SHARP GP1A35RV

GP1A35RV
GP1A35RV
High Sensing Accuracy OPIC
Photointerrupter with
Encoder Functions
■ Features
■ Outline Dimensions
1. 2-phase ( A, B ) digital output
2. High sensing accuracy
( Disk slit pitch: 0.22mm, Moire stripe application )
3. TTL compatible output
4. Compact and light
( Unit : mm )
OPIC
12.0
8.0MIN. 4.4
3 - (1.27)
(2.54)
5
8.8
2.0
4 - R1.4 ± 0.15
15.0 ± 0.15
20.2
4
2
1
OPIC
4 V OB
5 GND
6 V CC
4.0
(1.27)
3
3
4 - R2.6
10.0MIN.
11.4
9.9
0.15
0.1
(7.08)
2
1A35R
1. Copiers
2. Electronic typewriters, printers
3. Numerical control machines
7.3+-
6.4 ± 0.15
3.9+- 0.1
0.2
2.5 ± 0.15 1.4 ± 0.15
■ Applications
6
5
4
1 Anode
2 Cathode
3 V OA
2.0 ± 0.15
0.8 ± 0.15
1
6.4
12.0
2 - φ 2.0
± 0.1
Internal connection diagram
*Tolerance:± 0.3mm
*( ): Reference dimensions
6
*“ OPIC” ( Optical IC ) is a trademark of the SHARP Corporation.
An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip.
■ Absolute Maximum Ratings
Parameter
Forward current
*1
Peak forward current
Input
Reverse voltage
Power dissipation
Supply voltage
Output
Low level output current
Power dissipation
Operating temperature
Storage temperature
*2
Soldering temperature
*1 Pulse width<=100µ s, Duty ratio= 0.01
( Ta= 25˚C )
Symbol
IF
I FM
VR
P
V CC
I OL
PO
T opr
T stg
T sol
Rating
65
1
6
100
7
20
250
0 to + 70
- 40 to + 80
260
Unit
mA
A
V
mW
V
mA
mW
˚C
˚C
˚C
*2 For 5 seconds
“ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.”
GP1A35RV
■ Electro-optical Characteristics
Parameter
Forward voltage
Reverse current
Input
Phase A
Output
voltage
Output
Phase B
High level
Low level
High level
Low level
Dissipation current
Duty ratio
Transfer
characteristics
Phase difference
Response speed
( Ta= 25˚C )
Symbol
VF
IR
V AH
V AL
V BH
V BL
I CC
*4
∆A
*4
∆B
*5
θ AB1
tr
tf
*4 ∆
*3 In the condition that output A and B are low level.
t AB1
x 360˚
t AP
*5 θ AB1 =
Conditions
I F = 30mA
V R = 3V
V CC= 5V, I F = 30mA
I OL = 8mA, I F = 30mA, VCC = 5V
V CC= 5V, I F = 30mA
I OL = 8mA, I F = 30mA, V CC= 5V
*3
V CC = 5V, I F = 30mA
I F = 30mA
*6
f= 12kHz
V CC= 5V
I F = 30mA, V CC= 5V
*6
f= 12kHz
A=
MIN.
2.4
2.4
-
TYP.
1.2
4.9
0.1
4.9
0.1
5
MAX.
1.5
10
0.4
0.4
20
Unit
V
µA
30
50
70
%
50
-
90
1.0
1.0
130
2.0
2.0
deg.
V
mA
µs
t AH
t BH
t AP x 100, ∆ B = t BP x 100
*6 Measured under the condition shown in Measurement Conditions.
■ Output Waveforms
Output A
( VOA)
t AH
t AP
Output B
( VOB)
t AB1
t BH
t BP
Rotational direction: Counterclockwise when seen
from OPIC light detector
Fig. 1 Forward Current vs. Ambient
Temperature
Fig. 2 Output Power Dissipation vs.
Ambient Temperature
100
300
Output power dissipation Po ( mW )
90
Forward current I F ( mA )
80
70
65
60
50
40
30
20
250
200
150
100
50
10
0
0
0
25
50
70 75
Ambient temperature T a ( ˚C )
100
0
25
50
70 75
Ambient temperature Ta ( ˚C )
100
GP1A35RV
Fig. 3 Duty Ratio vs. Frequency
Fig. 4 Phase Difference vs. Frequency
0.9
130
V CC = 5V
V CC = 5V
0.8
Phase difference θ AB1 ( deg. )
T a = 25˚C
0.7
t AH (
Output A )
t AP
0.6
Duty ratio
120 I F = 30mA
I F = 30mA
0.5
0.4
t BH ( Output B )
t BP
0.3
T a = 25˚C
110
100
90
t AB1
θ AB1 = t
x 360˚
AP
80
70
60
0.2
0.1
1
2
5
10
50
20
2
1
5
Frequency f ( kHz )
Frequency f ( kHz )
Fig. 5 Duty Ratio vs. Ambient Temperature
1.0
0.8
Duty ratio
0.7
t AH
( Output A )
t AP
0.6
0.5
0.4
t BH
( Output B )
t BP
0.3
V CC= 5V
I F = 30mA
f= 12kHz
130
Phase difference θ AB1 ( deg. )
0.9
120
110
100
90
θ AB1 =
80
t AB1
t AP
x 360˚
70
0.2
60
0.1
50
0
40
0
25
50
75
0
100
25
50
75
Ambient temperature Ta ( ˚C )
Ambient temperature T a ( ˚C )
0.9
VCC = 5V
I F = 30mA
f= 12kHz
T a = 25˚C
0.8
0.7
t AH
( Output A )
t AP
0.6
0.5
t BH
t BP
0.4
( Output B )
0.3
0.2
0.1
- 1.0
100
Fig. 8 Phase Difference vs.
Distance ( Xdirection )
140
130
Phase difference θ AB1 ( deg. )
Fig. 7 Duty Ratio vs. Distance ( Xdirection )
Duty ratio
20
Fig. 6 Phase Difference vs. Ambient
Temperature
140
V CC = 5V
I F = 30mA
f= 12kHz
10
120
V CC = 5V
I F = 30mA
f= 12kHz
T a = 25˚C
110
θ AB1 =
100
t AB1
t AP
x 360˚
Reference position
(-)
(+)
GP1A35RV
90
80
70
Disk
- 0.5
0
0.5
Distance X ( mm ) ( Shifting encoder )
1.0
60
- 1.0
- 0.5
0
0.5
Distance X ( mm ) ( Shifting encoder )
1.0
GP1A35RV
0.9
V CC = 5V
I F = 30mA
f= 12kHz
T a = 25˚C
0.8
Duty ratio
0.7
t AH
t AP
0.6
( Output A )
0.5
t BH
t BP
0.4
( Output B )
0.3
Fig.10 Phase Difference vs.
Distance ( Ydirection )
130
V CC = 5V
I F = 30mA
f= 12kHz
T a = 25˚C
120
Phase difference θ AB1 ( deg. )
Fig. 9 Duty Ratio vs. Distance ( Ydirection )
0.2
110
θ AB1 =
100
x 360˚
90
GP1A35RV
80
(+)
Reference
position
(-)
70
60
Disk
0.1
- 1.0
- 0.5
0
0.5
50
- 1.0
1.0
Fig.11 Duty Ratio vs. Distance ( Zdirection )
V CC = 5V
I F = 30mA
f = 12kHz
T a = 25˚C
0.7
0.6
140
130
t AH
t AP
( Output A )
0.5
t BH
t BP
0.4
( Output B )
0.3
0.2
0
0.5
1.0
Fig.12 Phase Difference vs.
Distance ( Zdirection )
Phase difference θ AB1 ( deg. )
0.8
- 0.5
Distance Y ( mm ) ( Shifting encoder )
Distance Y ( mm ) ( Shifting encoder )
Duty ratio
t AB1
t AP
120
V CC = 5V
I F = 30mA
f= 12kHz
T a = 25˚C
110
t AB1
θ AB1 =x t
360 ˚
AP
100
90
Z
80
0.1
70
0
60
( Detecting side )
Disk
OPIC
( Emitting side )
0
0.1
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Distance Z ( mm ) ( Shifting encoder)
0 0.1
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Distance Z ( mm ) ( Shifting encoder )
GP1A35RV
Measurement Conditions
0.9 ˚ ( Number of slit : 400 )
0.45 ˚
4-R1.4
6.5
X'
20.2
1A35R
8.8
X
15
14
R
3.8
R1
1.4
6.4
Disk center
3.9
7.3
0.8 2
12
Note 1 )
0.3
(12.0)
A
Note 2 )
9.9
12.86
Note 1) Distance between disk surface and case surface in the detector side is 0.3mm.
2 ) Encoder positioning pin is positioned on X-X' axis.
Distance between center of disk and portion A of positioning pin is 12.86mm.
3 ) Center of disk slit is R14.0.
■ Precautions for Use
( 1 ) This module is designed to be operated at I F = 30mA TYP.
( 2 ) Fixing torque : MAX. 0.6N • m
( 3 ) In order to stabilize power supply line, connect a by-pass capacitor of more than 0.01 µF
between Vcc and GND near the device.
( 4 ) As for other general cautions, refer to the chapter “ Precautions for Use” .
■ Application Circuit ( Detection of Rotational Direction )
A
output
M
B output
GP1A35RV
Q1
Q2
D Q
T Q
Detection signal of
rotational direction
R
C
Q4
Q'1
D Q
T Q
Q3
D Q
T Q
Q'3
C•W C•C•W
When gate delay causes pulse noise in Q4 output,
apply the CR filter to remove pulse noise.