SHARP PC930

PC930 Series
PC930 Series
Digital Output, High Sensitivity
Type OPIC Photocoupler
■ Features
■ Outline Dimensions
5
4
6.5 ± 0.5
6
Model No.
1
Anode
mark
2
3
0.9 ± 0.2
1.2 ±0.3
7.62 ± 0.3
3.35 ± 0.5
3.5 ± 0.5
0.5 TYP
7.12 ± 0.5
3.7 ± 0.5
1. High sensitivity
( IFLH , I FHL : MAX. 1mA )
2. TTL and LSTTL compatible output
3. Operating supply voltage range
( VCC : 4.5 to 15V, PC930/PC931/PC932/PC933 )
4. Various output forms
( Open collector output, pull-up resistor
built-in type, totem pole output )
5. Low output current dissipation
( ICCL : MAX. 3.8mA )
6. High isolation voltage between input and
output ( Viso : 5 000V rms )
7. Recognized by UL, file No. E64380
( Unit : mm )
0.26 ± 0.1
2.54 ± 0.25
0.5 ± 0.1
θ
■ Model Line-up
Low active
High active
Open collector
output type
Pull-up resistor
built-in type
Totem pole
output type
PC930
PC931
PC932
PC933
PC934
PC935
Internal connection diagram
PC930/PC931
PC932/PC933
6
5
4
6
5
4
■ Applications
Amp
Amp
1. Computer terminals
2. High speed line receivers
3. Interfaces with various data transmission
equipment
1
2
3
1
PC934/PC935
6
5
4
■ Absolute Maximum Ratings
Parameter
Symbol
Forward current
IF
*1
Peak forward current
I FM
Input
Reverse voltage
VR
Power dissipation
P
PC930/PC931
Supply voltage PC932/PC933 V CC
PC934/PC935
Output High level output voltage PC930/PC931 V OH
High level output current PC934/PC935
I OH
Low level output current
I OL
Power dissipation
PO
Total power dissipation
P tot
*2
Isolation voltage
V iso
Operating temperature
T opr
Storage temperature
T stg
*3
Soldering temperature
T sol
θ = 0 to 13 ˚
Amp
Rating
20
1
6
70
- 0.5 to 16.0
- 0.5 to 7.0
- 0.5 to 16.0
- 800
50
150
170
5 000
- 25 to + 85
- 40 to + 125
260
Unit
mA
A
V
mW
1
2
3
2
3
••••••
Voltage
regulator
1 Anode
2 Cathode
3 NC
4 VO
5 GND
6 V CC
* “ OPIC ” ( Optical IC ) is a trademark of the SHARP Corporation.
An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip.
V
V
µA
mA
mW
mW
V rms
˚C
˚C
˚C
*1 Pulse width <=100 µ s
Duty ratio : 0.001
*2 40 to 60% RH,
AC for 1 minute
*3 For 10 seconds
“ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device. ”
θ
PC930 Series
■ Electro-optical Characteristics
Symbol
Parameter
VF
Forward voltage
Input
Output
Reverse current
Terminal capacitance
PC930/PC931
Operating
PC932/PC933
supply
PC934/PC935
voltage
PC930/PC932
Low level
PC931/PC933
output
PC934
voltage
PC935
PC932
High level
PC933
output
PC934
voltage
PC935
High level
PC930
output
PC931
current
PC930
Low level
PC931
supply
PC932/PC934
current
PC933/PC935
PC930/PC932
High level
PC934
supply
PC931/PC933
current
PC935
PC934
Output short
circuit current
PC935
*4
PC930/PC932
“ High→
PC934
Low ” Threshold input
PC931/PC933
current
PC935
*5
PC930/PC932
“ Low→
PC934
High ” Threshold input
PC931/PC933
current
PC935
PC930/PC932
PC934
*6
Hysteresis
PC931/PC933
PC935
Isolation resistance
Response time
Transfer
characteristics
“ High→Low ”
propagation
delay time
“ Low→High ”
propagation
delay time
( Ta = 0 to + 70˚C unless otherwise specified. )
PC930/PC932
PC934
IR
Ct
MIN.
0.55
-
TYP.
1.1
0.95
30
4.5
-
4.5
V OL
V OH
I OH
I CCL
I OL = 16mA, VCC = 5V, I F = 1mA
I OL = 16mA, VCC = 5V, I F = 0
I OL = 16mA, VCC = 4.5V, I F = 1mA
I OL = 16mA, VCC = 4.5V, I F = 0
V CC = 5V, I F = 0
V CC = 5V, I F = 1mA
V CC = 4.5V, I F = 0, I OH = - 400 µ A
V CC = 4.5V, I F = 1mA, I OH = - 400 µ A
V CC = V O = 15V, I F = 0
V CC = V O = 15V, I F = 1mA
V CC = 5V, I F = 1mA
V CC = 5V, I F = 0
V CC = 5V, I F = 1mA
V CC = 5V, I F = 0
MAX.
1.4
10
250
Unit
V
V
µA
pF
15
V
5.5
V
-
0.15
0.4
V
3.5
-
-
V
2.4
-
-
V
-
1.3
1.3
1.7
1.7
100
100
3.4
3.4
3.8
3.8
µA
mA
mA
mA
mA
-
0.7
2.2
mA
6
17
35
mA
-
0.5
1.0
mA
0.1
0.4
-
mA
0.1
0.4
-
mA
-
0.5
1.0
mA
-
0.8
-
-
5 x 1010
1011
-
Ω
-
3
9
-
5
15
-
5
15
-
3
9
-
0.05
0.1
0.5
0.5
V CC = 5V, I F = 0
I CCH
V CC = 5V, I F = 1mA
I OS
V CC = 5V, I F = 0, T = Within 1 second
V CC = 5V, I F = 1mA, T = Within 1 second
I FHL
V CC = 5V, R L = 280 Ω
I FLH
V CC = 5V, R L = 280 Ω
I FLH /I FHL
I FHL /I FLH
R ISO
t PHL
t PLH
PC931/PC933
PC935
Fall time
Rise time
-
V CC
PC931/PC933
PC935
PC930/PC932
PC934
Conditions
I F = 2mA
I F = 0.1mA
Ta = 25˚C, VR = 3V
Ta = 25˚C, V = 0, f = 1kHz
V CC = 5V, R L = 280 Ω
Ta = 25˚C, DC500V, 40 to 60% RH
Ta = 25˚C
V CC = 5V
I F = 1mA
R L = 280 Ω
Fig.1
tf
tr
*4 I FHL represents forward current when output goes from high to low.
*5 I FLH represents forward current when output goes from low to high.
*6 Hysteresis stands for IFLH /I FHL .
µs
PC930 Series
■ Recommended Operating Conditions
Parameter
Low level output current
High level
output
PC934/PC935
current
PC930/PC931
Supply
PC932/PC933
voltage
PC934/PC935
Operating temperature
Symbol
I OL
MIN.
-
TYP.
1.6
MAX.
16
Unit
mA
I OH
-
-
- 400
µA
4.5
5.0
15.0
V
4.5
0
5.0
25
5.5
70
V
˚C
V CC
T opr
Fig. 1 Test Circuit for t PHL , t PLH , t r, t f
Voltage regulator
PC930/PC931
PC930/PC932/PC934
5V
280 Ω
VO
t r = tf =
0.01 µ s Vin
ZO = 50 Ω
Input
50%
Amp.
tPHL
0.01 µ F
47 Ω
90%
Output
10%
5V
280 Ω
VO
Amp.
PC931/PC933/PC935
Input
50%
47 Ω
tPLH
tPHL
VOH
90%
Voltage regulator
5V
Output
1.5V
10%
VOL
280 Ω
t r = tf =
0.01 µ s Vin
ZO = 50 Ω
Amp.
VO
tr
0.01 µ F
tf
47 Ω
Fig. 3 Power Dissipation vs.
Ambient Temperature
30
200
25
170
Power dissipation P O , P tot ( mW )
Forward current I F ( mA )
Fig. 2 Forward Current vs.
Ambient Temperature
20
15
10
5
0
- 25
0
25
50
Ambient temperature T
75 85
a
( ˚C )
100
VOL
tr
tf
0.01 µ F
PC934/PC935
VOH
1.5V
Voltage regulator
PC932/PC933
t r = tf =
0.01 µ s Vin
ZO = 50 Ω
tPLH
P tot
PO
150
100
50
0
-25
0
25
50
75 85
Ambient temperature T a ( ˚C )
100
PC930 Series
Fig. 4 Forward Current vs. Forward Voltage
1.4
500
1 I FHL( PC930/PC932)
I FLH( PC931/PC933)
2 I FLH( PC930/PC932)
I FHL( PC931/PC933)
T a = 75˚C
25˚C
0˚C
50˚C
100
Relative threshold input current
200
Forward current I F ( mA )
Fig. 5-a Relative Threshold Input Current
vs. Supply Voltage
- 25˚C
50
20
10
5
2
1.2
1
1.0
2
0.8
0.6
I FHL (PC930/PC932 ) = 1
I FLH (PC931/PC933 ) = 1
at VCC = 5V
1
0.4
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
0
5
Forward voltage VF ( V )
Fig. 5-b Relative Threshold Input Current
vs. Supply Voltage
1 I FHL
I FLH
2 I FLH
I FHL
1.2
1
2
0.8
I FHL (PC934 ) = 1
I FLH (PC935 ) = 1
at VCC = 5V
0.4
3
4
5
6
7
1 I FHL ( PC930/PC932/PC934 )
I FLH ( PC931/PC933/PC935 )
2 I FLH ( PC930/PC932/PC934 )
I FHL ( PC931/PC933/PC935 )
1.5
V CC = 5V
2
0.5
I FHL ( PC930/PC932/PC934 ) = 1
I FLH ( PC931/PC933/PC935 ) = 1
0
- 25
8
at T a = 25˚C
0
25
50
75
100
Ambient temperature Ta ( ˚C )
Fig. 7 Low Level Output Voltage vs.
Low Level Output Current
Fig. 8 Low Level Output Voltage vs.
Ambient Temperature
1.0
V CC = 5V ( PC930/PC931
PC932/PC933 )
0.5 V CC = 4.5V ( PC934/PC935)
I F = 1mA ( PC930/PC932/PC934 )
I F = 0 ( PC931/PC933/PC935 )
T a = 25˚C
0.2
Low level output voltage V OL ( V )
Low level output voltage VOL ( V )
1
1.0
Supply voltage V CC ( V )
PC932/PC933
0.1
0.05
20
(V)
2.0
( PC934)
( PC935)
( PC934)
( PC935)
1.0
0.6
15
CC
Fig. 6 Relative Threshold Input Current vs.
Ambient Temperature
Relative threshold input current
Relative threshold input current
1.4
10
Supply voltage V
PC930/PC931
PC934/PC935
VCC = 5V ( PC930 /PC931 /PC932 /PC933 )
V CC = 4.5V ( PC934/ PC935 )
I F = 1mA ( PC930/ PC932/ PC934 )
I F = 0 ( PC931/ PC933/ PC935 )
I OL = 30mA
0.2
16mA
0.1
5mA
0.02
0.01
1
2
5
10
20
Low level output current I
50
OL
( mA )
100
0
- 25
0
25
50
Ambient temperature T
75
a
( ˚C )
100
PC930 Series
Fig. 9-a Supply Current vs. Supply Voltage
( PC930/PC931 )
Fig. 9-b Supply Current vs. Supply Voltage
( PC932/PC933 )
4
4
3
3
2
T a = - 25˚C
I CCL
25˚C
1
T a = - 25˚C
I CCH
I CCL
85˚C
I CCL
25˚C
I CCH
I CCH
0
0
Supply current I CC ( mA )
Supply current I CC ( mA )
T a = - 25˚C
25˚C
2
85˚C
T a = - 25˚C
1
25˚C
8
12
16
0
0
20
4
Fig. 9-c Supply Current vs. Supply Voltage
( PC934/PC935 )
20
1 t PLH
t PHL
2 t PHL
t PLH
( µs )
PLH
T a = - 25˚C
Propagation delay time tPHL , t
Supply current I CC ( mA )
3
I CCL
25˚C
85˚C
T a = - 25˚C
25˚C
I CCH
85˚C
4
6
5
Supply voltage VCC ( V )
1
5
2
0.5
V CC = 5V
I F =1mA
T a = 25˚C
0.3
0.2
tr
0.1
5
10
15
Forward current I F ( mA )
0.2
0.5
1
20
0.4
V CC = 5V
I F =1mA
T a = 25˚C
0.3
0.2
tr
0.1
tf
tf
0
0.1
) V CC = 5V
) R = 280 Ω
L
)
T = 25˚C
) a
Fig.11-b Rise Time, Fall Time vs.
Load Resistance
( PC932/PC933 )
Rise time, fall time t r , t f ( µ s )
Rise time, fall time t r , t f ( µ s )
PC930/PC932/PC934
PC931/PC933/PC935
PC930/PC932/PC934
PC931/PC933/PC935
10
0
8
7
Fig.11-a Rise Time, Fall Time vs.
Load Resistance
( PC930/PC931 )
0.4
15
(
(
(
(
0
0
3
0.5
20
16
Fig.10 Propagation Delay Time vs.
Forward Current
4
2
12
8
Supply voltage V CC ( V )
Supply voltage V CC ( V )
1
I CCH
85˚C
85˚C
4
I CCL
2
Load resistance R L ( k Ω )
5
10
0
0.1
0.2
0.5
1
2
Load resistance R L ( k Ω )
5
10
PC930 Series
Fig.11-c Rise Time, Fall Time vs.
Resistance Load
( PC934/PC935 )
Rise time, fall time t r , t f ( µ s )
0.5
0.4
V CC = 5V
I F = 1mA
T a = 25˚C
0.3
0.2
tr
0.1
tf
0
0.1
0.2
0.5
1
2
5
10
Load resistance RL ( k Ω )
■ Precautions for Use
( 1 ) It is recommended that a by-pass capacitor of more than 0.01 µ F is added between VCC and
GND near the device in order to stabilize power supply line.
( 2 ) Handle this product the same as with other integrated circuits against static electricity.
( 3 ) As for other general cautions, refer to the chapter “ Precautions for Use ” .