RXA
2
15
VSS
RESET A
3
14
CX/RXB
AA
4
13
RESET B
BA
5
12
AB
QA
6
11
BB
QA
7
10
QB
VSS
8
9
QB
BLOCK DIAGRAM
CX
1
4
5
RX
VDD
2
A
B
Q1
6
Q1
RESET
7
3
CX
15
RX
VDD
14
A
12
Q2
B
11
10
Q2
RESET
9
13
RX AND CX ARE EXTERNAL COMPONENTS.
VDD = PIN 16
VSS = PIN 8, PIN 1, PIN 15
ONE–SHOT SELECTION GUIDE
100 ns
MC14528B
MC14536B
MC14538B
1 µs
10 µs
100 µs
1 ms
10 ms
100 ms
1s
10 s
23 HR
5 MIN.
MC14541B
MC4538A*
*LIMITED OPERATING VOLTAGE (2 – 6 V)
TOTAL OUTPUT PULSE WIDTH RANGE
RECOMMENDED PULSE WIDTH RANGE
http://onsemi.com
2
MC14538B
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)
– 55_C
VDD
25_C
125_C
Symbol
Vdc
Min
Max
Min
Typ (4.)
Max
Min
Max
Unit
“0” Level
VOL
5.0
10
15
—
—
—
0.05
0.05
0.05
—
—
—
0
0
0
0.05
0.05
0.05
—
—
—
0.05
0.05
0.05
Vdc
“1” Level
VOH
5.0
10
15
4.95
9.95
14.95
—
—
—
4.95
9.95
14.95
5.0
10
15
—
—
—
4.95
9.95
14.95
—
—
—
Vdc
Input Voltage
“0” Level
(VO = 4.5 or 0.5 Vdc)
(VO = 9.0 or 1.0 Vdc)
(VO = 13.5 or 1.5 Vdc)
VIL
5.0
10
15
—
—
—
1.5
3.0
4.0
—
—
—
2.25
4.50
6.75
1.5
3.0
4.0
—
—
—
1.5
3.0
4.0
“1” Level
VIH
5.0
10
15
3.5
7.0
11
—
—
—
3.5
7.0
11
2.75
5.50
8.25
—
—
—
3.5
7.0
11
—
—
—
5.0
5.0
10
15
– 3.0
– 0.64
– 1.6
– 4.2
—
—
—
—
– 2.4
– 0.51
– 1.3
– 3.4
– 4.2
– 0.88
– 2.25
– 8.8
—
—
—
—
– 1.7
– 0.36
– 0.9
– 2.4
—
—
—
—
IOL
5.0
10
15
0.64
1.6
4.2
—
—
—
0.51
1.3
3.4
0.88
2.25
8.8
—
—
—
0.36
0.9
2.4
—
—
—
mAdc
Input Current, Pin 2 or 14
Iin
15
—
± 0.05
—
± 0.00001
± 0.05
—
± 0.5
µAdc
Input Current, Other Inputs
Iin
15
—
± 0.1
—
± 0.00001
± 0.1
—
± 1.0
µAdc
Input Capacitance, Pin 2 or 14
Cin
—
—
—
—
25
—
—
—
pF
Input Capacitance, Other Inputs
(Vin = 0)
Cin
—
—
—
—
5.0
7.5
—
—
pF
Quiescent Current
(Per Package)
Q = Low, Q = High
IDD
5.0
10
15
—
—
—
5.0
10
20
—
—
—
0.005
0.010
0.015
5.0
10
20
—
—
—
150
300
600
µAdc
Quiescent Current, Active State
(Both) (Per Package)
Q = High, Q = Low
IDD
5.0
10
15
—
—
—
2.0
2.0
2.0
—
—
—
0.04
0.08
0.13
0.20
0.45
0.70
—
—
—
2.0
2.0
2.0
mAdc
IT
5.0
10
Characteristic
Output Voltage
Vin = VDD or 0
Vin = 0 or VDD
(VO = 0.5 or 4.5 Vdc)
(VO = 1.0 or 9.0 Vdc)
(VO = 1.5 or 13.5 Vdc)
Output Drive Current
(VOH = 2.5 Vdc)
(VOH = 4.6 Vdc)
(VOH = 9.5 Vdc)
(VOH = 13.5 Vdc)
Vdc
Vdc
IOH
Source
(VOL = 0.4 Vdc)
(VOL = 0.5 Vdc)
(VOL = 1.5 Vdc)
Sink
Total Supply Current at an external
load capacitance (CL) and at
external timing network (RX, CX) (5.)
mAdc
IT = (3.5 x 10–2) RXCXf + 4CXf + 1 x 10–5 CLf
IT = (8.0 x 10–2) RXCXf + 9CXf + 2 x 10–5 CLf
IT = (1.25 x 10–1) RXCXf + 12CXf + 3 x 10–5 CLf
where: IT in µA (one monostable switching only),
where: CX in µF, CL in pF, RX in k ohms, and
where: f in Hz is the input frequency.
4. Data labelled “Typ” is not to be used for design purposes but is intended as an indication of the IC’s potential performance.
5. The formulas given are for the typical characteristics only at 25_C.
http://onsemi.com
3
µAdc
MC14538B
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
SWITCHING CHARACTERISTICS (6.) (CL = 50 pF, TA = 25_C)
Characteristic
Symbol
Output Rise Time
tTLH = (1.35 ns/pF) CL + 33 ns
tTLH = (0.60 ns/pF) CL + 20 ns
tTLH = (0.40 ns/pF) CL + 20 ns
tTLH
Output Fall Time
tTHL = (1.35 ns/pF) CL + 33 ns
tTHL = (0.60 ns/pF) CL + 20 ns
tTHL = (0.40 ns/pF) CL + 20 ns
tTHL
Propagation Delay Time
A or B to Q or Q
tPLH, tPHL = (0.90 ns/pF) CL + 255 ns
tPLH, tPHL = (0.36 ns/pF) CL + 132 ns
tPLH, tPHL = (0.26 ns/pF) CL + 87 ns
tPLH,
tPHL
All Types
VDD
Vdc
Min
Typ (7.)
Max
5.0
10
15
—
—
—
100
50
40
200
100
80
5.0
10
15
—
—
—
100
50
40
200
100
80
Unit
ns
ns
ns
5.0
10
15
—
—
—
300
150
100
600
300
220
5.0
10
15
—
—
—
250
125
95
500
250
190
5
10
15
—
—
—
—
—
—
15
5
4
µs
B Input
5
10
15
—
—
—
300
1.2
0.4
1.0
0.1
0.05
ms
A Input
5
10
15
Reset to Q or Q
tPLH, tPHL = (0.90 ns/pF) CL + 205 ns
tPLH, tPHL = (0.36 ns/pF) CL + 107 ns
tPLH, tPHL = (0.26 ns/pF) CL + 82 ns
Input Rise and Fall Times
Reset
Input Pulse Width
A, B, or Reset
ns
tr, tf
—
No Limit
tWH,
tWL
5.0
10
15
170
90
80
85
45
40
—
—
—
ns
Retrigger Time
trr
5.0
10
15
0
0
0
—
—
—
—
—
—
ns
Output Pulse Width — Q or Q
Refer to Figures 8 and 9
CX = 0.002 µF, RX = 100 kΩ
T
µs
5.0
10
15
198
200
202
210
212
214
230
232
234
CX = 0.1 µF, RX = 100 kΩ
5.0
10
15
9.3
9.4
9.5
9.86
10
10.14
10.5
10.6
10.7
ms
CX = 10 µF, RX = 100 kΩ
5.0
10
15
0.91
0.92
0.93
0.965
0.98
0.99
1.03
1.04
1.06
s
5.0
10
15
—
—
—
± 1.0
± 1.0
± 1.0
± 5.0
± 5.0
± 5.0
%
Pulse Width Match between circuits in
the same package.
CX = 0.1 µF, RX = 100 kΩ
100
[(T1 – T2)/T1]
6. The formulas given are for the typical characteristics only at 25_C.
7. Data labelled “Typ” is not to be used for design purposes but is intended as an indication of the IC’s potential performance.
http://onsemi.com
4
MC14538B
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
OPERATING CONDITIONS
External Timing Resistance
RX
—
5.0
—
(8.)
kΩ
External Timing Capacitance
CX
—
0
—
No
Limit (9.)
µF
8. The maximum usable resistance RX is a function of the leakage of the capacitor CX, leakage of the MC14538B, and leakage due to board
layout and surface resistance. Susceptibility to externally induced noise signals may occur for RX > 1 MΩ..
9. If CX > 15 µF, use discharge protection diode per Fig. 11.
VDD
VDD
P1
RX
2 (14)
CX
+
C1
–
Vref1
1 (15)
ENABLE
+
C2
–
Vref2
ENABLE
R
Q
OUTPUT
LATCH
S
Q
N1
A
VSS
4 (12)
6 (10)
7 (9)
CONTROL
5 (11)
B
RESET
QR
S
3 (13)
RESET LATCH
NOTE: Pins 1, 8 and 15 must
be externally grounded
QR
R
Figure 1. Logic Diagram
(1/2 of DevIce Shown)
VDD
500 pF
0.1 µF
CERAMIC
ID
RX′
RX
VSS
Vin
CX′
CX
A
VSS
CX/RX
B
Q
RESET
Q
A′
Q′
B′
Q′
20 ns
CL
20 ns
90%
CL
CL
Vin
10%
CL
RESET′
VSS
Figure 2. Power Dissipation Test Circuit and Waveforms
http://onsemi.com
5
VDD
0V
MC14538B
VDD
INPUT CONNECTIONS
RX′
RX
VSS
B
PULSE
GENERATOR
Q
RESET
Q
A′
Q′
B′
PULSE
GENERATOR
VSS
CX/RX
A
PULSE
GENERATOR
CL
CL
CL
Q′
CL
RESET′
Reset
A
B
tPLH, tPHL, tTLH, tTHL,
T, tWH, tWL
VDD
PG1
VDD
tPLH, tPHL, tTLH, tTHL,
T, tWH, tWL
VDD
VSS
PG2
tPLH(R), tPHL(R),
tWH, tWL
PG3
PG1
PG2
* CL = 50 pF
CX′
CX
Characteristics
VSS
* Includes capacitance of probes,
wiring, and fixture parasitic.
PG1 =
NOTE: Switching test waveforms
for PG1, PG2, PG3 are shown
In Figure 4.
PG2 =
PG3 =
Figure 3. Switching Test Circuit
90%
10%
tTHL
50%
A
tTLH
tWH
50%
tTHL
B
VDD
tTLH
90%
10%
50%
VDD
tWL
tTHL
RESET
50%
tTHL
tPLH
T
tPLH
50%
tPHL
50%
tTLH
tPHL
tWL
tTLH
trr
tPHL
50%
tTHL
tPLH
90%
10%
50%
VDD
50%
90%
10%
50%
Q
Q
tPHL
90%
10%
50%
50%
TA = 25°C
RX = 100 kΩ
CX = 0.1 µF
1.0
NORMALIZED PULSE WIDTH CHANGE
WITH RESPECT TO VALUE AT VDD = 10 V (%)
RELATIVE FREQUENCY OF OCCURRENCE
Figure 4. Switching Test Waveforms
0% POINT PULSE WIDTH
VDD = 5.0 V, T = 9.8 ms
VDD = 10 V, T = 10 ms
VDD = 15 V, T = 10.2 ms
0.8
0.6
0.4
0.2
0
RX = 100 kΩ
CX = 0.1 µF
2
1
0
1
2
5
–4 –2
0
2
4
T, OUTPUT PULSE WIDTH (%)
Figure 5. Typical Normalized Distribution
of Units for Output Pulse Width
6
7
8
9
10
11
12
VDD, SUPPLY VOLTAGE (VOLTS)
13
14
Figure 6. Typical Pulse Width Variation as
a Function of Supply Voltage VDD
http://onsemi.com
6
15
MC14538B
TOTAL SUPPLY CURRENT ( µA)
1000
FUNCTION TABLE
Inputs
RX = 100 kΩ, CL = 50 pF
ONE MONOSTABLE SWITCHING ONLY
100
Reset
VDD = 15 V
5.0 V
10
10 V
1.0
0.1
0.001
0.1
1.0
10
Outputs
A
H
H
L
H
H
H
H
H
L
B
Q
Q
H
L
Not Triggered
Not Triggered
L, H,
L
H
L, H,
Not Triggered
Not Triggered
X
X
X
X
L
H
Not Triggered
100
OUTPUT DUTY CYCLE (%)
RX = 100 kΩ
CX = 0.1 µF
2
1
VDD = 15 V
VDD = 10 V
0
VDD = 5 V
–1
TYPICAL NORMALIZED ERROR
WITH RESPECT TO 25°C VALUE AT VDD = 10 V (%)
TYPICAL NORMALIZED ERROR
WITH RESPECT TO 25°C VALUE AT VDD = 10 V (%)
Figure 7. Typical Total Supply Current
versus Output Duty Cycle
RX = 100 kΩ
CX = .002 µF
3.0
2.0
1.0
0
– 1.0
–2
VDD = 15 V
VDD = 10 V
– 2.0
VDD = 5.0 V
– 3.0
– 60 – 40
– 20
0
20
40
60
80 100
TA, AMBIENT TEMPERATURE (°C)
120
140
– 60 – 40
Figure 8. Typical Error of Pulse Width
Equation versus Temperature
– 20
0
20
40
60
80 100
TA, AMBIENT TEMPERATURE (°C)
120 140
Figure 9. Typical Error of Pulse Width
Equation versus Temperature
http://onsemi.com
7
MC14538B
THEORY OF OPERATION
1
3
4
A
2
B
5
RESET
Vref 2
Vref 2
CX/RX
Vref 2
Vref 2
Vref 1
Vref 1
Vref 1
Vref 1
Q
T
T
T
1
Positive edge trigger
4
Positive edge re–trigger (pulse lengthening)
2
Negative edge trigger
5
Positive edge re–trigger (pulse lengthening)
3
Positive edge trigger
Figure 10. Timing Operation
TRIGGER OPERATION
RETRIGGER OPERATION
The block diagram of the MC14538B is shown in
Figure 1, with circuit operation following.
As shown in Figure 1 and 10, before an input trigger
occurs, the monostable is in the quiescent state with the Q
output low, and the timing capacitor CX completely charged
to VDD. When the trigger input A goes from VSS to VDD
(while inputs B and Reset are held to VDD) a valid trigger is
recognized, which turns on comparator C1 and N–channel
transistor N1 . At the same time the output latch is set. With
transistor N1 on, the capacitor CX rapidly discharges toward
VSS until Vref1 is reached. At this point the output of
comparator C1 changes state and transistor N1 turns off.
Comparator C1 then turns off while at the same time
comparator C2 turns on. With transistor N1 off, the capacitor
CX begins to charge through the timing resistor, RX, toward
VDD. When the voltage across CX equals Vref 2, comparator
C2 changes state, causing the output latch to reset (Q goes
low) while at the same time disabling comparator C2 . This
ends at the timing cycle with the monostable in the quiescent
state, waiting for the next trigger.
In the quiescent state, CX is fully charged to VDD causing
the current through resistor RX to be zero. Both comparators
are “off” with total device current due only to reverse
junction leakages. An added feature of the MC14538B is
that the output latch is set via the input trigger without regard
to the capacitor voltage. Thus, propagation delay from
trigger to Q is independent of the value of CX, RX, or the duty
cycle of the input waveform.
The MC14538B is retriggered if a valid trigger occurs
followed by another valid trigger before the Q output has
returned to the quiescent (zero) state. Any retrigger, after the
timing node voltage at pin 2 or 14 has begun to rise from
Vref 1, but has not yet reached Vref 2, will cause an increase
in output pulse width T. When a valid retrigger is initiated
, the voltage at CX/RX will again drop to Vref 1 before
progressing along the RC charging curve toward VDD. The
Q output will remain high until time T, after the last valid
retrigger.
RESET OPERATION
The MC14538B may be reset during the generation of the
output pulse. In the reset mode of operation, an input pulse
on Reset sets the reset latch and causes the capacitor to be
fast charged to VDD by turning on transistor P1 . When the
voltage on the capacitor reaches Vref 2, the reset latch will
clear, and will then be ready to accept another pulse. It the
Reset input is held low, any trigger inputs that occur will be
inhibited and the Q and Q outputs of the output latch will not
change. Since the Q output is reset when an input low level
is detected on the Reset input, the output pulse T can be made
significantly shorter than the minimum pulse width
specification.
http://onsemi.com
8
MC14538B
POWER–DOWN CONSIDERATIONS
Dx
Large capacitance values can cause problems due to the
large amount of energy stored. When a system containing
the MC14538B is powered down, the capacitor voltage may
discharge from VDD through the standard protection diodes
at pin 2 or 14. Current through the protection diodes should
be limited to 10 mA and therefore the discharge time of the
VDD supply must not be faster than (VDD). (C) / (10 mA).
For example, if VDD = 10 V and CX = 10 µF, the VDD supply
should discharge no faster than (10 V) x (10 µF) / (10 mA)
= 10 ms. This is normally not a problem since power
supplies are heavily filtered and cannot discharge at this rate.
When a more rapid decrease of VDD to zero volts occurs,
the MC14538B can sustain damage. To avoid this possibility
use an external clamping diode, DX, connected as shown in
Fig. 11.
Cx
Rx VDD
VSS
VDD
Q
Q
RESET
Figure 11. Use of a Diode to Limit
Power Down Current Surge
TYPICAL APPLICATIONS
CX
RX
CX
RX
VDD
RISING–EDGE
TRIGGER
A
Q
B
Q
VDD
RISING–EDGE
A
TRIGGER
B
Q
Q
B = VDD
RESET = VDD
CX
RESET = VDD
CX
RX
VDD
VDD
A = VSS
Q
B
FALLING–EDGE
TRIGGER
RX
Q
A
B
Q
Q
FALLING–EDGE
TRIGGER
RESET = VDD
RESET = VDD
Figure 12. Retriggerable
Monostables Circuitry
Figure 13. Non–Retriggerable
Monostables Circuitry
NC
A
B
Q
NC
Q
NC
CD
VDD
VDD
Figure 14. Connection of Unused Sections
http://onsemi.com
9
MC14538B
PACKAGE DIMENSIONS
PDIP–16
P SUFFIX
PLASTIC DIP PACKAGE
CASE 648–08
ISSUE R
–A–
16
9
1
8
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEADS WHEN
FORMED PARALLEL.
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
5. ROUNDED CORNERS OPTIONAL.
B
F
C
DIM
A
B
C
D
F
G
H
J
K
L
M
S
L
S
–T–
SEATING
PLANE
K
H
G
D
M
J
16 PL
0.25 (0.010)
M
T A
M
16
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
9
–B–
1
P
8 PL
0.25 (0.010)
8
M
B
S
G
R
K
F
X 45 _
C
SEATING
PLANE
J
M
D
16 PL
0.25 (0.010)
MILLIMETERS
MIN
MAX
18.80
19.55
6.35
6.85
3.69
4.44
0.39
0.53
1.02
1.77
2.54 BSC
1.27 BSC
0.21
0.38
2.80
3.30
7.50
7.74
0_
10 _
0.51
1.01
SOIC–16
D SUFFIX
PLASTIC SOIC PACKAGE
CASE 751B–05
ISSUE J
–A–
–T–
INCHES
MIN
MAX
0.740
0.770
0.250
0.270
0.145
0.175
0.015
0.021
0.040
0.70
0.100 BSC
0.050 BSC
0.008
0.015
0.110
0.130
0.295
0.305
0_
10 _
0.020
0.040
M
T B
S
A
S
http://onsemi.com
10
DIM
A
B
C
D
F
G
J
K
M
P
R
MILLIMETERS
MIN
MAX
9.80
10.00
3.80
4.00
1.35
1.75
0.35
0.49
0.40
1.25
1.27 BSC
0.19
0.25
0.10
0.25
0_
7_
5.80
6.20
0.25
0.50
INCHES
MIN
MAX
0.386
0.393
0.150
0.157
0.054
0.068
0.014
0.019
0.016
0.049
0.050 BSC
0.008
0.009
0.004
0.009
0_
7_
0.229
0.244
0.010
0.019
MC14538B
PACKAGE DIMENSIONS
SOIC–16
DW SUFFIX
PLASTIC SOIC PACKAGE
CASE 751G–03
ISSUE B
A
D
9
1
8
NOTES:
1. DIMENSIONS ARE IN MILLIMETERS.
2. INTERPRET DIMENSIONS AND TOLERANCES
PER ASME Y14.5M, 1994.
3. DIMENSIONS D AND E DO NOT INLCUDE MOLD
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
5. DIMENSION B DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS
OF THE B DIMENSION AT MAXIMUM MATERIAL
CONDITION.
h X 45 _
E
0.25
H
8X
M
B
M
16
q
16X
M
T A
S
B
DIM
A
A1
B
C
D
E
e
H
h
L
S
e
SEATING
PLANE
A1
14X
L
A
0.25
B
B
q
C
T
MILLIMETERS
MIN
MAX
2.35
2.65
0.10
0.25
0.35
0.49
0.23
0.32
10.15
10.45
7.40
7.60
1.27 BSC
10.05
10.55
0.25
0.75
0.50
0.90
0_
7_
TSSOP–16
DT SUFFIX
PLASTIC TSSOP PACKAGE
CASE 948F–01
ISSUE O
16X K REF
0.10 (0.004)
0.15 (0.006) T U
M
T U
V
S
S
S
K
ÉÉ
ÇÇÇ
ÇÇÇ
ÉÉ
K1
2X
L/2
16
9
J1
B
–U–
L
SECTION N–N
J
PIN 1
IDENT.
8
1
N
0.25 (0.010)
0.15 (0.006) T U
S
A
–V–
M
N
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD
FLASH. PROTRUSIONS OR GATE BURRS. MOLD
FLASH OR GATE BURRS SHALL NOT EXCEED 0.15
(0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD
FLASH OR PROTRUSION. INTERLEAD FLASH OR
PROTRUSION SHALL NOT EXCEED
0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN
EXCESS OF THE K DIMENSION AT MAXIMUM
MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE DETERMINED
AT DATUM PLANE –W–.
F
DETAIL E
–W–
C
0.10 (0.004)
–T– SEATING
PLANE
H
D
DETAIL E
G
http://onsemi.com
11
DIM
A
B
C
D
F
G
H
J
J1
K
K1
L
M
MILLIMETERS
MIN
MAX
4.90
5.10
4.30
4.50
–––
1.20
0.05
0.15
0.50
0.75
0.65 BSC
0.18
0.28
0.09
0.20
0.09
0.16
0.19
0.30
0.19
0.25
6.40 BSC
0_
8_
INCHES
MIN
MAX
0.193
0.200
0.169
0.177
–––
0.047
0.002
0.006
0.020
0.030
0.026 BSC
0.007
0.011
0.004
0.008
0.004
0.006
0.007
0.012
0.007
0.010
0.252 BSC
0_
8_
MC14538B
PACKAGE DIMENSIONS
SOEIAJ–16
F SUFFIX
PLASTIC EIAJ SOIC PACKAGE
CASE 966–01
ISSUE O
16
LE
9
Q1
M_
E HE
1
L
8
DETAIL P
Z
D
e
VIEW P
A
A1
b
0.13 (0.005)
c
M
0.10 (0.004)
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS D AND E DO NOT INCLUDE
MOLD FLASH OR PROTRUSIONS AND ARE
MEASURED AT THE PARTING LINE. MOLD FLASH
OR PROTRUSIONS SHALL NOT EXCEED 0.15
(0.006) PER SIDE.
4. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
5. THE LEAD WIDTH DIMENSION (b) DOES NOT
INCLUDE DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.08 (0.003)
TOTAL IN EXCESS OF THE LEAD WIDTH
DIMENSION AT MAXIMUM MATERIAL CONDITION.
DAMBAR CANNOT BE LOCATED ON THE LOWER
RADIUS OR THE FOOT. MINIMUM SPACE
BETWEEN PROTRUSIONS AND ADJACENT LEAD
TO BE 0.46 ( 0.018).
DIM
A
A1
b
c
D
E
e
HE
L
LE
M
Q1
Z
MILLIMETERS
MIN
MAX
–––
2.05
0.05
0.20
0.35
0.50
0.18
0.27
9.90
10.50
5.10
5.45
1.27 BSC
7.40
8.20
0.50
0.85
1.10
1.50
10 _
0_
0.70
0.90
–––
0.78
INCHES
MIN
MAX
–––
0.081
0.002
0.008
0.014
0.020
0.007
0.011
0.390
0.413
0.201
0.215
0.050 BSC
0.291
0.323
0.020
0.033
0.043
0.059
10 _
0_
0.028
0.035
–––
0.031
ON Semiconductor and
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.
PUBLICATION ORDERING INFORMATION
NORTH AMERICA Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada
Email: [email protected]
Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada
N. American Technical Support: 800–282–9855 Toll Free USA/Canada
EUROPE: LDC for ON Semiconductor – European Support
German Phone: (+1) 303–308–7140 (M–F 1:00pm to 5:00pm Munich Time)
Email: ONlit–[email protected]
French Phone: (+1) 303–308–7141 (M–F 1:00pm to 5:00pm Toulouse Time)
Email: ONlit–[email protected]
English Phone: (+1) 303–308–7142 (M–F 12:00pm to 5:00pm UK Time)
Email: [email protected]
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781
*Available from Germany, France, Italy, England, Ireland
CENTRAL/SOUTH AMERICA:
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)
Email: ONlit–[email protected]
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support
Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)
Toll Free from Hong Kong & Singapore:
001–800–4422–3781
Email: ONlit–[email protected]
JAPAN: ON Semiconductor, Japan Customer Focus Center
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549
Phone: 81–3–5740–2745
Email: [email protected]
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local
Sales Representative.
http://onsemi.com
12
MC14538B/D