GP1A35RV GP1A35RV High Sensing Accuracy OPIC Photointerrupter with Encoder Functions ■ Features ■ Outline Dimensions 1. 2-phase ( A, B ) digital output 2. High sensing accuracy ( Disk slit pitch: 0.22mm, Moire stripe application ) 3. TTL compatible output 4. Compact and light ( Unit : mm ) OPIC 12.0 8.0MIN. 4.4 3 - (1.27) (2.54) 5 8.8 2.0 4 - R1.4 ± 0.15 15.0 ± 0.15 20.2 4 2 1 OPIC 4 V OB 5 GND 6 V CC 4.0 (1.27) 3 3 4 - R2.6 10.0MIN. 11.4 9.9 0.15 0.1 (7.08) 2 1A35R 1. Copiers 2. Electronic typewriters, printers 3. Numerical control machines 7.3+- 6.4 ± 0.15 3.9+- 0.1 0.2 2.5 ± 0.15 1.4 ± 0.15 ■ Applications 6 5 4 1 Anode 2 Cathode 3 V OA 2.0 ± 0.15 0.8 ± 0.15 1 6.4 12.0 2 - φ 2.0 ± 0.1 Internal connection diagram *Tolerance:± 0.3mm *( ): Reference dimensions 6 *“ OPIC” ( Optical IC ) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip. ■ Absolute Maximum Ratings Parameter Forward current *1 Peak forward current Input Reverse voltage Power dissipation Supply voltage Output Low level output current Power dissipation Operating temperature Storage temperature *2 Soldering temperature *1 Pulse width<=100µ s, Duty ratio= 0.01 ( Ta= 25˚C ) Symbol IF I FM VR P V CC I OL PO T opr T stg T sol Rating 65 1 6 100 7 20 250 0 to + 70 - 40 to + 80 260 Unit mA A V mW V mA mW ˚C ˚C ˚C *2 For 5 seconds “ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.” GP1A35RV ■ Electro-optical Characteristics Parameter Forward voltage Reverse current Input Phase A Output voltage Output Phase B High level Low level High level Low level Dissipation current Duty ratio Transfer characteristics Phase difference Response speed ( Ta= 25˚C ) Symbol VF IR V AH V AL V BH V BL I CC *4 ∆A *4 ∆B *5 θ AB1 tr tf *4 ∆ *3 In the condition that output A and B are low level. t AB1 x 360˚ t AP *5 θ AB1 = Conditions I F = 30mA V R = 3V V CC= 5V, I F = 30mA I OL = 8mA, I F = 30mA, VCC = 5V V CC= 5V, I F = 30mA I OL = 8mA, I F = 30mA, V CC= 5V *3 V CC = 5V, I F = 30mA I F = 30mA *6 f= 12kHz V CC= 5V I F = 30mA, V CC= 5V *6 f= 12kHz A= MIN. 2.4 2.4 - TYP. 1.2 4.9 0.1 4.9 0.1 5 MAX. 1.5 10 0.4 0.4 20 Unit V µA 30 50 70 % 50 - 90 1.0 1.0 130 2.0 2.0 deg. V mA µs t AH t BH t AP x 100, ∆ B = t BP x 100 *6 Measured under the condition shown in Measurement Conditions. ■ Output Waveforms Output A ( VOA) t AH t AP Output B ( VOB) t AB1 t BH t BP Rotational direction: Counterclockwise when seen from OPIC light detector Fig. 1 Forward Current vs. Ambient Temperature Fig. 2 Output Power Dissipation vs. Ambient Temperature 100 300 Output power dissipation Po ( mW ) 90 Forward current I F ( mA ) 80 70 65 60 50 40 30 20 250 200 150 100 50 10 0 0 0 25 50 70 75 Ambient temperature T a ( ˚C ) 100 0 25 50 70 75 Ambient temperature Ta ( ˚C ) 100 GP1A35RV Fig. 3 Duty Ratio vs. Frequency Fig. 4 Phase Difference vs. Frequency 0.9 130 V CC = 5V V CC = 5V 0.8 Phase difference θ AB1 ( deg. ) T a = 25˚C 0.7 t AH ( Output A ) t AP 0.6 Duty ratio 120 I F = 30mA I F = 30mA 0.5 0.4 t BH ( Output B ) t BP 0.3 T a = 25˚C 110 100 90 t AB1 θ AB1 = t x 360˚ AP 80 70 60 0.2 0.1 1 2 5 10 50 20 2 1 5 Frequency f ( kHz ) Frequency f ( kHz ) Fig. 5 Duty Ratio vs. Ambient Temperature 1.0 0.8 Duty ratio 0.7 t AH ( Output A ) t AP 0.6 0.5 0.4 t BH ( Output B ) t BP 0.3 V CC= 5V I F = 30mA f= 12kHz 130 Phase difference θ AB1 ( deg. ) 0.9 120 110 100 90 θ AB1 = 80 t AB1 t AP x 360˚ 70 0.2 60 0.1 50 0 40 0 25 50 75 0 100 25 50 75 Ambient temperature Ta ( ˚C ) Ambient temperature T a ( ˚C ) 0.9 VCC = 5V I F = 30mA f= 12kHz T a = 25˚C 0.8 0.7 t AH ( Output A ) t AP 0.6 0.5 t BH t BP 0.4 ( Output B ) 0.3 0.2 0.1 - 1.0 100 Fig. 8 Phase Difference vs. Distance ( Xdirection ) 140 130 Phase difference θ AB1 ( deg. ) Fig. 7 Duty Ratio vs. Distance ( Xdirection ) Duty ratio 20 Fig. 6 Phase Difference vs. Ambient Temperature 140 V CC = 5V I F = 30mA f= 12kHz 10 120 V CC = 5V I F = 30mA f= 12kHz T a = 25˚C 110 θ AB1 = 100 t AB1 t AP x 360˚ Reference position (-) (+) GP1A35RV 90 80 70 Disk - 0.5 0 0.5 Distance X ( mm ) ( Shifting encoder ) 1.0 60 - 1.0 - 0.5 0 0.5 Distance X ( mm ) ( Shifting encoder ) 1.0 GP1A35RV 0.9 V CC = 5V I F = 30mA f= 12kHz T a = 25˚C 0.8 Duty ratio 0.7 t AH t AP 0.6 ( Output A ) 0.5 t BH t BP 0.4 ( Output B ) 0.3 Fig.10 Phase Difference vs. Distance ( Ydirection ) 130 V CC = 5V I F = 30mA f= 12kHz T a = 25˚C 120 Phase difference θ AB1 ( deg. ) Fig. 9 Duty Ratio vs. Distance ( Ydirection ) 0.2 110 θ AB1 = 100 x 360˚ 90 GP1A35RV 80 (+) Reference position (-) 70 60 Disk 0.1 - 1.0 - 0.5 0 0.5 50 - 1.0 1.0 Fig.11 Duty Ratio vs. Distance ( Zdirection ) V CC = 5V I F = 30mA f = 12kHz T a = 25˚C 0.7 0.6 140 130 t AH t AP ( Output A ) 0.5 t BH t BP 0.4 ( Output B ) 0.3 0.2 0 0.5 1.0 Fig.12 Phase Difference vs. Distance ( Zdirection ) Phase difference θ AB1 ( deg. ) 0.8 - 0.5 Distance Y ( mm ) ( Shifting encoder ) Distance Y ( mm ) ( Shifting encoder ) Duty ratio t AB1 t AP 120 V CC = 5V I F = 30mA f= 12kHz T a = 25˚C 110 t AB1 θ AB1 =x t 360 ˚ AP 100 90 Z 80 0.1 70 0 60 ( Detecting side ) Disk OPIC ( Emitting side ) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Distance Z ( mm ) ( Shifting encoder) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Distance Z ( mm ) ( Shifting encoder ) GP1A35RV Measurement Conditions 0.9 ˚ ( Number of slit : 400 ) 0.45 ˚ 4-R1.4 6.5 X' 20.2 1A35R 8.8 X 15 14 R 3.8 R1 1.4 6.4 Disk center 3.9 7.3 0.8 2 12 Note 1 ) 0.3 (12.0) A Note 2 ) 9.9 12.86 Note 1) Distance between disk surface and case surface in the detector side is 0.3mm. 2 ) Encoder positioning pin is positioned on X-X' axis. Distance between center of disk and portion A of positioning pin is 12.86mm. 3 ) Center of disk slit is R14.0. ■ Precautions for Use ( 1 ) This module is designed to be operated at I F = 30mA TYP. ( 2 ) Fixing torque : MAX. 0.6N • m ( 3 ) In order to stabilize power supply line, connect a by-pass capacitor of more than 0.01 µF between Vcc and GND near the device. ( 4 ) As for other general cautions, refer to the chapter “ Precautions for Use” . ■ Application Circuit ( Detection of Rotational Direction ) A output M B output GP1A35RV Q1 Q2 D Q T Q Detection signal of rotational direction R C Q4 Q'1 D Q T Q Q3 D Q T Q Q'3 C•W C•C•W When gate delay causes pulse noise in Q4 output, apply the CR filter to remove pulse noise.