SHARP GP1A68L

GP1A68L
GP1A68L
Low Voltage Driven Low Current
Consumption Type OPIC
Photointerrupter
■ Features
■ Outline Dimensions
(Unit : mm)
1. Ultra-compact type (3.8 x 4.0 x 4.0 mm)
Internal connection diagram
2. C-MOS and microcomputer compatible
3. Low voltage driven, low current consumption
3
4
(Operating supply voltage : 1.4 to 7.0V,
2
(15kΩ )
Standby current consumption : MAX. 0.5mA)
Amp.
5
1
3.8 ± 0.2
0.9 ± 0.2
4.0 ± 0.2
1.45 ± 0.2
Optical center
( 2- C0.3 )
4.0 ± 0.2
2.5
± 0.2
2. Floppy disk drives
5.0 ± 0.2
1. Cameras
(1.0) (Sensor center)
■ Applications
4MIN.
0.15
❈
2.54
0.4
1
5
4
3
1.27 1.27
2
1 Anode
2 Cathode
3 VCC
4 Vout
5 GND
* "OPIC" (Optical IC) is a trademark of the SHARP Corporation.
An OPIC consists of a light-detecting element and
signal-processing circuit integrated onto a single chip.
■ Absolute Maximum Ratings
Input
Output
Parameter
Forward current
Reverse voltage
Power dissipation
Supply voltage
Low level output current
Power dissipation
Operating temperature
Storage temperature
*1
Soldering temperature
(Ta=25˚C)
Symbol
IF
VR
P
V CC
IOL
PO
Topr
Tstg
Tsol
Rating
50
6
75
7
2
80
- 25 to + 85
- 40 to + 100
260
Unit
mA
V
mW
V
mA
mW
˚C
˚C
˚C
*1 For 5 seconds
“ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.”
MIN. 1mm
Soldering area
GP1A68L
■ Electro-optical Characteristics
Parameter
Forward voltage
Reverse current
Operating supply voltage
Low level
output voltage
Input
Output
Conditions
I F = 5mA
V R = 3V
-
MIN.
1.4
TYP.
1.15
-
MAX.
1.25
10
7.0
Unit
V
µA
V
-
0.1
0.4
V
2.9
-
-
V
V OL
V CC = 3V,I OL = 1mA,IF = 5mA
High level
output voltage
V OH
V CC = 3V,I F = 0
Low level
supply current
I CCL
V CC = 3V,I F = 5mA
-
0.7
1.2
mA
High level
supply current
I CCH
V CC = 3V,I F = 0
-
0.3
0.5
mA
I FHL
V CC = 3V
-
0.9
2.5
mA
I FLH /I FHL
V CC = 3V
0.55
0.8
0.95
-
-
10
30
-
3.0
15
-
0.6
0.2
3
1.0
*2
*3
Response time
Transfer
characteristics
(Ta=25 ˚C)
Symbol
VF
IR
V CC
"High →Low"
threshold input current
Hysteresis
"Low →High"
propagation delay time
t PLH
"High→Low"
propagation delay time
t PHL
V CC = 3V
tr
tf
Rise time
Fall time
I F = 5mA
R L = 3k Ω
µs
*2 I FHL represents forward current when output goes from "High" to "Low".
*3 Hysteresis stands for I FLH/I FHL.
Test Circuit for Response Time
50%
Input
Input
15kΩ
t r= t f = 0.01µs
ZO= 50Ω
47Ω
+ 3V
3kΩ
Output
0.1 µ F
Amp.
GND
Fig. 1 Forward Current vs. Ambient
Temperature
t PHL
Output
VOH
Output
90 %
1.5V
VOL
tf
10 %
tr
Fig. 2 Power Dissipation vs. Ambient
Temperature
100
60
Output side power dissipation
Power dissipation P (mW)
Forward current I F (mA)
50
40
30
20
80
Input side power dissipation
60
40
20
10
0
- 25
t PLH
0
25
50
75
Ambient temperature Ta (˚C)
100
0
- 25
0
25
50
75
Ambient temperature Ta (˚C)
100
GP1A68L
Fig. 3 Low Level Output Current vs.
Ambient Temperature
Fig. 4 Forward Current vs. Forward Voltage
500
2.5
Forward current I F (mA)
Low level output current I
1.5
1.0
0.5
100
- 25˚C
50
20
10
5
1
0
25
50
75 85
100
0
0.5
1
Fig. 5 Relative Threshold Input Current
vs. Supply Voltage
2
2.5
3
3.5
Fig. 6 Relative Threshold Input Current
vs. Ambient Temperature
1.2
1.6
IFHL
Relative threshold input current
1.0
IFLH
0.8
0.6
0.4
0.2
Ta=25˚C
I FHL =1
at Vcc=3V
0
0
2.5
5.0
7.5
1.4
1.2
IFHL
1.0
0.6
(V)
OL
1
2
50
75
0.4
Low level output voltage V
0.10
0.5
25
100
Fig. 8 Low Level Output Voltage vs.
Ambient Temperature
Ta=25˚C
VCC=3V
IF=5mA
0.2
0
Ambient temperature Ta (˚C)
Fig. 7 Low Level Output Voltage vs.
Low Level Output Current
1.00
VCC=3V
I FHL =1
at Ta=25 ˚C
0.4
0.2
- 25
10.0
IFLH
0.8
Supply voltage V CC (V)
0.01
0.1
1.5
Forward voltage VF (V)
Ambient temperature Ta (˚C)
Relative threshold input current I FHL , IFLH
0˚C
2
0
- 25
Low level output voltage V OL (V)
25˚C
50˚C
2.0
OL
(mA)
T a = 75˚C
200
5
Low level output current I OL (mA)
10
VCC=3V
IF=5mA
0.3
0.2
IOL=2mA
IOL=1mA
0.1
IOL=0mA
0.0
- 25
0
25
50
75
Ambient temperature Ta (˚C)
100
GP1A68L
Fig. 9 Low Level Supply Current vs.
Supply Voltage
0.6
(mA)
IF = 5mA
1.2
CCH
Ta=- 25˚C
1.0
Ta= 25˚C
High level supply current I
Low level supply current I
CCL
(mA)
1.4
Fig. 10 High Level Supply Current vs.
Supply Voltage
0.8
Ta= 85˚C
0.6
0.4
0.2
0.0
0
2
4
6
8
IF= 0mA
Ta= 25˚C
0.4
Ta= 85˚C
0.3
0.2
0.1
0.0
0
10
Ta=- 25˚C
0.5
2
Supply voltage V CC (V)
Fig. 11 Propagation Delay Time vs.
Forward Current
6
8
0.4
VCC= 3V
RL= 3kΩ
10 Ta= 25˚C
10
Fig. 12 Rise, Fall Time vs. Load Resistance
12
VCC= 5V
IF= 5mA
Ta= 25˚C
tPLH
Rise, fall time t r,tf ( µ s )
Propagation delay time t PHL,tPLH ( µ s )
4
Supply voltage V CC (V)
8
6
4
0.3
tr
0.2
0.1
tr
2
0
0
tPHL
10
20
30
40
50
0
0.1
Forward current I F (mA)
(Precautions for Operation)
1) It is recommended that a by-pass capacitor of 0.1 µF or more between Vcc and GND near
the device in order to stabilize power supply line.
2) As for other general precautions, refer to the the chapter "Precautions for Use".
1
10
Load resistance R L ( kΩ )
100