SHARP PC900V

PC900V/PC900VQ
Digital Output Type OPIC
Photocoupler
PC900V/PC900VQ
❈ Lead forming type ( I type ) and taping reel type ( P type ) are also available. ( PC900VI/PC900VP )
❈❈ TUV ( DIN-VDE0884 ) approved type is also available as an option.
..
■ Features
■ Outline Dimensions
1. High reliability type ( PC900VQ )
2. Normal OFF operation, open collector
output
3. TTL and LSTTL compatible output
4. Operating supply voltage V CC : 3 to 15V
5. High isolation voltage between input and
output ( Viso : 5 000V rms )
6. Recognized by UL, file No. E64380
Internal connection
diagram
2.54 ± 0.25
6
5
4
PC900V
1
2
6
Amp
3
0.9 ± 0.2
1.2 ± 0.3
1
3
7.62 ± 0.3
3.7 ± 0.5
3.35 ± 0.5
0.5TYP.
■ Applications
2
3.5 ± 0.5
7.12 ± 0.5
1. Isolation between logic circuits
2. Logic level shifters
3. Line receivers
4. Replacements for relays and pulse transformers
5. Noise reduction
Voltage regulator
5
4
6.5 ± 0.5
Anode
mark
( Unit : mm )
θ = 0 to 13 ˚
0.26 ± 0.1
2.54 ± 0.25
0.5 ± 0.1
θ
1 Anode
2 Cathode
3 NC
4 VO
5 GND
6 V CC
* “ OPIC ” ( Optical IC ) is a trademark of the SHARP Corporation.
An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip.
■ Absolute Maximum Ratings
Input
Output
Parameter
Forward current
*1
Peak forward current
Reverse voltage
Power dissipation
Supply voltage
High level output voltage
Low level output current
Power dissipation
Total power dissipation
*2
Isolation voltage
Operating temperature
Storage temperature
*3
Soldering temperature
( Ta = 25˚C )
Symbol
IF
I FM
VR
P
V CC
V OH
I OL
PO
P tot
V iso
T opr
T stg
T sol
Rating
50
1
6
70
16
16
50
150
170
5 000
- 25 to + 85
- 40 to + 125
260
Unit
mA
A
V
mW
V
V
mA
mW
mW
V rms
˚C
˚C
˚C
*1 Pulse width<=100 µs, Duty ratio : 0.001
*2 40 to 60% RH, AC for 1 minute
*3 For 10 seconds
“ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.”
θ
PC900V/PC900VQ
■ Electro-optical Characteristics
Symbol
Parameter
Input
Output
Forward voltage
VF
Reverse current
Terminal capacitance
Operating supply voltage
Low level output voltage
High level output current
Low level supply current
High level supply current
*4
“ High→Low ” threshold
input current
*5
“ Low→High ” threshold
input current
*6
Hysteresis
Isolation resistance
IR
Ct
V CC
V OL
I OH
I CCL
I CCH
“ High→Low ”
propagation delay time
“ Low→High ”
propagation delay time
Response
time
Transfer
characteristics
( Ta = 0 to + 70˚C unless specified )
*7
Fall time
Rise time
I FHL
l FLH
I FLH /I FHL
R ISO
t PHL
t PLH
tf
tr
Conditions
I F = 4mA
I F = 0.3mA
Ta = 25˚C, V R = 3V
Ta = 25˚C, V = 0, f = 1kHz
MIN.
0.7
3
I OL = 16mA, V CC = 5V, I F = 4mA
V O = V CC = 15V, I F = 0
V CC = 5V, I F = 4mA
V CC = 5V, I F = 0
Ta = 25˚C, V CC = 5V, R L = 280 Ω
V CC = 5V, R L = 280 Ω
Ta = 25˚C, V CC = 5V, R L = 280 Ω
0.4
V CC = 5V, R L = 280 Ω
0.3
V CC = 5V, R L = 280 Ω
0.5
Ta = 25˚C, DC500V, 40 to 60% RH
5 x 1010
−
Ta = 25˚C
V CC = 5V, I F = 4mA
R L = 280 Ω
-
TYP.
1.1
1.0
30
0.2
2.5
1.0
1.1
0.8
0.7
1011
1
2
0.05
0.1
MAX.
1.4
10
250
15
0.4
100
5.0
5.0
2.0
4.0
0.9
3
6
0.5
0.5
Unit
V
µA
pF
V
V
µA
mA
mA
mA
mA
Ω
µs
*4 I FHL represents forward current when output goes from high to low.
*5 I FLH represents forward current when output goes from low to high.
*6 Hysteresis stands for I FLH /I FHL .
*7 Test circuit for response time is shown below.
<Precautions for Use>
Connect a capacitior of more than 0.1 µ F between VCC and GND.
Test Circuit for Response Time
Voltage
regulator
50%
VIN
5V
t r = tf = 0.01 µ s
tPHL
tPLH
280 Ω
ZO = 50 Ω
VO
VIN
Amp
47 Ω
0.1 µ F
VO
tf
VOH
90%
1.5V
10%
VOL
tr
PC900V/PC900VQ
Fig. 2 Power Dissipation vs. Ambient
Temperature
200
50
170
40
30
20
10
0
- 25
0
25
50
75 85
Ambient temperature T a ( ˚C)
PO
150
100
50
0
-25
100
0
25
50
Ambient temperature T
Fig. 3 Forward Current vs. Forward Voltage
75 85
a
100
( ˚C )
Fig. 4 Relative Threshold Input Current vs.
Supply Voltage
500
1.4
T a = 25˚C
I FHL = 1 at V CC = 5V
Ta = 75˚C
50˚C
200
1.2
25˚C
0˚C
100
Relative threshold input current
Forward current I F ( mA )
P tot
tot
( mW )
60
Power dissipation P O, P
Forward current I F ( mA )
Fig. 1 Forward Current vs. Ambient
Temperature
- 25˚C
50
20
10
5
I FHL
1.0
I FLH
0.8
0.6
0.4
2
1
0.2
0
0.5
1.0
1.5
2.0
2.5
Forward voltage V F ( V )
3.0
0
Fig. 5 Relative Threshold Input Current vs.
Ambient Temperature
1.0
V CC = 5V
V CC = 5V
Low level output voltage V OL ( V )
1.4
Relative threshold input current
20
Fig. 6 Low Level Output Voltage vs.
Low Level Output Current
1.6
1.2
I FHL
1.0
0.8
I FLH
0.6
0.4
0.2
- 25
5
10
15
Supply voltage V CC ( V )
0.5
T a = 25˚C
0.2
0.1
0.05
0.02
I FHL = 1 at T a = 25˚C
0
25
50
75
Ambient temperature T a ( ˚C )
100
0.01
1
2
5
10
20
Low level output current I
50
OL
( mA )
100
PC900V/PC900VQ
Fig. 7 Low Level Output Voltage vs.
Ambient Temperature
Fig. 8 Supply Current vs. Supply Voltage
0.5
9
V CC = 5V
8
0.4
Supply current I CC ( mA )
Low level output voltage V OL ( V )
T a = - 25˚C
I OL = 30mA
0.3
16mA
0.2
5mA
25˚C
7
6
5
4
2
0.1
0
25
75
50
100
I CCH{
1
3
7
9
11
Rise time, fall time t r , t f ( µ s )
3
2
1
17
0.4
10
20
V CC = 5V
I F =4mA
T a = 25˚C
0.3
0.2
tr
0.1
tf
t PHL
0
10
15
0.5
t PLH
0
13
Fig.10 Rise Time, Fall Time vs.
Load Resistance
V CC = 5V
RL = 280 Ω
T a = 25˚C
µ s)
PLH (
Propagation delay time t PHL , t
5
Supply voltage V CC ( V )
Fig. 9 Propagation Delay Time vs.
Forward Current
4
85˚C
0
Ambient temperature T a ( ˚C )
5
25˚C
ICCL{
1
0
- 25
T a = - 25˚C
85˚C
3
20
30
Forward current I
40
F
50
60
( mA )
0
0.1
0.2
0.5
1
■ Precautions for Use
( 1 ) It is recommended that a by-pass capacitor of more than 0.01µ F is added
between VCC and GND near the device in order to stabilize power supply line.
( 2 ) Handle this product the same as with other integrated circuits against
static electricity.
• Please refrain from soldering under preheating and refrain from soldering by reflow.
● Please refer to the chapter “Precautions for Use. ”
2
5
Load resistance R L ( k Ω )