SHARP 6N138

6N138
6N138
High Sensitivity, High Speed
OPIC Photocoupler
■ Features
■ Outline Dimensions
Output
0.5TYP
8
7
6
5
1
2
3
4
7.62 ± 0.3
3.7 ± 0.5
3.5 ± 0.5
1
2
3
4 0.8 ± 0.2
1.2 ± 0.3
Primary side mark (Sunken place )
9.22 ± 0.5
θ
2.54 ± 0.25
0.5 ± 0.1
θ = 0 to 13 ˚
0.26 ± 0.1
1 NC
5 GND
2 Anode
6 VO
3 Cathode
4 NC
7 VB
8 V CC
θ
* “ OPIC ” ( Optical IC ) is a trademark of the SHARP Corporation.
An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip.
■ Absolute Maximum Ratings
Input
7
6N138
■ Applications
1. Interfaces for computer peripherals
2. Electronic calculators, measuring instruments,
control equipment
3. Telephone sets
4. Signal transmission between circuits of
different potentials and impedances
Parameter
Forward current
*1
Peak forward current
*2
Peak transient forward current
Reverse voltage
Power dissipation
Supply voltage
Output voltage
Emitter-base reverse
withstand voltage ( pin 5 to 7 )
*3
Average output current
Power dissipation
*4
Isolation voltage
Operating temperature
Storage temperature
*5
Soldering temperature
Internal connection
diagram
1.2 ± 0.3
6
5
0.85 ± 0.3
8
( Unit : mm )
6.5 ± 0.5
1. High current transfer ratio
( CTR : MIN. 300% at I F = 1.6mA )
2. High speed response
( t PHL : TYP. 2 µ s at R L = 2.2kΩ )
3. Instantaneous common mode rejection
voltage ( CM H : TYP. 500V/ µ s )
4. TTL compatible output
5. Overseas standard model
6. Recognized by UL, file No. E64380.
( Ta = 25˚C )
Symbol
IF
IF
I FM
VR
P
V CC
VO
Rating
20
40
1
5
35
- 0.5 to + 7
- 0.5 to + 7
Unit
mA
mA
A
V
mW
V
V
V EBO
0.5
V
IO
PO
V iso
T opr
T stg
T sol
60
100
2 500
0 to + 70
- 55 to + 125
260
mA
mW
V rms
˚C
˚C
˚C
*1 50% duty cycle, Pulse width: 1ms
*2 pulse width <=1µ s, 300pps
*3 Decreases at the rate of 0.7mA /˚C if the external temperature is 25˚C or more.
*4 40 to 60% RH, AC for 1 minute
*5 For 10 seconds
“ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.”
6N138
■ Electro-optical Characteristics
( Ta = 0 to 70˚C unless otherwise specified )
Parameter
Current transfer ratio
Logic ( 0 ) output voltage
Symbol
CTR
V OL
I OH
I CCL
I CCH
VF
*1
Logic (1) output current
Logic ( 0 ) supply current
Logic (1) supply current
Input forward voltage
Input forward voltage
temperature coefficient
Input reverse voltage
Input capacitance
*3
Leak current
( input-output )
*3
( input-output )
Isolation resistance
*3
Capacitance ( input-output )
*2
BV R
C IN
I I-O
R I-O
CI-O
Conditions
I F = 1.6mA, V O = 0.4V, V CC = 4.5V
I O= 4.8mA, V CC= 4.5V, I F= 1.6mA
I F = 0, V CC = V O = 7V
I F = 1.6mA, V CC= 5V, V O = open
I F = 0, V CC = 5V, V O = open
I F = 1.6mA, Ta = 25˚C
MIN.
300
-
TYP.
1 600
0.1
0.1
0.5
10
1.5
I F = 1.6mA
I R = 10 µA, Ta = 25˚C
V F = 0, f = 1MHz
Ta = 25˚C, 45% RH, t = 5s
V I-O = 3kV DC
V I-O = 500V DC
f = 1MHz
MAX.
0.4
250
1.7
Unit
%
V
µA
mA
nA
V
-
- 1.9
-
mV/˚C
5.0
-
60
-
V
pF
-
-
1.0
µA
-
Ω
pF
-
12
10
0.6
Note ) Typical value : at Ta = 25˚C, VCC = 5V
*1 Current transfer ratio is a ratio of input current and output
current expressed in % .
*2 ∆ V F / ∆ Ta
*3 Measured as 2-pin element ( Short 1, 2, 3, 4 and 5, 6, 7, 8. )
■ Switching Characteristics
( Ta = 25˚C, VCC = 5V)
Parameter
*4
Propagation delay time
Output (1) → ( 0 )
*4
Propagation delay time
Output ( 0 ) → (1)
*5
*6Instantaneous common mode
rejection voltage “ Output (1)”
*5
*6Instantaneous common mode
rejection voltage “ Output ( 0 ) ”
Symbol
t PHL
t PLH
CM H
CM L
Conditions
I F = 1.6mA
R L = 2.2kΩ
I F = 1.6mA
R L = 2.2kΩ
I F = 0, VCM = 10V P-P
R L = 2.2kΩ
I F = 1.6mA, VCM = 10V
R L = 2.2kΩ
MIN.
TYP.
MAX.
Unit
-
2
10
µs
-
7
35
µs
-
500
-
V/ µ s
-
- 500
-
V/ µ s
P-P
*5 Instantaneous common mode rejection voltage “ output (1)” represents a common mode voltage variation that can hold
the output above (1) level ( VO > 2.0V) .
Instantaneous common mode rejection voltage “ output ( 0 ) ” represents a common mode voltage variation that can hold
the output above ( 0 ) level ( VO < 0.8V) .
*4 Test circuit for Propagation Delay Time
Pulse oscillator
Pulse input
duty ratio
= 1/10
IF
0
IF
IF monitor
100 Ω
1
5
2
6
3
7
4
8
VCC
5V
VO
RL
VO
1.5V
VOL
1.5V
CL = 15pF
t PHL
t PLH
6N138
*6 Test Circuit for Instantaneous Common Mode Rejection Voltage
IF
A
B
1
8
2
7
3
6
4
VCC = 5V
10V
VCM
0V
RL
5
VCM
5V
2V
IF = 0
CML
VO
0.8V
VOL
IF = 16mA
Fig. 2 Power Dissipation vs.
Ambient Temperature
120
30
PO
Power dissipation P, P o ( mW )
100
Forward current I F ( mA )
tf
CMH
Fig. 1 Forward Current vs.
Ambient Temperature
20
10
0
25
50
70 75
Ambient temperature T
a
80
60
40
35
P
20
0
0
0
100
25
50
70 75
Ambient temperature T
( ˚C )
Fig. 3 Forward Current vs. Forward Voltage
100
( ˚C )
a
Fig. 4 Output Current vs. Output Voltage
60
100
Output current I O ( mA )
70˚C
4.5mA
4.0mA
40
3.5mA
3.0mA
2.5mA
30
2.0mA
20
1.5mA
0.1
1.0mA
0.5mA
10
0.01
1.0
0
1.2
1.4
1.6
1.8
2.0
Forward voltage V F ( V )
2.2
0
1
Output voltage V O ( V )
2
.)
25˚C
50˚C
X
T a = 0˚C
1
A
10
I F = 5mA
(M
PO
V CC = 5V
T a = 25˚C
50
Forward current I F ( mA )
tr
Vo
VO
VFF
t r = tf = 16ns
10%
90%
90%
10%
6N138
Fig. 5 Current Transfer Ratio vs.
Forward Current
Fig. 6 Output Current vs. Forward Current
50
Current transfer ratio CTR ( % )
1 000
V CC = 4.5V
V O = 0.4V
T a = 70˚C
10
Output current I O ( mA )
25˚C
0˚C
800
600
T a = 70˚C
1
0.1
25˚C
0˚C
400
1
10
Forward current I
F
100
( mA )
I F = 0.5mA
RL = 4.7kΩ
1/f = 1ms
t PLH
PLH
,t
PHL
PLH
(µs )
F
10
,t
Propagation delay time t
t PLH
t PHL
t PHL
5
0
0
0
10
20
30
40
50
60
70
0
10
Ambient temperature T a ( ˚C )
100
tf
10
tr
1
Logic ( 1 ) supply current I CCH ( A )
Adjust I F to V OL = 2V
T a = 25˚C
10
-6
10
-7
10
-8
10
-9
10
1
Load resistance RL ( k Ω )
30
40
50
60
70
20
30
40
50
60
Ambient temperature T a ( ˚C )
70
Fig. 9 Logic ( 1 ) Supply Current vs.
Ambient Temperature
1 000
0.1
20
Ambient temperature T a ( ˚C )
Fig. 8 Rise Time, Fall Time vs.
Load Resistance
Rise time, fall time t r , t f ( µ s )
1
Fig. 7-b Propagation Delay Time vs.
Ambient Temperature
I F = 12mA
RL = 270 Ω
1/f = 100 µ s
1
V CC = 5.0V
V O = 0.4V
10
100
Forward current I
PHL
Propagation delay time t
0.1
( mA )
Fig. 7-a Propagation Delay Time vs.
Ambient Temperature
2
0.01
0.004
0.01
( µs )
200
0.1
10
I F = 0mA
V CC = 15V
V O = OPEN
- 10
0
10
6N138
*7 Test Circuit for Rise Time, Fall Time vs. Load Resistance
Input
IF
O
Pulse
input
Duty ratio
= 1 / 10
Pulse
oscillator
IF
IF monitor
VO
1
8
2
7
3
6
VO
4
5
CL = 15 PF
100 Ω
VCC
Output
(saturated)
1.5V
5V
1.5V
VOL
RL
tPHL
tPLH
10%
90%
90%
10%
tr
Output
(non-saturated)
■ Precautions for Use
( 1 ) It is recommended that a by-pass capacitor of more than 0.01 µ F be added between V CC and
GND near the device in order to stabilize power supply line.
( 2 ) Transistor of detector side in bipolar configuration is apt to be affected by static electricity
for its minute design. When handling them, general counterplan against static electricity
should be taken to avoid breakdown of devices or degradation of characteristics.
( 3 ) As for other general cautions, refer to the chapter “ Precautions for Use ” .
5V
2V
tf