SHARP PC922

PC922
High Power OPIC Photocoupler
PC922
❈ Lead forming type ( I type ) and taping reel type ( P type ) are also available. ( PC922I/PC922P)
❈❈ TÜV ( VDE 0884 ) approved type is also available as an option.
■ Features
■ Outline Dimensions
1. Built-in base amplifier for inverter drive
2. High power ( IO1: MAX. 0.5A ( DC ) )
(IO2P : MAX. 2.0A ( pulse ) )
3. High isolation voltage between input
and output ( Viso : 5 000V rms )
4. High noise reduction type
5. High speed response ( t PHL , t PLH : MAX. 5 µ s )
6. High sensitivity ( IFLH : MAX. 3mA )
7. Recognized by UL, file No. E64380
( Unit : mm )
Internal connection diagram
0.85 ± 0.2
1.2 ± 0.3
8
6.5 ± 0.5
7
6
8
7
5
Tr1
1
2
3
1
4
2
3
4
7.62 ± 0.3
3.5 ± 0.5
0.5TYP.
Interface
Tr2
Amp
Anode
mark
3.4 ± 0.5
1. Inverter controlled air conditioners
2. Small capacitance general purpose inverters
5
PC922
9.66 ± 0.5
■ Applications
6
0.5 ± 0.1
0.26 ± 0.1
2.54 ± 0.25
θ
θ
θ = 0 to 13 ˚
1 Anode
2 Cachode
3 NC
4 NC
5 O1
6 O2
7 GND
8 V CC
* “ OPIC ” ( Optical IC ) is a trademark of the SHARP Corporation.
An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip.
■ Absolute Maximum Ratings
Input
Output
Parameter
Forward current
*1
Reverse voltage
Supply voltage
O 1 output current
*2
O 1 peak output current
O 2 output current
*2
O 2 peak output current
O 1 output voltage
Power dissipation
Total power dissipation
*3
Isolation voltage
Operating temperature
Storage temperature
*4
Soldering temperature
( Ta = Topr unless otherwise specified)
Symbol
IF
VR
V CC
I O1
I O1P
I O2
I O2P
V O1
PO
P tot
V iso
T opr
T stg
T sol
Rating
25
6
18
0.5
1.0
0.6
2.0
18
500
550
5 000
- 20 to + 80
- 55 to + 125
260
Unit
mA
V
V
A
A
A
A
V
mW
mW
V rms
˚C
˚C
˚C
*1 Ta = 25˚C
*2 Pulse width <= 5 µ s, Duty ratio : 0.01
*3 40 to 60% RH, AC for 1 minute,
Ta = 25˚C
*4 For 10 seconds
“ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device. ”
PC922
■ Electro-optical Characteristics
Parameter
Forward voltage
Input
Output
Reverse current
Terminal capacitance
Operating supply voltage
( Ta = T opr unless otherwise specified )
Symbol
V F1
V F2
IR
Ct
V CC
O1 low level output voltage
V O1L
O2 high level output voltage
V O2H
O2 low level output voltage
O1 leak current
O2 leak current
V O2L
I O1L
I O2L
High level supply current
I CCH
Low level supply current
I CCL
*5
“ Low→High ” threshold
input current
Response time
Transfer Isolation resistance
charac“Low→High ” propagation delay time
teristics
“High→Low ” propagation delay time
Rise time
Fall time
Instantaneous common
mode rejection voltage
“Output : High level ”
Instantaneous common
mode rejection voltage
“Output : Low level ”
I FLH
R ISO
Conditions
T a = 25˚C, I F = 5mA
T a = 25˚C, I F = 0.2mA
T a = 25˚C, V R = 3V
T a = 25˚C, V = 0, f = 1kHz
V CC = 6V, I O1 = 0.4A,
R L2 = 10 Ω, I F = 5mA
V CC = 6V, I O2 = - 0.4A,
I F = 5mA
V CC = 6V, I O2 = 0.5A, I F = 0
V CC = 13V, I F = 0
V CC = 13V, I F = 5mA
T a = 25˚C, V CC = 6V, I F = 5mA
V CC = 6V, I F = 5mA
T a = 25˚C, V CC = 6V, I F = 0
V CC = 6V, I F = 0
T a = 25˚C, V CC = 6V,
R L1 = 5 Ω, R L2 = 10 Ω
V CC = 6V, R L1 = 5 Ω
R L2 = 10 Ω
Ta = 25˚C, DC = 500V
40 to 60% RH
Unit
V
V
µA
pF
V
Fig.
-
0.2
0.4
V
1
4.5
5.0
-
V
2
-
0.2
9
11
-
0.4
200
200
13
17
15
20
V
µA
µA
mA
mA
mA
mA
0.3
1.5
3.0
mA
5
0.2
-
5.0
mA
5
5 x1010
10 11
-
Ω
-
-
2
2
0.2
0.1
5
5
1
1
µs
µs
µs
µs
6
-
3
4
-
CM H
T a = 25˚C, V CM = 600V (peak )
I F = 5mA, R L1 = 470 Ω, R L2 = 1k Ω,
-1 500
-
-
V/ µ s
7
T a = 25˚C, V CM = 600V (peak )
I F = 0, R L1 = 470 Ω, R L2 = 1k Ω
1 500
-
-
V/ µ s
7
CM L
Tr. 1
ON
OFF
MAX.
1.4
10
250
13
T a = 25˚C, V CC = 6V
I F = 5mA R L1 = 5 Ω
R L2 = 10 Ω
■ Truth Table
O2 Output
High level
Low level
TYP.
1.1
0.9
30
-
t PLH
t PHL
tr
tf
∆ V O2H = 0.5V
∆ V O2L = 0.5V
*5 I FLH represents forward current when output goes from low to high.
Input
ON
OFF
MIN.
0.6
5.4
Tr. 2
OFF
ON
PC922
■ Test Circuit
Fig. 1
Fig. 2
1
8
1
5
5
VCC
V
PC922
IF
IF
1
8
6
IO1
RL2
7
VCC
IO2
PC922
6
2
8
V
Fig. 3
2
7
1
8
Fig. 4
A
5
VCC
PC922
IF
IF
6
2
7
1
8
6
7
2
Fig. 5
Fig. 6
A
1
5
VCC
8
t r = tf= 0.01 µ s
ZO = 50 Ω
RL1
RL1
5
VIN
VCC
PC922
PC922
VO2
6
IF
variable
6
RL2
RL2
2
V
47 Ω
7
2
7
VIN waveform
Fig. 7
1
RL1
PC922
tPLH
VCC
5
B
50%
8
SW
6
RL2
VO2
+
VCM
50%
tf
tr
7
2
tPHL
90%
VO2 waveform
10%
Fig. 8 Forward Current vs.
Ambient Temperature
-
30
25
VCM
(peak)
VCM waveform
GND
CMH V O2 waveform
VO2H
SW at A, I F = 3mA
CMH V O2 waveform
SW at B, I F =0
∆VO2H
∆VO2L
VO2L
GND
Forward current I F ( mA )
A
A
5
VCC
PC922
20
15
10
5
0
- 25 - 20
0
25
50
75 80
Ambient temperature T a ( ˚C )
100
PC922
Fig. 9-a Power Dissipation vs.
Ambient Temperature
Fig. 9-b Power Dissipation vs.
Ambient Temperature
600
600
550
500
Power dissipation P tot ( mW )
Power dissipation P O ( mW )
500
400
300
200
100
0
- 20
400
300
200
100
0
25
50
75 80
0
- 20
100
0
25
Ambient temperature T a ( ˚C )
Fig. 10 Forward Current vs. Forward Voltage
50˚C
Relative threshold input current
25˚C
100
0˚C
- 20˚C
50
100
V CC = 6V
I FLH = 1
T a = 25˚C
T a = 75˚C
200
75 80
Fig.11 “ Low →High ” Relative Threshold
Input Current vs. Supply Voltage
1.2
500
Forward current I F ( mA )
50
Ambient temperature T a ( ˚C )
20
10
5
2
1.1
1.0
0.9
0.8
1
0.7
0
0.5
1.0
1.5
2.0
2.5
3.0
4
3.5
6
Fig.12 “ Low →High ” Relative Threshold
Input Current vs. Ambient
Temperature
12
14
0.4
O1 Low level output voltage VO1L ( V )
Relative threshold input current
V CC = 6V
I FHL = 1
T a = 25˚C
1.2
1.0
0.8
0.6
- 25
10
Fig.13 O 1 Low Level Output Voltage vs.
O 1 Output Current
1.6
1.4
8
Supply voltage VCC ( V )
Forward voltage V F ( V )
0.2
V CC = 6V
R L2 = 10 Ω
I F = 5mA
T a = 25˚C
0.1
0.05
0.02
0.01
0.005
0
25
50
75
Ambient temperature T a ( ˚C )
100
0.01
0.02
0.05
0.1
0.2
O1 Output current I O1 ( A )
0.5
1.0
PC922
Fig.14 O 1 Low Level Output Voltage vs.
Ambient Temperature
Fig.15 O 2 High Level Output Voltage vs.
O2 Output Current
5.4
V CC = 6V
R L2 = 10 Ω
O2 high level output voltage V O2H ( V )
O1 Low level output voltage VO1L ( V )
0.5
0.4
0.3
I O1 = 0.5A
0.4A
0.2
0.1
0.1A
0
- 25
V CC = 6V
I F = 5mA
T a = 25˚C
5.3
5.2
5.1
5.0
4.9
4.8
0
25
50
75
100
0
- 0.1
Ambient temperature T a ( ˚C )
Fig.16 O2 High Level Output Voltage vs.
Ambient Temperature
0.4
O2 Low level output voltage VO2L ( V )
O2 high level output voltage VO2H ( V )
V CC = 6V
5.3
I O2 = - 0.1A
5.2
5.1
- 0.4A
5.0
- 0.5A
4.9
0
25
50
75
Ambient temperature T a ( ˚C )
V CC = 6V
T a = 25˚C
0.1
0.05
0.02
0.01
0.02
0.05
0.1
0.2
O2 output current I 2 ( A )
0.5
1.0
Fig.19 High Level Supply Current vs.
Supply Voltage
0.5
14
V CC = 6V
High level supply current I CCH ( mA )
O2 Low level output voltage V O2L ( V )
0.2
0.005
0.01
100
Fig.18 O 2 Low Level Output Voltage vs.
Ambient Temperature
0.4
I O2 = 0.6A
0.3
0.5A
0.2
0.1
0.1A
0
- 25
- 0.6
Fig.17 O 2 Low Level Output Voltage vs.
O 2 Output Current
5.4
4.8
- 25
- 0.2
- 0.3
- 0.4 - 0.5
O2 output currrent I O2 ( A )
0
25
50
75
Ambient temperature T a ( ˚C )
100
T a = - 20˚C
12
25˚C
10
80˚C
8
6
4
4
6
8
10
Supply voltage V CC ( V )
12
14
PC922
Fig.20 Low Level Supply Current vs.
Supply Voltage
Fig.21 Propagation Delay Time vs.
Forward Current
(µ s )
16
PLH
14
Propagation delay time t PHL , t
25˚C
12
10
80˚C
8
6
6
8
10
12
Supply voltage V CC ( V )
5
4
t PHL T a = 80˚C
3
25˚C
- 20˚C
2
t PLH T a = 80˚C
25˚C
1
- 20˚C
0
O2 peak output current I O2P ( A )
µs )
t PLH
2
t PHL
1
0
25
50
75
Ambient temperature T a ( ˚C )
100ms *
10ms *
1
I02MAX. ( Continuous )
1s*
0.5
DC
0.2
DC ( T a = 80˚C)
0.1
0.2
100
1ms *
I02 MAX. ( Pulse )
2
0.5
1
2
5
VCC
Anode
PC922
Cathode
O1
10
O2 low level output voltage VO2L ( V )
■ Application Circuit
+ 5V
25
*Single
osc.pulse
T a = 25˚C
5
3
0
- 25
10
15
20
Forward current I F ( mA )
10
V CC = 6V
R L1 = 5 Ω
R L2 = 10 Ω
I F = 5mA
4
5
Fig.23 O 2 Peak Output Current vs.
O 2 Low Level Output Voltage
,t
PLH (
5
14
Fig.22 Propagation Delay Time vs.
Ambient Temperature
PHL
V CC = 6V
R L1 = 5 Ω
R L2 = 10 Ω
0
4
Propagation delay time t
6
V CC ( MAX. )
Low level supply current I CCL ( mA )
T a = - 20˚C
+
O2
Power transistor
module
6V
Load
C
B
GND
TTL, microcomputer, etc.
+
E
■ Precautions for Use
( 1 ) It is recommended that a by-pass capacitor of more than 0.01 µ F is added between VCC
and GND near the device in order to stabilize power supply line.
( 2 ) Handle this product the same as with other integrated circuits against static electricity.
( 3 ) As for other general cautions, refer to the chapter “ Precautions for Use ” .
20