PC922 High Power OPIC Photocoupler PC922 ❈ Lead forming type ( I type ) and taping reel type ( P type ) are also available. ( PC922I/PC922P) ❈❈ TÜV ( VDE 0884 ) approved type is also available as an option. ■ Features ■ Outline Dimensions 1. Built-in base amplifier for inverter drive 2. High power ( IO1: MAX. 0.5A ( DC ) ) (IO2P : MAX. 2.0A ( pulse ) ) 3. High isolation voltage between input and output ( Viso : 5 000V rms ) 4. High noise reduction type 5. High speed response ( t PHL , t PLH : MAX. 5 µ s ) 6. High sensitivity ( IFLH : MAX. 3mA ) 7. Recognized by UL, file No. E64380 ( Unit : mm ) Internal connection diagram 0.85 ± 0.2 1.2 ± 0.3 8 6.5 ± 0.5 7 6 8 7 5 Tr1 1 2 3 1 4 2 3 4 7.62 ± 0.3 3.5 ± 0.5 0.5TYP. Interface Tr2 Amp Anode mark 3.4 ± 0.5 1. Inverter controlled air conditioners 2. Small capacitance general purpose inverters 5 PC922 9.66 ± 0.5 ■ Applications 6 0.5 ± 0.1 0.26 ± 0.1 2.54 ± 0.25 θ θ θ = 0 to 13 ˚ 1 Anode 2 Cachode 3 NC 4 NC 5 O1 6 O2 7 GND 8 V CC * “ OPIC ” ( Optical IC ) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip. ■ Absolute Maximum Ratings Input Output Parameter Forward current *1 Reverse voltage Supply voltage O 1 output current *2 O 1 peak output current O 2 output current *2 O 2 peak output current O 1 output voltage Power dissipation Total power dissipation *3 Isolation voltage Operating temperature Storage temperature *4 Soldering temperature ( Ta = Topr unless otherwise specified) Symbol IF VR V CC I O1 I O1P I O2 I O2P V O1 PO P tot V iso T opr T stg T sol Rating 25 6 18 0.5 1.0 0.6 2.0 18 500 550 5 000 - 20 to + 80 - 55 to + 125 260 Unit mA V V A A A A V mW mW V rms ˚C ˚C ˚C *1 Ta = 25˚C *2 Pulse width <= 5 µ s, Duty ratio : 0.01 *3 40 to 60% RH, AC for 1 minute, Ta = 25˚C *4 For 10 seconds “ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device. ” PC922 ■ Electro-optical Characteristics Parameter Forward voltage Input Output Reverse current Terminal capacitance Operating supply voltage ( Ta = T opr unless otherwise specified ) Symbol V F1 V F2 IR Ct V CC O1 low level output voltage V O1L O2 high level output voltage V O2H O2 low level output voltage O1 leak current O2 leak current V O2L I O1L I O2L High level supply current I CCH Low level supply current I CCL *5 “ Low→High ” threshold input current Response time Transfer Isolation resistance charac“Low→High ” propagation delay time teristics “High→Low ” propagation delay time Rise time Fall time Instantaneous common mode rejection voltage “Output : High level ” Instantaneous common mode rejection voltage “Output : Low level ” I FLH R ISO Conditions T a = 25˚C, I F = 5mA T a = 25˚C, I F = 0.2mA T a = 25˚C, V R = 3V T a = 25˚C, V = 0, f = 1kHz V CC = 6V, I O1 = 0.4A, R L2 = 10 Ω, I F = 5mA V CC = 6V, I O2 = - 0.4A, I F = 5mA V CC = 6V, I O2 = 0.5A, I F = 0 V CC = 13V, I F = 0 V CC = 13V, I F = 5mA T a = 25˚C, V CC = 6V, I F = 5mA V CC = 6V, I F = 5mA T a = 25˚C, V CC = 6V, I F = 0 V CC = 6V, I F = 0 T a = 25˚C, V CC = 6V, R L1 = 5 Ω, R L2 = 10 Ω V CC = 6V, R L1 = 5 Ω R L2 = 10 Ω Ta = 25˚C, DC = 500V 40 to 60% RH Unit V V µA pF V Fig. - 0.2 0.4 V 1 4.5 5.0 - V 2 - 0.2 9 11 - 0.4 200 200 13 17 15 20 V µA µA mA mA mA mA 0.3 1.5 3.0 mA 5 0.2 - 5.0 mA 5 5 x1010 10 11 - Ω - - 2 2 0.2 0.1 5 5 1 1 µs µs µs µs 6 - 3 4 - CM H T a = 25˚C, V CM = 600V (peak ) I F = 5mA, R L1 = 470 Ω, R L2 = 1k Ω, -1 500 - - V/ µ s 7 T a = 25˚C, V CM = 600V (peak ) I F = 0, R L1 = 470 Ω, R L2 = 1k Ω 1 500 - - V/ µ s 7 CM L Tr. 1 ON OFF MAX. 1.4 10 250 13 T a = 25˚C, V CC = 6V I F = 5mA R L1 = 5 Ω R L2 = 10 Ω ■ Truth Table O2 Output High level Low level TYP. 1.1 0.9 30 - t PLH t PHL tr tf ∆ V O2H = 0.5V ∆ V O2L = 0.5V *5 I FLH represents forward current when output goes from low to high. Input ON OFF MIN. 0.6 5.4 Tr. 2 OFF ON PC922 ■ Test Circuit Fig. 1 Fig. 2 1 8 1 5 5 VCC V PC922 IF IF 1 8 6 IO1 RL2 7 VCC IO2 PC922 6 2 8 V Fig. 3 2 7 1 8 Fig. 4 A 5 VCC PC922 IF IF 6 2 7 1 8 6 7 2 Fig. 5 Fig. 6 A 1 5 VCC 8 t r = tf= 0.01 µ s ZO = 50 Ω RL1 RL1 5 VIN VCC PC922 PC922 VO2 6 IF variable 6 RL2 RL2 2 V 47 Ω 7 2 7 VIN waveform Fig. 7 1 RL1 PC922 tPLH VCC 5 B 50% 8 SW 6 RL2 VO2 + VCM 50% tf tr 7 2 tPHL 90% VO2 waveform 10% Fig. 8 Forward Current vs. Ambient Temperature - 30 25 VCM (peak) VCM waveform GND CMH V O2 waveform VO2H SW at A, I F = 3mA CMH V O2 waveform SW at B, I F =0 ∆VO2H ∆VO2L VO2L GND Forward current I F ( mA ) A A 5 VCC PC922 20 15 10 5 0 - 25 - 20 0 25 50 75 80 Ambient temperature T a ( ˚C ) 100 PC922 Fig. 9-a Power Dissipation vs. Ambient Temperature Fig. 9-b Power Dissipation vs. Ambient Temperature 600 600 550 500 Power dissipation P tot ( mW ) Power dissipation P O ( mW ) 500 400 300 200 100 0 - 20 400 300 200 100 0 25 50 75 80 0 - 20 100 0 25 Ambient temperature T a ( ˚C ) Fig. 10 Forward Current vs. Forward Voltage 50˚C Relative threshold input current 25˚C 100 0˚C - 20˚C 50 100 V CC = 6V I FLH = 1 T a = 25˚C T a = 75˚C 200 75 80 Fig.11 “ Low →High ” Relative Threshold Input Current vs. Supply Voltage 1.2 500 Forward current I F ( mA ) 50 Ambient temperature T a ( ˚C ) 20 10 5 2 1.1 1.0 0.9 0.8 1 0.7 0 0.5 1.0 1.5 2.0 2.5 3.0 4 3.5 6 Fig.12 “ Low →High ” Relative Threshold Input Current vs. Ambient Temperature 12 14 0.4 O1 Low level output voltage VO1L ( V ) Relative threshold input current V CC = 6V I FHL = 1 T a = 25˚C 1.2 1.0 0.8 0.6 - 25 10 Fig.13 O 1 Low Level Output Voltage vs. O 1 Output Current 1.6 1.4 8 Supply voltage VCC ( V ) Forward voltage V F ( V ) 0.2 V CC = 6V R L2 = 10 Ω I F = 5mA T a = 25˚C 0.1 0.05 0.02 0.01 0.005 0 25 50 75 Ambient temperature T a ( ˚C ) 100 0.01 0.02 0.05 0.1 0.2 O1 Output current I O1 ( A ) 0.5 1.0 PC922 Fig.14 O 1 Low Level Output Voltage vs. Ambient Temperature Fig.15 O 2 High Level Output Voltage vs. O2 Output Current 5.4 V CC = 6V R L2 = 10 Ω O2 high level output voltage V O2H ( V ) O1 Low level output voltage VO1L ( V ) 0.5 0.4 0.3 I O1 = 0.5A 0.4A 0.2 0.1 0.1A 0 - 25 V CC = 6V I F = 5mA T a = 25˚C 5.3 5.2 5.1 5.0 4.9 4.8 0 25 50 75 100 0 - 0.1 Ambient temperature T a ( ˚C ) Fig.16 O2 High Level Output Voltage vs. Ambient Temperature 0.4 O2 Low level output voltage VO2L ( V ) O2 high level output voltage VO2H ( V ) V CC = 6V 5.3 I O2 = - 0.1A 5.2 5.1 - 0.4A 5.0 - 0.5A 4.9 0 25 50 75 Ambient temperature T a ( ˚C ) V CC = 6V T a = 25˚C 0.1 0.05 0.02 0.01 0.02 0.05 0.1 0.2 O2 output current I 2 ( A ) 0.5 1.0 Fig.19 High Level Supply Current vs. Supply Voltage 0.5 14 V CC = 6V High level supply current I CCH ( mA ) O2 Low level output voltage V O2L ( V ) 0.2 0.005 0.01 100 Fig.18 O 2 Low Level Output Voltage vs. Ambient Temperature 0.4 I O2 = 0.6A 0.3 0.5A 0.2 0.1 0.1A 0 - 25 - 0.6 Fig.17 O 2 Low Level Output Voltage vs. O 2 Output Current 5.4 4.8 - 25 - 0.2 - 0.3 - 0.4 - 0.5 O2 output currrent I O2 ( A ) 0 25 50 75 Ambient temperature T a ( ˚C ) 100 T a = - 20˚C 12 25˚C 10 80˚C 8 6 4 4 6 8 10 Supply voltage V CC ( V ) 12 14 PC922 Fig.20 Low Level Supply Current vs. Supply Voltage Fig.21 Propagation Delay Time vs. Forward Current (µ s ) 16 PLH 14 Propagation delay time t PHL , t 25˚C 12 10 80˚C 8 6 6 8 10 12 Supply voltage V CC ( V ) 5 4 t PHL T a = 80˚C 3 25˚C - 20˚C 2 t PLH T a = 80˚C 25˚C 1 - 20˚C 0 O2 peak output current I O2P ( A ) µs ) t PLH 2 t PHL 1 0 25 50 75 Ambient temperature T a ( ˚C ) 100ms * 10ms * 1 I02MAX. ( Continuous ) 1s* 0.5 DC 0.2 DC ( T a = 80˚C) 0.1 0.2 100 1ms * I02 MAX. ( Pulse ) 2 0.5 1 2 5 VCC Anode PC922 Cathode O1 10 O2 low level output voltage VO2L ( V ) ■ Application Circuit + 5V 25 *Single osc.pulse T a = 25˚C 5 3 0 - 25 10 15 20 Forward current I F ( mA ) 10 V CC = 6V R L1 = 5 Ω R L2 = 10 Ω I F = 5mA 4 5 Fig.23 O 2 Peak Output Current vs. O 2 Low Level Output Voltage ,t PLH ( 5 14 Fig.22 Propagation Delay Time vs. Ambient Temperature PHL V CC = 6V R L1 = 5 Ω R L2 = 10 Ω 0 4 Propagation delay time t 6 V CC ( MAX. ) Low level supply current I CCL ( mA ) T a = - 20˚C + O2 Power transistor module 6V Load C B GND TTL, microcomputer, etc. + E ■ Precautions for Use ( 1 ) It is recommended that a by-pass capacitor of more than 0.01 µ F is added between VCC and GND near the device in order to stabilize power supply line. ( 2 ) Handle this product the same as with other integrated circuits against static electricity. ( 3 ) As for other general cautions, refer to the chapter “ Precautions for Use ” . 20