PC930 Series PC930 Series Digital Output, High Sensitivity Type OPIC Photocoupler ■ Features ■ Outline Dimensions 5 4 6.5 ± 0.5 6 Model No. 1 Anode mark 2 3 0.9 ± 0.2 1.2 ±0.3 7.62 ± 0.3 3.35 ± 0.5 3.5 ± 0.5 0.5 TYP 7.12 ± 0.5 3.7 ± 0.5 1. High sensitivity ( IFLH , I FHL : MAX. 1mA ) 2. TTL and LSTTL compatible output 3. Operating supply voltage range ( VCC : 4.5 to 15V, PC930/PC931/PC932/PC933 ) 4. Various output forms ( Open collector output, pull-up resistor built-in type, totem pole output ) 5. Low output current dissipation ( ICCL : MAX. 3.8mA ) 6. High isolation voltage between input and output ( Viso : 5 000V rms ) 7. Recognized by UL, file No. E64380 ( Unit : mm ) 0.26 ± 0.1 2.54 ± 0.25 0.5 ± 0.1 θ ■ Model Line-up Low active High active Open collector output type Pull-up resistor built-in type Totem pole output type PC930 PC931 PC932 PC933 PC934 PC935 Internal connection diagram PC930/PC931 PC932/PC933 6 5 4 6 5 4 ■ Applications Amp Amp 1. Computer terminals 2. High speed line receivers 3. Interfaces with various data transmission equipment 1 2 3 1 PC934/PC935 6 5 4 ■ Absolute Maximum Ratings Parameter Symbol Forward current IF *1 Peak forward current I FM Input Reverse voltage VR Power dissipation P PC930/PC931 Supply voltage PC932/PC933 V CC PC934/PC935 Output High level output voltage PC930/PC931 V OH High level output current PC934/PC935 I OH Low level output current I OL Power dissipation PO Total power dissipation P tot *2 Isolation voltage V iso Operating temperature T opr Storage temperature T stg *3 Soldering temperature T sol θ = 0 to 13 ˚ Amp Rating 20 1 6 70 - 0.5 to 16.0 - 0.5 to 7.0 - 0.5 to 16.0 - 800 50 150 170 5 000 - 25 to + 85 - 40 to + 125 260 Unit mA A V mW 1 2 3 2 3 •••••• Voltage regulator 1 Anode 2 Cathode 3 NC 4 VO 5 GND 6 V CC * “ OPIC ” ( Optical IC ) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip. V V µA mA mW mW V rms ˚C ˚C ˚C *1 Pulse width <=100 µ s Duty ratio : 0.001 *2 40 to 60% RH, AC for 1 minute *3 For 10 seconds “ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device. ” θ PC930 Series ■ Electro-optical Characteristics Symbol Parameter VF Forward voltage Input Output Reverse current Terminal capacitance PC930/PC931 Operating PC932/PC933 supply PC934/PC935 voltage PC930/PC932 Low level PC931/PC933 output PC934 voltage PC935 PC932 High level PC933 output PC934 voltage PC935 High level PC930 output PC931 current PC930 Low level PC931 supply PC932/PC934 current PC933/PC935 PC930/PC932 High level PC934 supply PC931/PC933 current PC935 PC934 Output short circuit current PC935 *4 PC930/PC932 “ High→ PC934 Low ” Threshold input PC931/PC933 current PC935 *5 PC930/PC932 “ Low→ PC934 High ” Threshold input PC931/PC933 current PC935 PC930/PC932 PC934 *6 Hysteresis PC931/PC933 PC935 Isolation resistance Response time Transfer characteristics “ High→Low ” propagation delay time “ Low→High ” propagation delay time ( Ta = 0 to + 70˚C unless otherwise specified. ) PC930/PC932 PC934 IR Ct MIN. 0.55 - TYP. 1.1 0.95 30 4.5 - 4.5 V OL V OH I OH I CCL I OL = 16mA, VCC = 5V, I F = 1mA I OL = 16mA, VCC = 5V, I F = 0 I OL = 16mA, VCC = 4.5V, I F = 1mA I OL = 16mA, VCC = 4.5V, I F = 0 V CC = 5V, I F = 0 V CC = 5V, I F = 1mA V CC = 4.5V, I F = 0, I OH = - 400 µ A V CC = 4.5V, I F = 1mA, I OH = - 400 µ A V CC = V O = 15V, I F = 0 V CC = V O = 15V, I F = 1mA V CC = 5V, I F = 1mA V CC = 5V, I F = 0 V CC = 5V, I F = 1mA V CC = 5V, I F = 0 MAX. 1.4 10 250 Unit V V µA pF 15 V 5.5 V - 0.15 0.4 V 3.5 - - V 2.4 - - V - 1.3 1.3 1.7 1.7 100 100 3.4 3.4 3.8 3.8 µA mA mA mA mA - 0.7 2.2 mA 6 17 35 mA - 0.5 1.0 mA 0.1 0.4 - mA 0.1 0.4 - mA - 0.5 1.0 mA - 0.8 - - 5 x 1010 1011 - Ω - 3 9 - 5 15 - 5 15 - 3 9 - 0.05 0.1 0.5 0.5 V CC = 5V, I F = 0 I CCH V CC = 5V, I F = 1mA I OS V CC = 5V, I F = 0, T = Within 1 second V CC = 5V, I F = 1mA, T = Within 1 second I FHL V CC = 5V, R L = 280 Ω I FLH V CC = 5V, R L = 280 Ω I FLH /I FHL I FHL /I FLH R ISO t PHL t PLH PC931/PC933 PC935 Fall time Rise time - V CC PC931/PC933 PC935 PC930/PC932 PC934 Conditions I F = 2mA I F = 0.1mA Ta = 25˚C, VR = 3V Ta = 25˚C, V = 0, f = 1kHz V CC = 5V, R L = 280 Ω Ta = 25˚C, DC500V, 40 to 60% RH Ta = 25˚C V CC = 5V I F = 1mA R L = 280 Ω Fig.1 tf tr *4 I FHL represents forward current when output goes from high to low. *5 I FLH represents forward current when output goes from low to high. *6 Hysteresis stands for IFLH /I FHL . µs PC930 Series ■ Recommended Operating Conditions Parameter Low level output current High level output PC934/PC935 current PC930/PC931 Supply PC932/PC933 voltage PC934/PC935 Operating temperature Symbol I OL MIN. - TYP. 1.6 MAX. 16 Unit mA I OH - - - 400 µA 4.5 5.0 15.0 V 4.5 0 5.0 25 5.5 70 V ˚C V CC T opr Fig. 1 Test Circuit for t PHL , t PLH , t r, t f Voltage regulator PC930/PC931 PC930/PC932/PC934 5V 280 Ω VO t r = tf = 0.01 µ s Vin ZO = 50 Ω Input 50% Amp. tPHL 0.01 µ F 47 Ω 90% Output 10% 5V 280 Ω VO Amp. PC931/PC933/PC935 Input 50% 47 Ω tPLH tPHL VOH 90% Voltage regulator 5V Output 1.5V 10% VOL 280 Ω t r = tf = 0.01 µ s Vin ZO = 50 Ω Amp. VO tr 0.01 µ F tf 47 Ω Fig. 3 Power Dissipation vs. Ambient Temperature 30 200 25 170 Power dissipation P O , P tot ( mW ) Forward current I F ( mA ) Fig. 2 Forward Current vs. Ambient Temperature 20 15 10 5 0 - 25 0 25 50 Ambient temperature T 75 85 a ( ˚C ) 100 VOL tr tf 0.01 µ F PC934/PC935 VOH 1.5V Voltage regulator PC932/PC933 t r = tf = 0.01 µ s Vin ZO = 50 Ω tPLH P tot PO 150 100 50 0 -25 0 25 50 75 85 Ambient temperature T a ( ˚C ) 100 PC930 Series Fig. 4 Forward Current vs. Forward Voltage 1.4 500 1 I FHL( PC930/PC932) I FLH( PC931/PC933) 2 I FLH( PC930/PC932) I FHL( PC931/PC933) T a = 75˚C 25˚C 0˚C 50˚C 100 Relative threshold input current 200 Forward current I F ( mA ) Fig. 5-a Relative Threshold Input Current vs. Supply Voltage - 25˚C 50 20 10 5 2 1.2 1 1.0 2 0.8 0.6 I FHL (PC930/PC932 ) = 1 I FLH (PC931/PC933 ) = 1 at VCC = 5V 1 0.4 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0 5 Forward voltage VF ( V ) Fig. 5-b Relative Threshold Input Current vs. Supply Voltage 1 I FHL I FLH 2 I FLH I FHL 1.2 1 2 0.8 I FHL (PC934 ) = 1 I FLH (PC935 ) = 1 at VCC = 5V 0.4 3 4 5 6 7 1 I FHL ( PC930/PC932/PC934 ) I FLH ( PC931/PC933/PC935 ) 2 I FLH ( PC930/PC932/PC934 ) I FHL ( PC931/PC933/PC935 ) 1.5 V CC = 5V 2 0.5 I FHL ( PC930/PC932/PC934 ) = 1 I FLH ( PC931/PC933/PC935 ) = 1 0 - 25 8 at T a = 25˚C 0 25 50 75 100 Ambient temperature Ta ( ˚C ) Fig. 7 Low Level Output Voltage vs. Low Level Output Current Fig. 8 Low Level Output Voltage vs. Ambient Temperature 1.0 V CC = 5V ( PC930/PC931 PC932/PC933 ) 0.5 V CC = 4.5V ( PC934/PC935) I F = 1mA ( PC930/PC932/PC934 ) I F = 0 ( PC931/PC933/PC935 ) T a = 25˚C 0.2 Low level output voltage V OL ( V ) Low level output voltage VOL ( V ) 1 1.0 Supply voltage V CC ( V ) PC932/PC933 0.1 0.05 20 (V) 2.0 ( PC934) ( PC935) ( PC934) ( PC935) 1.0 0.6 15 CC Fig. 6 Relative Threshold Input Current vs. Ambient Temperature Relative threshold input current Relative threshold input current 1.4 10 Supply voltage V PC930/PC931 PC934/PC935 VCC = 5V ( PC930 /PC931 /PC932 /PC933 ) V CC = 4.5V ( PC934/ PC935 ) I F = 1mA ( PC930/ PC932/ PC934 ) I F = 0 ( PC931/ PC933/ PC935 ) I OL = 30mA 0.2 16mA 0.1 5mA 0.02 0.01 1 2 5 10 20 Low level output current I 50 OL ( mA ) 100 0 - 25 0 25 50 Ambient temperature T 75 a ( ˚C ) 100 PC930 Series Fig. 9-a Supply Current vs. Supply Voltage ( PC930/PC931 ) Fig. 9-b Supply Current vs. Supply Voltage ( PC932/PC933 ) 4 4 3 3 2 T a = - 25˚C I CCL 25˚C 1 T a = - 25˚C I CCH I CCL 85˚C I CCL 25˚C I CCH I CCH 0 0 Supply current I CC ( mA ) Supply current I CC ( mA ) T a = - 25˚C 25˚C 2 85˚C T a = - 25˚C 1 25˚C 8 12 16 0 0 20 4 Fig. 9-c Supply Current vs. Supply Voltage ( PC934/PC935 ) 20 1 t PLH t PHL 2 t PHL t PLH ( µs ) PLH T a = - 25˚C Propagation delay time tPHL , t Supply current I CC ( mA ) 3 I CCL 25˚C 85˚C T a = - 25˚C 25˚C I CCH 85˚C 4 6 5 Supply voltage VCC ( V ) 1 5 2 0.5 V CC = 5V I F =1mA T a = 25˚C 0.3 0.2 tr 0.1 5 10 15 Forward current I F ( mA ) 0.2 0.5 1 20 0.4 V CC = 5V I F =1mA T a = 25˚C 0.3 0.2 tr 0.1 tf tf 0 0.1 ) V CC = 5V ) R = 280 Ω L ) T = 25˚C ) a Fig.11-b Rise Time, Fall Time vs. Load Resistance ( PC932/PC933 ) Rise time, fall time t r , t f ( µ s ) Rise time, fall time t r , t f ( µ s ) PC930/PC932/PC934 PC931/PC933/PC935 PC930/PC932/PC934 PC931/PC933/PC935 10 0 8 7 Fig.11-a Rise Time, Fall Time vs. Load Resistance ( PC930/PC931 ) 0.4 15 ( ( ( ( 0 0 3 0.5 20 16 Fig.10 Propagation Delay Time vs. Forward Current 4 2 12 8 Supply voltage V CC ( V ) Supply voltage V CC ( V ) 1 I CCH 85˚C 85˚C 4 I CCL 2 Load resistance R L ( k Ω ) 5 10 0 0.1 0.2 0.5 1 2 Load resistance R L ( k Ω ) 5 10 PC930 Series Fig.11-c Rise Time, Fall Time vs. Resistance Load ( PC934/PC935 ) Rise time, fall time t r , t f ( µ s ) 0.5 0.4 V CC = 5V I F = 1mA T a = 25˚C 0.3 0.2 tr 0.1 tf 0 0.1 0.2 0.5 1 2 5 10 Load resistance RL ( k Ω ) ■ Precautions for Use ( 1 ) It is recommended that a by-pass capacitor of more than 0.01 µ F is added between VCC and GND near the device in order to stabilize power supply line. ( 2 ) Handle this product the same as with other integrated circuits against static electricity. ( 3 ) As for other general cautions, refer to the chapter “ Precautions for Use ” .