PC900V/PC900VQ Digital Output Type OPIC Photocoupler PC900V/PC900VQ ❈ Lead forming type ( I type ) and taping reel type ( P type ) are also available. ( PC900VI/PC900VP ) ❈❈ TUV ( DIN-VDE0884 ) approved type is also available as an option. .. ■ Features ■ Outline Dimensions 1. High reliability type ( PC900VQ ) 2. Normal OFF operation, open collector output 3. TTL and LSTTL compatible output 4. Operating supply voltage V CC : 3 to 15V 5. High isolation voltage between input and output ( Viso : 5 000V rms ) 6. Recognized by UL, file No. E64380 Internal connection diagram 2.54 ± 0.25 6 5 4 PC900V 1 2 6 Amp 3 0.9 ± 0.2 1.2 ± 0.3 1 3 7.62 ± 0.3 3.7 ± 0.5 3.35 ± 0.5 0.5TYP. ■ Applications 2 3.5 ± 0.5 7.12 ± 0.5 1. Isolation between logic circuits 2. Logic level shifters 3. Line receivers 4. Replacements for relays and pulse transformers 5. Noise reduction Voltage regulator 5 4 6.5 ± 0.5 Anode mark ( Unit : mm ) θ = 0 to 13 ˚ 0.26 ± 0.1 2.54 ± 0.25 0.5 ± 0.1 θ 1 Anode 2 Cathode 3 NC 4 VO 5 GND 6 V CC * “ OPIC ” ( Optical IC ) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip. ■ Absolute Maximum Ratings Input Output Parameter Forward current *1 Peak forward current Reverse voltage Power dissipation Supply voltage High level output voltage Low level output current Power dissipation Total power dissipation *2 Isolation voltage Operating temperature Storage temperature *3 Soldering temperature ( Ta = 25˚C ) Symbol IF I FM VR P V CC V OH I OL PO P tot V iso T opr T stg T sol Rating 50 1 6 70 16 16 50 150 170 5 000 - 25 to + 85 - 40 to + 125 260 Unit mA A V mW V V mA mW mW V rms ˚C ˚C ˚C *1 Pulse width<=100 µs, Duty ratio : 0.001 *2 40 to 60% RH, AC for 1 minute *3 For 10 seconds “ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.” θ PC900V/PC900VQ ■ Electro-optical Characteristics Symbol Parameter Input Output Forward voltage VF Reverse current Terminal capacitance Operating supply voltage Low level output voltage High level output current Low level supply current High level supply current *4 “ High→Low ” threshold input current *5 “ Low→High ” threshold input current *6 Hysteresis Isolation resistance IR Ct V CC V OL I OH I CCL I CCH “ High→Low ” propagation delay time “ Low→High ” propagation delay time Response time Transfer characteristics ( Ta = 0 to + 70˚C unless specified ) *7 Fall time Rise time I FHL l FLH I FLH /I FHL R ISO t PHL t PLH tf tr Conditions I F = 4mA I F = 0.3mA Ta = 25˚C, V R = 3V Ta = 25˚C, V = 0, f = 1kHz MIN. 0.7 3 I OL = 16mA, V CC = 5V, I F = 4mA V O = V CC = 15V, I F = 0 V CC = 5V, I F = 4mA V CC = 5V, I F = 0 Ta = 25˚C, V CC = 5V, R L = 280 Ω V CC = 5V, R L = 280 Ω Ta = 25˚C, V CC = 5V, R L = 280 Ω 0.4 V CC = 5V, R L = 280 Ω 0.3 V CC = 5V, R L = 280 Ω 0.5 Ta = 25˚C, DC500V, 40 to 60% RH 5 x 1010 − Ta = 25˚C V CC = 5V, I F = 4mA R L = 280 Ω - TYP. 1.1 1.0 30 0.2 2.5 1.0 1.1 0.8 0.7 1011 1 2 0.05 0.1 MAX. 1.4 10 250 15 0.4 100 5.0 5.0 2.0 4.0 0.9 3 6 0.5 0.5 Unit V µA pF V V µA mA mA mA mA Ω µs *4 I FHL represents forward current when output goes from high to low. *5 I FLH represents forward current when output goes from low to high. *6 Hysteresis stands for I FLH /I FHL . *7 Test circuit for response time is shown below. <Precautions for Use> Connect a capacitior of more than 0.1 µ F between VCC and GND. Test Circuit for Response Time Voltage regulator 50% VIN 5V t r = tf = 0.01 µ s tPHL tPLH 280 Ω ZO = 50 Ω VO VIN Amp 47 Ω 0.1 µ F VO tf VOH 90% 1.5V 10% VOL tr PC900V/PC900VQ Fig. 2 Power Dissipation vs. Ambient Temperature 200 50 170 40 30 20 10 0 - 25 0 25 50 75 85 Ambient temperature T a ( ˚C) PO 150 100 50 0 -25 100 0 25 50 Ambient temperature T Fig. 3 Forward Current vs. Forward Voltage 75 85 a 100 ( ˚C ) Fig. 4 Relative Threshold Input Current vs. Supply Voltage 500 1.4 T a = 25˚C I FHL = 1 at V CC = 5V Ta = 75˚C 50˚C 200 1.2 25˚C 0˚C 100 Relative threshold input current Forward current I F ( mA ) P tot tot ( mW ) 60 Power dissipation P O, P Forward current I F ( mA ) Fig. 1 Forward Current vs. Ambient Temperature - 25˚C 50 20 10 5 I FHL 1.0 I FLH 0.8 0.6 0.4 2 1 0.2 0 0.5 1.0 1.5 2.0 2.5 Forward voltage V F ( V ) 3.0 0 Fig. 5 Relative Threshold Input Current vs. Ambient Temperature 1.0 V CC = 5V V CC = 5V Low level output voltage V OL ( V ) 1.4 Relative threshold input current 20 Fig. 6 Low Level Output Voltage vs. Low Level Output Current 1.6 1.2 I FHL 1.0 0.8 I FLH 0.6 0.4 0.2 - 25 5 10 15 Supply voltage V CC ( V ) 0.5 T a = 25˚C 0.2 0.1 0.05 0.02 I FHL = 1 at T a = 25˚C 0 25 50 75 Ambient temperature T a ( ˚C ) 100 0.01 1 2 5 10 20 Low level output current I 50 OL ( mA ) 100 PC900V/PC900VQ Fig. 7 Low Level Output Voltage vs. Ambient Temperature Fig. 8 Supply Current vs. Supply Voltage 0.5 9 V CC = 5V 8 0.4 Supply current I CC ( mA ) Low level output voltage V OL ( V ) T a = - 25˚C I OL = 30mA 0.3 16mA 0.2 5mA 25˚C 7 6 5 4 2 0.1 0 25 75 50 100 I CCH{ 1 3 7 9 11 Rise time, fall time t r , t f ( µ s ) 3 2 1 17 0.4 10 20 V CC = 5V I F =4mA T a = 25˚C 0.3 0.2 tr 0.1 tf t PHL 0 10 15 0.5 t PLH 0 13 Fig.10 Rise Time, Fall Time vs. Load Resistance V CC = 5V RL = 280 Ω T a = 25˚C µ s) PLH ( Propagation delay time t PHL , t 5 Supply voltage V CC ( V ) Fig. 9 Propagation Delay Time vs. Forward Current 4 85˚C 0 Ambient temperature T a ( ˚C ) 5 25˚C ICCL{ 1 0 - 25 T a = - 25˚C 85˚C 3 20 30 Forward current I 40 F 50 60 ( mA ) 0 0.1 0.2 0.5 1 ■ Precautions for Use ( 1 ) It is recommended that a by-pass capacitor of more than 0.01µ F is added between VCC and GND near the device in order to stabilize power supply line. ( 2 ) Handle this product the same as with other integrated circuits against static electricity. • Please refrain from soldering under preheating and refrain from soldering by reflow. ● Please refer to the chapter “Precautions for Use. ” 2 5 Load resistance R L ( k Ω )