GP1A68L GP1A68L Low Voltage Driven Low Current Consumption Type OPIC Photointerrupter ■ Features ■ Outline Dimensions (Unit : mm) 1. Ultra-compact type (3.8 x 4.0 x 4.0 mm) Internal connection diagram 2. C-MOS and microcomputer compatible 3. Low voltage driven, low current consumption 3 4 (Operating supply voltage : 1.4 to 7.0V, 2 (15kΩ ) Standby current consumption : MAX. 0.5mA) Amp. 5 1 3.8 ± 0.2 0.9 ± 0.2 4.0 ± 0.2 1.45 ± 0.2 Optical center ( 2- C0.3 ) 4.0 ± 0.2 2.5 ± 0.2 2. Floppy disk drives 5.0 ± 0.2 1. Cameras (1.0) (Sensor center) ■ Applications 4MIN. 0.15 ❈ 2.54 0.4 1 5 4 3 1.27 1.27 2 1 Anode 2 Cathode 3 VCC 4 Vout 5 GND * "OPIC" (Optical IC) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signal-processing circuit integrated onto a single chip. ■ Absolute Maximum Ratings Input Output Parameter Forward current Reverse voltage Power dissipation Supply voltage Low level output current Power dissipation Operating temperature Storage temperature *1 Soldering temperature (Ta=25˚C) Symbol IF VR P V CC IOL PO Topr Tstg Tsol Rating 50 6 75 7 2 80 - 25 to + 85 - 40 to + 100 260 Unit mA V mW V mA mW ˚C ˚C ˚C *1 For 5 seconds “ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.” MIN. 1mm Soldering area GP1A68L ■ Electro-optical Characteristics Parameter Forward voltage Reverse current Operating supply voltage Low level output voltage Input Output Conditions I F = 5mA V R = 3V - MIN. 1.4 TYP. 1.15 - MAX. 1.25 10 7.0 Unit V µA V - 0.1 0.4 V 2.9 - - V V OL V CC = 3V,I OL = 1mA,IF = 5mA High level output voltage V OH V CC = 3V,I F = 0 Low level supply current I CCL V CC = 3V,I F = 5mA - 0.7 1.2 mA High level supply current I CCH V CC = 3V,I F = 0 - 0.3 0.5 mA I FHL V CC = 3V - 0.9 2.5 mA I FLH /I FHL V CC = 3V 0.55 0.8 0.95 - - 10 30 - 3.0 15 - 0.6 0.2 3 1.0 *2 *3 Response time Transfer characteristics (Ta=25 ˚C) Symbol VF IR V CC "High →Low" threshold input current Hysteresis "Low →High" propagation delay time t PLH "High→Low" propagation delay time t PHL V CC = 3V tr tf Rise time Fall time I F = 5mA R L = 3k Ω µs *2 I FHL represents forward current when output goes from "High" to "Low". *3 Hysteresis stands for I FLH/I FHL. Test Circuit for Response Time 50% Input Input 15kΩ t r= t f = 0.01µs ZO= 50Ω 47Ω + 3V 3kΩ Output 0.1 µ F Amp. GND Fig. 1 Forward Current vs. Ambient Temperature t PHL Output VOH Output 90 % 1.5V VOL tf 10 % tr Fig. 2 Power Dissipation vs. Ambient Temperature 100 60 Output side power dissipation Power dissipation P (mW) Forward current I F (mA) 50 40 30 20 80 Input side power dissipation 60 40 20 10 0 - 25 t PLH 0 25 50 75 Ambient temperature Ta (˚C) 100 0 - 25 0 25 50 75 Ambient temperature Ta (˚C) 100 GP1A68L Fig. 3 Low Level Output Current vs. Ambient Temperature Fig. 4 Forward Current vs. Forward Voltage 500 2.5 Forward current I F (mA) Low level output current I 1.5 1.0 0.5 100 - 25˚C 50 20 10 5 1 0 25 50 75 85 100 0 0.5 1 Fig. 5 Relative Threshold Input Current vs. Supply Voltage 2 2.5 3 3.5 Fig. 6 Relative Threshold Input Current vs. Ambient Temperature 1.2 1.6 IFHL Relative threshold input current 1.0 IFLH 0.8 0.6 0.4 0.2 Ta=25˚C I FHL =1 at Vcc=3V 0 0 2.5 5.0 7.5 1.4 1.2 IFHL 1.0 0.6 (V) OL 1 2 50 75 0.4 Low level output voltage V 0.10 0.5 25 100 Fig. 8 Low Level Output Voltage vs. Ambient Temperature Ta=25˚C VCC=3V IF=5mA 0.2 0 Ambient temperature Ta (˚C) Fig. 7 Low Level Output Voltage vs. Low Level Output Current 1.00 VCC=3V I FHL =1 at Ta=25 ˚C 0.4 0.2 - 25 10.0 IFLH 0.8 Supply voltage V CC (V) 0.01 0.1 1.5 Forward voltage VF (V) Ambient temperature Ta (˚C) Relative threshold input current I FHL , IFLH 0˚C 2 0 - 25 Low level output voltage V OL (V) 25˚C 50˚C 2.0 OL (mA) T a = 75˚C 200 5 Low level output current I OL (mA) 10 VCC=3V IF=5mA 0.3 0.2 IOL=2mA IOL=1mA 0.1 IOL=0mA 0.0 - 25 0 25 50 75 Ambient temperature Ta (˚C) 100 GP1A68L Fig. 9 Low Level Supply Current vs. Supply Voltage 0.6 (mA) IF = 5mA 1.2 CCH Ta=- 25˚C 1.0 Ta= 25˚C High level supply current I Low level supply current I CCL (mA) 1.4 Fig. 10 High Level Supply Current vs. Supply Voltage 0.8 Ta= 85˚C 0.6 0.4 0.2 0.0 0 2 4 6 8 IF= 0mA Ta= 25˚C 0.4 Ta= 85˚C 0.3 0.2 0.1 0.0 0 10 Ta=- 25˚C 0.5 2 Supply voltage V CC (V) Fig. 11 Propagation Delay Time vs. Forward Current 6 8 0.4 VCC= 3V RL= 3kΩ 10 Ta= 25˚C 10 Fig. 12 Rise, Fall Time vs. Load Resistance 12 VCC= 5V IF= 5mA Ta= 25˚C tPLH Rise, fall time t r,tf ( µ s ) Propagation delay time t PHL,tPLH ( µ s ) 4 Supply voltage V CC (V) 8 6 4 0.3 tr 0.2 0.1 tr 2 0 0 tPHL 10 20 30 40 50 0 0.1 Forward current I F (mA) (Precautions for Operation) 1) It is recommended that a by-pass capacitor of 0.1 µF or more between Vcc and GND near the device in order to stabilize power supply line. 2) As for other general precautions, refer to the the chapter "Precautions for Use". 1 10 Load resistance R L ( kΩ ) 100