PC924 OPIC Photocoupler for IGBT Drive of Inverter PC924 ❈ Lead forming type ( I type ) and taping reel type ( P type ) are also available. ( PC924I/PC924P ) ❈❈ TÜV ( VDE 0884 ) approved type is also available as an option. ■ Features ■ Outline Dimensions 1. Built-in direct drive circuit for IGBT drive ( IO1P , I O2P : 0.4A) 2. High speed response ( t PLH , t PHL : MAX. 2.0 µ s ) 3. Wide operating supply voltage range ( VCC : 15 to 30V at Ta = - 10 to 60˚C ) 4. High noise resistance type CM H : MIN. - 1 500V/ µs CM L : MIN. 1 500V/ µs 5. High isolation voltage ( Viso : 5 000V rms ) 2.54 ± 0.25 6.5 ± 0.5 8 Anode mark 7 6 ( Unit : mm ) Internal connection diagram 8 7 6 5 5 Tr1 PC924 Amp. 1 2 3 4 1 0.85 ± 0.2 1.2 ± 0.3 3.05 ± 0.5 0.5 3.4 ± 0.5 0.5TYP. 3.5 ± 0.5 1. IGBT drive for inverter control 2 3 4 7.62 ± 0.3 9.66 ± 0.5 ■ Applications Tr2 Interface 0.26 ± 0.1 θ = 0 to 13 ˚ 1 2 3 4 Anode Cathode NC NC θ 5 6 7 8 O1 O2 GND V CC * “ OPIC ” ( Optical IC ) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip. ■ Absolute Maximum Ratings Input Output Parameter Forward current Reverse voltage Supply voltage O1 output current *1 O1 peak output current O2 output current *1 O2 peak output current O1 output voltage Power dissipation Total power dissipation *2 Isolation voltage Operating temperature Storage temperature *3 Soldering temperature ( Unless specified, Ta = T opr ) Symbol IF VR V CC I O1 I O1P I O2 I O2P V O1 PO P tot V iso T opr T stg T sol Rating 25 6 35 0.1 0.4 0.1 0.4 35 500 550 5 000 - 25 to + 80 - 55 to + 125 260 Unit mA V V A A A A V mW mW V rms ˚C ˚C ˚C *1 Pulse width<= 0.15 µ s, Duty ratio : 0.01 *2 40 to 60% RH, AC for 1 minute, Ta = 25˚C *3 For 10 seconds “ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.” PC924 ■ Electro-optical Characteristics Parameter Forward voltage Input Reverse current Terminal capacitance Output Transfer characteristics Symbol V F1 V F2 IR Ct Operating supply voltage V CC O1 low level output voltage V O1L O2 high level output voltage O2 low level output voltage O1 leak current O2 leak current V O2H V O2L I O1L I O2L High level supply current I CCH Low level supply current I CCL “ Low→High ” threshold input current I FLH Isolation resistance “ Low→High ” propagation delay time “ High→Low ” propagation delay time Rise time Fall time R ISO t PLH t PHL tr tf Instantaneous common mode rejection voltage “ Output : High level ” CM H Instantaneous common mode rejection voltage “ Output : Low level ” CM L Response time *5 ( Ta = T opr unless otherwise specified ) *4 Conditions Ta = 25˚C, I F = 20mA Ta = 25˚C, I F = 0.2mA Ta = 25˚C, V R = 4V Ta = 25˚C, V= 0, f = 1kHz Ta = - 10 to 60˚C V CC1 = 12V, V CC2 = - 12V I O1 = 0.1A, I F = 10mA V CC = V O1 = 24V, I O2 = - 0.1A, I F = 10mA V CC = 24V, I O2 = 0.1A, I F = 0 Ta = 25˚C, V CC = V O1 = 35V, I F = 0 Ta = 25˚C, V CC = V O2 = 35V, I F = 10mA Ta = 25˚C, V CC = 24V, I F = 10mA V CC = 24V, I F = 10mA Ta = 25˚C, V CC = 24V, I F = 0 V CC = 24V, I F = 0 Ta = 25˚C, V CC = 24V V CC = 24V Ta = 25˚C, DC = 500V, 40 to 60% RH Ta = 25˚C, V CC = 24V, I F = 10mA R C = 47 Ω , C G = 3,000pF Ta = 25˚C, V CM = 600V( peak ) IF = 10mA, V CC = 24V, ∆ V O2H = 2.0V Ta = 25˚C, V CM = 600V( peak ) I F = 0, V CC = 24V, ∆ V O2L = 2.0V MIN. 0.6 15 15 TYP. 1.2 0.9 30 - MAX. 1.4 10 250 30 24 Unit V V µA pF V V Fig. - - 0.2 0.4 V 1 18 1.0 0.6 5 x 1010 - 21 1.2 6 8 4.0 1011 1.0 1.0 0.2 0.2 2.0 500 500 10 14 13 17 7.0 10.0 2.0 2.0 0.5 0.5 V V µA µA mA mA mA mA mA mA Ω µs µs µs µs 2 3 4 5 - - 30 - kV/ µ s - 30 - kV/ µ s Input ON OFF O2 Output High level Low level Tr. 1 ON OFF Tr. 2 OFF ON 6 7 - 8 9 *4 When measuring output and transfer characteristics, connect a by-pass capacitor ( 0.01 µ F or more ) between V CC and GND near the device. *5 I FLH represents forward current when output goes from “ Low ” to “ High ” . ■ Truth Table - PC924 ■ Test Circuit Fig. 1 Fig. 2 8 1 VCC1 5 IF PC924 6 V V O1L IO2 5 IO1 IF VCC PC924 6 VCC2 2 8 1 2 7 VO2H 7 Fig. 3 V Fig. 4 8 8 1 IF 5 VCC PC924 IF 6 2 A IO1L 1 5 V VO2L PC924 VCC 6 I O2L 2 7 7 Fig. 5 Fig. 6 8 5 IF A 8 1 1 A IO2L 5 VCC PC924 ICC IF 6 PC924 VCC 6 2 2 7 7 Fig. 7 Fig. 8 8 8 1 1 5 IF Variable VCC PC924 VIN 6 V 2 tr = tf = 0.01µ s Pulse width 5 µ s Duty ratio 50 % 5 PC924 2 7 VCC RG 6 VOUT CG 7 Fig. 9 8 A SW B 50% 1 VIN wave form 5 VCC PC924 tPHL tPLH 6 V VO2 2 90% 7 + - tr VCM VCM (Peak) VCM wave form GND CMH , V O2 wave form SW at A, I F = 10mA VO2H ∆VO2H CML , V O2 wave form SW at B, I F = 0mA 50% 10% VOUT wave form ∆VO2L VO2L GND tf PC924 Fig.10 Forward Current vs. Ambient Temperature Fig.11 Power Dissipation vs. Ambient Temperature 600 500 Power dissipation Po, Ptot ( mW ) Forward current I F ( mA ) 50 40 30 25 20 10 0 - 25 0 P tot 400 PO 300 200 100 0 - 25 25 50 75 80 100 Ambient temperature T a ( ˚C ) 0 25 50 75 80 100 Ambient temperature T a ( ˚C ) Fig.13 Relative Threshold Input Current vs. Supply Voltage Fig.12 Forward Current vs. Forward Voltage 1.2 500 T a = 25˚C T a = 75˚C 25˚C 50˚C 100 1.1 Relative threshold input current Forward current I F ( mA ) 200 0˚C 50 - 20˚C 20 10 5 2 1.0 0.9 0.8 I 1 0 0.5 1.0 1.5 2.0 2.5 Forward voltage VF ( V ) 3.0 0.7 15 3.5 Fig.14 Relative Threshold Input Current vs. Ambient Temperature 18 FLH = 1 at VCC = 24V 21 24 27 Supply voltage V CC ( V ) 30 Fig.15 O 1 Low Level Output Voltage vs. O 1 Output Current 1.6 0.4 O1 low level output voltage VO1L ( V ) V CC = 24V 1.4 Relative threshold input current 125 1.2 1.0 0.8 I FLH = 1 at T a = 25˚C 0.2 V CC1 = 12V V CC2 = - 12V T a = 25˚C I F = 10mA 0.1 0.05 0.02 0.01 0.005 0.6 - 25 0 25 50 Ambient temperature T a 75 ( ˚C ) 100 0.01 0.02 0.05 0.1 0.2 O1 output current I O1 ( A ) 0.5 1 PC924 Fig.16 O1 Low Level Output Voltage vs. Ambient Temperature Fig.17 O 2 High Level Output Voltage vs. Supply Voltage 30 V CC1 = 12V V CC2 = - 12V I F = 10mA 0.4 T a = 25˚C O2 high level output voltage VO2H ( V ) O1 low level output voltage VO1L ( V ) 0.5 0.3 I O1 = 0.1A 0.2 0.1 0 - 25 0 25 50 75 Ambient temperature T a ( ˚C ) Fig.18 O 2 High Level Output Voltage vs. Ambient Temperature 21 18 15 18 21 24 27 Supply voltage V CC ( V ) 30 Fig.19 O 2 Low Level Output Voltage vs. O 2 Output Current 24 4 VCC = 24V I F = 10mA O2 low level output voltage VO2L ( V ) O2 high level output voltage V O2H ( V ) 24 12 15 100 I F = 10mA 27 23 I O2 Nearly = 0A 22 - 0.1A 21 20 19 2 V CC = 6V T a = 25˚C 1 0.5 0.2 0.1 0.05 18 - 25 0 25 50 Ambient temperature T a 75 ( ˚C ) 100 Fig.20 O 2 Low Level Output Voltage vs. Ambient Temperature 0.01 0.02 0.05 0.1 0.2 0.5 O 2 output current I O2 ( A ) 1 Fig.21 High Level Supply Current vs. Supply Voltage 12 1.5 IF = 0 High level supply current I CCH ( mA ) O2 low level output voltage VO2L ( V ) V CC = 24V 1.4 1.3 I O2 = 0.1A 1.2 1.1 1.0 - 25 0 25 50 75 Ambient temperature T a ( ˚C ) 100 10 8 T a = - 25˚C 25˚C 6 80˚C 4 2 15 18 21 24 27 Supply voltage V CC ( V ) 30 PC924 Fig.22 Low Level Supply Current vs. Supply Voltage Fig.23 Propagation Delay Time vs. Forward Current ( µ s) 2.5 PLH 12 10 Propagation delay time t PHL , t Low level supply current I CCL ( mA ) 14 T a = - 25˚C 25˚C 8 80˚C 6 4 15 18 21 24 27 Supply voltage V CC ( V ) 2.0 1.5 T a = 75˚C t 1.0 t PLH PHL 25˚C - 25˚C 0.5 T a = 70˚C 25˚C 0 0 30 V CC = 24V R G = 47 Ω CG = 3 000pF 5 - 25˚C 10 15 20 Forward current I F ( mA ) 25 Fig.24 Propagation Delay Time vs. Ambient Temperature Propagation delay time t PHL , t PLH ( µ s) 2.5 V CC = 24V R G = 47 Ω CG = 3 000pF I F = 10mA 2.0 1.5 1.0 t PLH t PHL 0.5 0 - 25 0 25 50 Ambient temperature T a 75 ( ˚C ) 100 ■ Application Circuit ( IGBT Drive for Inverter ) VCC (+) Anode Cathode PC924 O1 + O2 VCC1 = 12V IGBT GND + TTL, Microcomputer etc. VCC2 = 12V U V W Power supply (-) ● Please refer to the chapter “Precautions for Use ”