SHARP PC924

PC924
OPIC Photocoupler for IGBT
Drive of Inverter
PC924
❈ Lead forming type ( I type ) and taping reel type ( P type ) are also available. ( PC924I/PC924P )
❈❈ TÜV ( VDE 0884 ) approved type is also available as an option.
■ Features
■ Outline Dimensions
1. Built-in direct drive circuit for IGBT drive
( IO1P , I O2P : 0.4A)
2. High speed response ( t PLH , t PHL : MAX. 2.0 µ s )
3. Wide operating supply voltage range
( VCC : 15 to 30V at Ta = - 10 to 60˚C )
4. High noise resistance type
CM H : MIN. - 1 500V/ µs
CM L : MIN. 1 500V/ µs
5. High isolation voltage ( Viso : 5 000V rms )
2.54 ± 0.25
6.5 ± 0.5
8
Anode
mark
7
6
( Unit : mm )
Internal connection diagram
8 7 6 5
5
Tr1
PC924
Amp.
1
2
3
4
1
0.85 ± 0.2
1.2 ± 0.3
3.05 ± 0.5
0.5
3.4 ± 0.5
0.5TYP. 3.5 ± 0.5
1. IGBT drive for inverter control
2
3
4
7.62 ± 0.3
9.66 ± 0.5
■ Applications
Tr2
Interface
0.26 ± 0.1
θ = 0 to 13 ˚
1
2
3
4
Anode
Cathode
NC
NC
θ
5
6
7
8
O1
O2
GND
V CC
* “ OPIC ” ( Optical IC ) is a trademark of the SHARP Corporation.
An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip.
■ Absolute Maximum Ratings
Input
Output
Parameter
Forward current
Reverse voltage
Supply voltage
O1 output current
*1
O1 peak output current
O2 output current
*1
O2 peak output current
O1 output voltage
Power dissipation
Total power dissipation
*2
Isolation voltage
Operating temperature
Storage temperature
*3
Soldering temperature
( Unless specified, Ta = T opr )
Symbol
IF
VR
V CC
I O1
I O1P
I O2
I O2P
V O1
PO
P tot
V iso
T opr
T stg
T sol
Rating
25
6
35
0.1
0.4
0.1
0.4
35
500
550
5 000
- 25 to + 80
- 55 to + 125
260
Unit
mA
V
V
A
A
A
A
V
mW
mW
V rms
˚C
˚C
˚C
*1 Pulse width<= 0.15 µ s,
Duty ratio : 0.01
*2 40 to 60% RH, AC for
1 minute, Ta = 25˚C
*3 For 10 seconds
“ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.”
PC924
■ Electro-optical Characteristics
Parameter
Forward voltage
Input
Reverse current
Terminal capacitance
Output
Transfer
characteristics
Symbol
V F1
V F2
IR
Ct
Operating supply voltage
V CC
O1 low level output voltage
V O1L
O2 high level output voltage
O2 low level output voltage
O1 leak current
O2 leak current
V O2H
V O2L
I O1L
I O2L
High level supply current
I CCH
Low level supply current
I CCL
“ Low→High ” threshold
input current
I FLH
Isolation resistance
“ Low→High ” propagation delay time
“ High→Low ” propagation delay time
Rise time
Fall time
R ISO
t PLH
t PHL
tr
tf
Instantaneous common mode rejection
voltage “ Output : High level ”
CM H
Instantaneous common mode rejection
voltage “ Output : Low level ”
CM L
Response time
*5
( Ta = T opr unless otherwise specified )
*4
Conditions
Ta = 25˚C, I F = 20mA
Ta = 25˚C, I F = 0.2mA
Ta = 25˚C, V R = 4V
Ta = 25˚C, V= 0, f = 1kHz
Ta = - 10 to 60˚C
V CC1 = 12V, V CC2 = - 12V
I O1 = 0.1A, I F = 10mA
V CC = V O1 = 24V, I O2 = - 0.1A, I F = 10mA
V CC = 24V, I O2 = 0.1A, I F = 0
Ta = 25˚C, V CC = V O1 = 35V, I F = 0
Ta = 25˚C, V CC = V O2 = 35V, I F = 10mA
Ta = 25˚C, V CC = 24V, I F = 10mA
V CC = 24V, I F = 10mA
Ta = 25˚C, V CC = 24V, I F = 0
V CC = 24V, I F = 0
Ta = 25˚C, V CC = 24V
V CC = 24V
Ta = 25˚C, DC = 500V, 40 to 60% RH
Ta = 25˚C, V CC = 24V, I F = 10mA
R C = 47 Ω , C G = 3,000pF
Ta = 25˚C, V CM = 600V( peak )
IF = 10mA, V CC = 24V, ∆ V O2H = 2.0V
Ta = 25˚C, V CM = 600V( peak )
I F = 0, V CC = 24V, ∆ V O2L = 2.0V
MIN.
0.6
15
15
TYP.
1.2
0.9
30
-
MAX.
1.4
10
250
30
24
Unit
V
V
µA
pF
V
V
Fig.
-
-
0.2
0.4
V
1
18
1.0
0.6
5 x 1010
-
21
1.2
6
8
4.0
1011
1.0
1.0
0.2
0.2
2.0
500
500
10
14
13
17
7.0
10.0
2.0
2.0
0.5
0.5
V
V
µA
µA
mA
mA
mA
mA
mA
mA
Ω
µs
µs
µs
µs
2
3
4
5
-
- 30
-
kV/ µ s
-
30
-
kV/ µ s
Input
ON
OFF
O2 Output
High level
Low level
Tr. 1
ON
OFF
Tr. 2
OFF
ON
6
7
-
8
9
*4 When measuring output and transfer characteristics, connect a by-pass capacitor ( 0.01 µ F or more ) between
V CC and GND near the device.
*5 I FLH represents forward current when output goes from “ Low ” to “ High ” .
■ Truth Table
-
PC924
■ Test Circuit
Fig. 1
Fig. 2
8
1
VCC1
5
IF
PC924
6
V V
O1L
IO2
5
IO1
IF
VCC
PC924
6
VCC2
2
8
1
2
7
VO2H
7
Fig. 3
V
Fig. 4
8
8
1
IF
5
VCC
PC924
IF
6
2
A IO1L
1
5
V
VO2L
PC924
VCC
6
I O2L
2
7
7
Fig. 5
Fig. 6
8
5
IF
A
8
1
1
A IO2L
5
VCC
PC924
ICC
IF
6
PC924
VCC
6
2
2
7
7
Fig. 7
Fig. 8
8
8
1
1
5
IF
Variable
VCC
PC924
VIN
6
V
2
tr = tf = 0.01µ s
Pulse width 5 µ s
Duty ratio 50 %
5
PC924
2
7
VCC
RG
6
VOUT
CG
7
Fig. 9
8
A
SW
B
50%
1
VIN wave form
5
VCC
PC924
tPHL
tPLH
6
V VO2
2
90%
7
+
-
tr
VCM
VCM
(Peak)
VCM wave form
GND
CMH , V O2 wave form
SW at A, I F = 10mA
VO2H
∆VO2H
CML , V O2 wave form
SW at B, I F = 0mA
50%
10%
VOUT wave form
∆VO2L
VO2L
GND
tf
PC924
Fig.10 Forward Current vs. Ambient
Temperature
Fig.11 Power Dissipation vs. Ambient
Temperature
600
500
Power dissipation Po, Ptot ( mW )
Forward current I F ( mA )
50
40
30
25
20
10
0
- 25
0
P tot
400
PO
300
200
100
0
- 25
25
50
75 80 100
Ambient temperature T a ( ˚C )
0
25
50
75 80 100
Ambient temperature T a ( ˚C )
Fig.13 Relative Threshold Input Current vs.
Supply Voltage
Fig.12 Forward Current vs. Forward
Voltage
1.2
500
T a = 25˚C
T a = 75˚C
25˚C
50˚C
100
1.1
Relative threshold input current
Forward current I F ( mA )
200
0˚C
50
- 20˚C
20
10
5
2
1.0
0.9
0.8
I
1
0
0.5
1.0
1.5
2.0
2.5
Forward voltage VF ( V )
3.0
0.7
15
3.5
Fig.14 Relative Threshold Input Current vs.
Ambient Temperature
18
FLH
= 1 at VCC = 24V
21
24
27
Supply voltage V CC ( V )
30
Fig.15 O 1 Low Level Output Voltage vs.
O 1 Output Current
1.6
0.4
O1 low level output voltage VO1L ( V )
V CC = 24V
1.4
Relative threshold input current
125
1.2
1.0
0.8
I FLH = 1 at T a = 25˚C
0.2
V CC1 = 12V
V CC2 = - 12V
T a = 25˚C
I F = 10mA
0.1
0.05
0.02
0.01
0.005
0.6
- 25
0
25
50
Ambient temperature T
a
75
( ˚C )
100
0.01
0.02
0.05
0.1
0.2
O1 output current I O1 ( A )
0.5
1
PC924
Fig.16 O1 Low Level Output Voltage vs.
Ambient Temperature
Fig.17 O 2 High Level Output Voltage
vs. Supply Voltage
30
V CC1 = 12V
V CC2 = - 12V
I F = 10mA
0.4
T a = 25˚C
O2 high level output voltage VO2H ( V )
O1 low level output voltage VO1L ( V )
0.5
0.3
I O1 = 0.1A
0.2
0.1
0
- 25
0
25
50
75
Ambient temperature T a ( ˚C )
Fig.18 O 2 High Level Output Voltage vs.
Ambient Temperature
21
18
15
18
21
24
27
Supply voltage V CC ( V )
30
Fig.19 O 2 Low Level Output Voltage vs.
O 2 Output Current
24
4
VCC = 24V
I F = 10mA
O2 low level output voltage VO2L ( V )
O2 high level output voltage V O2H ( V )
24
12
15
100
I F = 10mA
27
23
I O2 Nearly = 0A
22
- 0.1A
21
20
19
2
V CC = 6V
T a = 25˚C
1
0.5
0.2
0.1
0.05
18
- 25
0
25
50
Ambient temperature T
a
75
( ˚C )
100
Fig.20 O 2 Low Level Output Voltage vs.
Ambient Temperature
0.01
0.02
0.05
0.1
0.2
0.5
O 2 output current I O2 ( A )
1
Fig.21 High Level Supply Current vs.
Supply Voltage
12
1.5
IF = 0
High level supply current I CCH ( mA )
O2 low level output voltage VO2L ( V )
V CC = 24V
1.4
1.3
I O2 = 0.1A
1.2
1.1
1.0
- 25
0
25
50
75
Ambient temperature T a ( ˚C )
100
10
8
T a = - 25˚C
25˚C
6
80˚C
4
2
15
18
21
24
27
Supply voltage V CC ( V )
30
PC924
Fig.22 Low Level Supply Current vs.
Supply Voltage
Fig.23 Propagation Delay Time vs.
Forward Current
( µ s)
2.5
PLH
12
10
Propagation delay time t PHL , t
Low level supply current I
CCL
( mA )
14
T a = - 25˚C
25˚C
8
80˚C
6
4
15
18
21
24
27
Supply voltage V CC ( V )
2.0
1.5
T a = 75˚C
t
1.0
t
PLH
PHL
25˚C
- 25˚C
0.5
T a = 70˚C 25˚C
0
0
30
V CC = 24V
R G = 47 Ω
CG = 3 000pF
5
- 25˚C
10
15
20
Forward current I F ( mA )
25
Fig.24 Propagation Delay Time vs.
Ambient Temperature
Propagation delay time t PHL , t
PLH
( µ s)
2.5
V CC = 24V
R G = 47 Ω
CG = 3 000pF
I F = 10mA
2.0
1.5
1.0
t PLH
t PHL
0.5
0
- 25
0
25
50
Ambient temperature T
a
75
( ˚C )
100
■ Application Circuit ( IGBT Drive for Inverter )
VCC
(+)
Anode
Cathode
PC924
O1
+
O2
VCC1 =
12V
IGBT
GND
+
TTL, Microcomputer etc.
VCC2 =
12V
U
V
W
Power supply
(-)
● Please refer to the chapter “Precautions for Use ”