Rev.4.0_00 HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR S-812C Series The S-812C Series is a high-withstand voltage regulator IC which is developed by using the CMOS technology. This IC is suitable for applications which require withstand because its maximum voltage for operation is as high as 16 V, also for portable device having the low current consumption because this IC not only has the low current consumption but also a power-off circuit. This IC operates stably due to the internal phase compensation circuit so that users are able to use ceramic capacitor as the output capacitor. Features • Low current consumption: • Output voltage: • Output voltage accuracy: • Output current: • Dropout voltage: • Built-in Power-off circuit: • Short-circuit protection: • Operation voltage: • Lead-free product Current at operation: Typ. 1.0 µA, Max. 1.8 µA (product with 3.0 V) 2.0 to 6.0 V, selectable in 0.1 V step. ±2.0% 50 mA capable (3.0 V output product, VIN=5 V) *1 75 mA capable (5.0 V output product, VIN=7 V) *1 Typ. 120 mV (VOUT = 5.0 V, IOUT = 10 mA) Selectable if power-off function is available or not. Active high or low in the regulator is selectable. Selectable with/without short-circuit protection. Short-circuited current 40 mA Typ.: in the product with protection. 16 V max. *1. Attention should be paid to the power dissipation of the package when the load is large. Applications • Power source for home electric/electronic appliances • Power source for battery-powered devices • Power source for communication devices Packages Package name SNT-6A(H) SOT-23-5 SOT-89-3 SOT-89-5 TO-92 (Bulk) TO-92 (Tape and reel) TO-92 (Tape and ammo) Package PI006-A MP005-A UP003-A UP005-A YS003-B YF003-A YF003-A Tape PI006-A MP005-A UP003-A UP005-A YF003-A YZ003-C Drawing code Reel PI006-A MP005-A UP003-A UP005-A YF003-A Seiko Instruments Inc. Zigzag YZ003-C Land PI006-A 1 HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR S-812C Series Rev.4.0_00 Block Diagrams 1. S-812CxxA Series (No short-circuit protection and power-off function) *1 VIN VOUT Reference voltage VSS *1. Parasitic diode Figure 1 2. S-812CxxB Series (Short-circuit protection and power-off function) *1 VIN Short-circuit protection ON/OFF Reference voltage VSS *1. Parasitic diode Figure 2 2 Seiko Instruments Inc. VOUT HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR S-812C Series Rev.4.0_00 3. S-812CxxE Series (Short-circuit protection and no power-off function) *1 VIN VOUT Short-circuit protection Reference voltage VSS *1. Parasitic diode Figure 3 Seiko Instruments Inc. 3 HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR S-812C Series Rev.4.0_00 Product Name Structure Users can select the product type, output voltage, and package type for the S-812C Series. Refer to “1. Product name” regarding the contents of product name, “2. Product name list” regarding details of product name. 1. Product name 1. 1 S-812CxxA series 1. 1. 1 Package SOT-23-5, SOT-89-3 S-812C xx A xx - xxx T2 G IC direction in tape specifications*1 Product name (abbreviation) Package name (abbreviation)*2 MC :SOT-23-5 UA :SOT-89-3 Short-circuit protection and power-off function A : No Output voltage 20 to 60 (e.g. When the output voltage is 2.0 V, it is expressed 20) *1. Refer to the taping specifications. *2. Refer to the “2. Product name list”. 1. 1. 2 Package TO-92 S-812C xx A Y - x - G Product name (abbreviation) B : Bulk T : Tape and Reel Z : Tape and ammo Package name (abbreviation)*1 Y : TO-92 Short-circuit protection and power-off function A : No Output voltage 20 to 60 (e.g. When the output voltage is 2.0 V, it is expressed 20) *1. Refer to the “2. Product name list”. 4 Seiko Instruments Inc. HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR S-812C Series Rev.4.0_00 1. 2 S-812CxxB series S-812C xx B xx - xxx xx G IC direction in tape specifications TF :SNT-6A(H) T2 :SOT-23-5, SOT-89-5 *1 Product name (abbreviation) Package name (abbreviation)*2 PI :SNT-6A(H) MC :SOT-23-5 UC :SOT-89-5 Short-circuit protection and power-off function B : Yes ON/OFF pin Positive logic (operates by “H”) Output voltage 20 to 60 (e.g. When the output voltage is 2.0V, it is expressed 20) *1. Refer to the taping specifications. *2. Refer to the “2. Product name list”. 1. 3 S-812CxxE series S-812C xx E UA - xxx T2 G IC direction in tape specifications*1 Product name (abbreviation) Package name (abbreviation)*2 UA :SOT-89-3 Short-circuit protection and no power-off function Output voltage 20 to 60 (e.g. When the output voltage is 2.0 V, it is expressed 20) *1. Refer to the taping specifications. *2. Refer to the “2. Product name list”. Seiko Instruments Inc. 5 HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR S-812C Series Rev.4.0_00 2. Product name list 2. 1 S-812CxxA Series (No short-circuit protection, power-off function) Table 1 Output voltage SOT-23-5 SOT-89-3 S-812C20AMC-C2AT2G S-812C20AUA-C2AT2G 2.0 V±2.0 % S-812C21AMC-C2BT2G S-812C21AUA-C2BT2G 2.1 V±2.0 % S-812C22AMC-C2CT2G S-812C22AUA-C2CT2G 2.2 V±2.0 % S-812C23AMC-C2DT2G S-812C23AUA-C2DT2G 2.3 V±2.0 % S-812C24AMC-C2ET2G S-812C24AUA-C2ET2G 2.4 V±2.0 % S-812C25AMC-C2FT2G S-812C25AUA-C2FT2G 2.5 V±2.0 % S-812C26AMC-C2GT2G S-812C26AUA-C2GT2G 2.6 V±2.0 % S-812C27AMC-C2HT2G S-812C27AUA-C2HT2G 2.7 V±2.0 % S-812C28AMC-C2IT2G S-812C28AUA-C2IT2G 2.8 V±2.0 % S-812C29AMC-C2JT2G S-812C29AUA-C2JT2G 2.9 V±2.0 % S-812C30AMC-C2KT2G S-812C30AUA-C2KT2G 3.0 V±2.0 % S-812C31AMC-C2LT2G S-812C31AUA-C2LT2G 3.1 V±2.0 % S-812C32AMC-C2MT2G S-812C32AUA-C2MT2G 3.2 V±2.0 % S-812C33AMC-C2NT2G S-812C33AUA-C2NT2G 3.3 V±2.0 % S-812C34AMC-C2OT2G S-812C34AUA-C2OT2G 3.4 V±2.0 % S-812C35AMC-C2PT2G S-812C35AUA-C2PT2G 3.5 V±2.0 % S-812C36AMC-C2QT2G S-812C36AUA-C2QT2G 3.6 V±2.0 % S-812C37AMC-C2RT2G S-812C37AUA-C2RT2G 3.7 V±2.0 % S-812C38AMC-C2ST2G S-812C38AUA-C2ST2G 3.8 V±2.0 % S-812C39AMC-C2TT2G S-812C39AUA-C2TT2G 3.9 V±2.0 % S-812C40AMC-C2UT2G S-812C40AUA-C2UT2G 4.0 V±2.0 % S-812C41AMC-C2VT2G S-812C41AUA-C2VT2G 4.1 V±2.0 % S-812C42AMC-C2WT2G S-812C42AUA-C2WT2G 4.2 V±2.0 % S-812C43AMC-C2XT2G S-812C43AUA-C2XT2G 4.3 V±2.0 % S-812C44AMC-C2YT2G S-812C44AUA-C2YT2G 4.4 V±2.0 % S-812C45AMC-C2ZT2G S-812C45AUA-C2ZT2G 4.5 V±2.0 % S-812C46AMC-C3AT2G S-812C46AUA-C3AT2G 4.6 V±2.0 % S-812C47AMC-C3BT2G S-812C47AUA-C3BT2G 4.7 V±2.0 % S-812C48AMC-C3CT2G S-812C48AUA-C3CT2G 4.8 V±2.0 % S-812C49AMC-C3DT2G S-812C49AUA-C3DT2G 4.9 V±2.0 % S-812C50AMC-C3ET2G S-812C50AUA-C3ET2G 5.0 V±2.0 % S-812C51AMC-C3FT2G S-812C51AUA-C3FT2G 5.1 V±2.0 % S-812C52AMC-C3GT2G S-812C52AUA-C3GT2G 5.2 V±2.0 % S-812C53AMC-C3HT2G S-812C53AUA-C3HT2G 5.3 V±2.0 % S-812C54AMC-C3IT2G S-812C54AUA-C3IT2G 5.4 V±2.0 % S-812C55AMC-C3JT2G S-812C55AUA-C3JT2G 5.5 V±2.0 % S-812C56AMC-C3KT2G S-812C56AUA-C3KT2G 5.6 V±2.0 % S-812C57AMC-C3LT2G S-812C57AUA-C3LT2G 5.7 V±2.0 % S-812C58AMC-C3MT2G S-812C58AUA-C3MT2G 5.8 V±2.0 % S-812C59AMC-C3NT2G S-812C59AUA-C3NT2G 5.9 V±2.0 % S-812C60AMC-C3OT2G S-812C60AUA-C3OT2G 6.0 V±2.0 % *1. X changes according to the packing form in TO-92. B: Bulk, T: Tape and Reel, Z: Tape and ammo. SOT-89-5 TO-92*1 S-812C20AY-x-G S-812C21AY-x-G S-812C22AY-x-G S-812C23AY-x-G S-812C24AY-x-G S-812C25AY-x-G S-812C26AY-x-G S-812C27AY-x-G S-812C28AY-x-G S-812C29AY-x-G S-812C30AY-x-G S-812C31AY-x-G S-812C32AY-x-G S-812C33AY-x-G S-812C34AY-x-G S-812C35AY-x-G S-812C36AY-x-G S-812C37AY-x-G S-812C38AY-x-G S-812C39AY-x-G S-812C40AY-x-G S-812C41AY-x-G S-812C42AY-x-G S-812C43AY-x-G S-812C44AY-x-G S-812C45AY-x-G S-812C46AY-x-G S-812C47AY-x-G S-812C48AY-x-G S-812C49AY-x-G S-812C50AY-x-G S-812C51AY-x-G S-812C52AY-x-G S-812C53AY-x-G S-812C54AY-x-G S-812C55AY-x-G S-812C56AY-x-G S-812C57AY-x-G S-812C58AY-x-G S-812C59AY-x-G S-812C60AY-x-G Remark Please contact our sales office for products with an output voltage value other than those specified above. 6 Seiko Instruments Inc. Rev.4.0_00 HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR S-812C Series 2. 2 S-812CxxB Series (Short-circuit protection and power-off function) Table 2 SOT-89-5 Output voltage SNT-6A(H) SOT-23-5 S-812C20BPI-C4ATFG S-812C20BMC-C4AT2G 2.0 V±2.0 % S-812C21BPI-C4BTFG S-812C21BMC-C4BT2G 2.1 V±2.0 % S-812C22BPI-C4CTFG S-812C22BMC-C4CT2G 2.2 V±2.0 % S-812C23BPI-C4DTFG S-812C23BMC-C4DT2G 2.3 V±2.0 % S-812C24BPI-C4ETFG S-812C24BMC-C4ET2G 2.4 V±2.0 % S-812C25BPI-C4FTFG S-812C25BMC-C4FT2G 2.5 V±2.0 % S-812C26BPI-C4GTFG S-812C26BMC-C4GT2G 2.6 V±2.0 % S-812C27BPI-C4HTFG S-812C27BMC-C4HT2G 2.7 V±2.0 % S-812C28BPI-C4ITFG S-812C28BMC-C4IT2G 2.8 V±2.0 % S-812C29BPI-C4JTFG S-812C29BMC-C4JT2G 2.9 V±2.0 % S-812C30BPI-C4KTFG S-812C30BMC-C4KT2G 3.0 V±2.0 % S-812C31BPI-C4LTFG S-812C31BMC-C4LT2G 3.1 V±2.0 % S-812C32BPI-C4MTFG S-812C32BMC-C4MT2G 3.2 V±2.0 % S-812C33BPI-C4NTFG S-812C33BMC-C4NT2G S-812C33BUC-C4NT2G 3.3 V±2.0 % S-812C34BPI-C4OTFG S-812C34BMC-C4OT2G 3.4 V±2.0 % S-812C35BPI-C4PTFG S-812C35BMC-C4PT2G 3.5 V±2.0 % S-812C36BPI-C4QTFG S-812C36BMC-C4QT2G 3.6 V±2.0 % S-812C37BPI-C4RTFG S-812C37BMC-C4RT2G 3.7 V±2.0 % S-812C38BPI-C4STFG S-812C38BMC-C4ST2G 3.8 V±2.0 % S-812C39BPI-C4TTFG S-812C39BMC-C4TT2G 3.9 V±2.0 % S-812C40BPI-C4UTFG S-812C40BMC-C4UT2G 4.0 V±2.0 % S-812C41BPI-C4VTFG S-812C41BMC-C4VT2G 4.1 V±2.0 % S-812C42BPI-C4WTFG S-812C42BMC-C4WT2G 4.2 V±2.0 % S-812C43BPI-C4XTFG S-812C43BMC-C4XT2G 4.3 V±2.0 % S-812C44BPI-C4YTFG S-812C44BMC-C4YT2G 4.4 V±2.0 % S-812C45BPI-C4ZTFG S-812C45BMC-C4ZT2G 4.5 V±2.0 % S-812C46BPI-C5ATFG S-812C46BMC-C5AT2G 4.6 V±2.0 % S-812C47BPI-C5BTFG S-812C47BMC-C5BT2G 4.7 V±2.0 % S-812C48BPI-C5CTFG S-812C48BMC-C5CT2G 4.8 V±2.0 % S-812C49BPI-C5DTFG S-812C49BMC-C5DT2G 4.9 V±2.0 % S-812C50BPI-C5ETFG S-812C50BMC-C5ET2G S-812C50BUC-C5ET2G 5.0 V±2.0 % S-812C51BPI-C5FTFG S-812C51BMC-C5FT2G 5.1 V±2.0 % S-812C52BPI-C5GTFG S-812C52BMC-C5GT2G 5.2 V±2.0 % S-812C53BPI-C5HTFG S-812C53BMC-C5HT2G 5.3 V±2.0 % S-812C54BPI-C5ITFG S-812C54BMC-C5IT2G 5.4 V±2.0 % S-812C55BPI-C5JTFG S-812C55BMC-C5JT2G 5.5 V±2.0 % S-812C56BPI-C5KTFG S-812C56BMC-C5KT2G 5.6 V±2.0 % S-812C57BPI-C5LTFG S-812C57BMC-C5LT2G 5.7 V±2.0 % S-812C58BPI-C5MTFG S-812C58BMC-C5MT2G 5.8 V±2.0 % S-812C59BPI-C5NTFG S-812C59BMC-C5NT2G 5.9 V±2.0 % S-812C60BPI-C5OTFG S-812C60BMC-C5OT2G 6.0 V±2.0 % Remark Please contact our sales office for products with an output voltage value other than those specified above. Seiko Instruments Inc. 7 HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR S-812C Series Rev.4.0_00 2. 3 S-812CxxE Series (Short-circuit protection, no power-off function) Table 3 Output voltage SOT-23-5 SOT-89-3 S-812C40EUA-C5QT2G 4.0 V±2.0 % *1. X changes according to the packing form in TO-92. B: Bulk, T: Tape and Reel, Z: Tape and ammo. SOT-89-5 TO-92*1 Remark Please contact our sales office for products with an output voltage value other than those specified above. 8 Seiko Instruments Inc. HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR S-812C Series Rev.4.0_00 Pin Configurations Table 4 SNT-6A(H) Top view 1 6 2 5 3 4 Figure 4 SOT-23-5 Top view 5 1 4 2 3 Figure 5 SOT-89-3 Top view 1 2 Pin No. Symbol Description *1 1 NC No connection 2 VIN Input voltage pin 3 VOUT Output voltage pin 4 VSS GND pin 5 VIN Input voltage pin 6 ON/OFF Power-off pin *1. The NC pin is electrically open. The NC pin can be connected to VIN or VSS. Table 5 Pin No. 1 2 3 4 Symbol Description VSS GND pin VIN Input voltage pin VOUT Output voltage pin NC*1 No connection ON/OFF Power-off pin (B type) 5 NC*1 No connection (A type, E type) *1. The NC pin is electrically open. The NC pin can be connected to VIN or VSS. Table 6 Pin No. 1 2 3 Symbol VSS VIN VOUT Description GND pin Input voltage pin Output voltage pin 3 Figure 6 SOT-89-5 Top view 5 1 4 2 Table 7 Pin No. 1 2 3 Symbol Description VOUT Output voltage pin VIN Input voltage pin VSS GND pin ON/OFF Power-off pin (B type) 4 NC*1 No connection (A type, E type) 5 NC*1 No connection *1. The NC pin is electrically open. The NC pin can be connected to VIN or VSS. 3 Figure 7 Seiko Instruments Inc. 9 HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR S-812C Series Rev.4.0_00 Table 8 TO-92 Bottom view Pin No. 1 2 3 1 2 3 Symbol VSS VIN VOUT Description GND pin Input voltage pin Output voltage pin Figure 8 Absolute Maximum Ratings Table 9 Item Symbol VIN VON/OFF VOUT Input voltage Output voltage SNT-6A(H) SOT-23-5 Power dissipation SOT-89-3 PD SOT-89-5 TO-92 (Ta=25°C unless otherwise specified) Absolute Maximum Rating Units V VSS−0.3 to VSS+18 V VSS−0.3 to VIN+0.3 V VSS−0.3 to VIN+0.3 500*1 mW 250 (When not mounted on board) mW mW 600*1 500 (When not mounted on board) mW mW 1000*1 500 (When not mounted on board) mW mW 1000*1 400 (When not mounted on board) mW mW 800*1 −40 to +85 °C −40 to +125 °C Operating temperature range Topr Storage temperature Tstg *1. When mounted on board [Mounted board] (1) Board size : 114.3 mm × 76.2 mm × t1.6 mm (2) Board name : JEDEC STANDARD51-7 Power dissipation (PD) [mW] Caution The absolute maximum ratings are rated values exceeding which the product could suffer physical damage. These values must therefore not be exceeded under any conditions. 1200 SOT-89-5 SOT-89-3 1000 TO-92 800 SOT-23-5 600 400 200 0 SNT-6A(H) 0 150 100 50 Ambient temperature (Ta) [°C] Figure 9 Power Dissipation of The Package (When mounted on Board) 10 Seiko Instruments Inc. HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR S-812C Series Rev.4.0_00 Electrical Characteristics Table 10 Parameter Output voltage*1 Symbol VOUT(E) Conditions VIN = VOUT(S)+2 V, IOUT = 10mA 2.0V ≤ VOUT(S) ≤ 2.9V VOUT(S)+2V 3.0V ≤ VOUT(S) ≤ 3.9V Output current IOUT ≤ VIN≤16V 4.0V ≤ VOUT(S) ≤ 4.9V 5.0V ≤ VOUT(S) ≤ 6.0V 2.0V ≤ VOUT(S) ≤ 2.4V 2.5V ≤ VOUT(S) ≤ 2.9V 3.0V ≤ VOUT(S) ≤ 3.4V IOUT = 3.5V ≤ VOUT(S) ≤ 3.9V *3 Dropout voltage Vdrop 10mA 4.0V ≤ VOUT(S) ≤ 4.4V 4.5V ≤ VOUT(S) ≤ 4.9V 5.0V ≤ VOUT(S) ≤ 5.4V 5.5V ≤ VOUT(S) ≤ 6.0V VOUT(S) + 1 V ≤ VIN ≤ 16 V, Line regulation 1 ∆ VOUT11 IOUT = 1mA VOUT(S) + 1 V ≤ VIN ≤ 16 V, Line regulation 2 ∆ VOUT21 IOUT = 1µA 2.0V ≤ VOUT(S) ≤ 2.9V, 1µA ≤ IOUT ≤ 20mA 3.0V ≤ VOUT(S) ≤ 3.9V, VIN = VOUT(S) 1µA ≤ IOUT ≤ 30mA Load regulation ∆ VOUT31 +2V 4.0V ≤ VOUT(S) ≤ 4.9V, 1µA ≤ IOUT ≤ 40mA 5.0V ≤ VOUT(S) ≤ 6.0V, 1µA ≤ IOUT ≤ 50mA ∆VOUT Output voltage VIN = VOUT(S) + 1 V, IOUT = 10mA, temperature coefficient*4 ∆Ta • VOUT -40°C ≤ Ta ≤ 85°C 2.0V ≤ VOUT(S) ≤ 2.7V VIN = 2.8V ≤ VOUT(S) ≤ 3.7V VOUT(S)+2V, Current consumption ISS 3.8V ≤ VOUT(S) ≤ 5.1V no load 5.2V ≤ VOUT(S) ≤ 6.0V Input voltage VIN − Applied to products with Power-off Function Current consumption VIN = VOUT(S) + 2V, ISS2 at power-off VON/OFF = 0V, no load Power-off pin VIN = VOUT(S) + 2V, RL = 1kΩ, VSH Input voltage for high level determined by VOUT output level Power-off pin VIN = VOUT(S) + 2V, RL = 1kΩ, VSL Input voltage for low level determined by VOUT output level Power-off pin ISH VIN = VOUT(S) + 2V, VON/OFF = 7V Input current at high level Power-off pin ISL VIN = VOUT(S) + 2V, VON/OFF = 0V Input current at low level Applied to products with Short-circuit Protection Short-circuit current IOS VIN = VOUT(S) + 2 V, VOUT = 0 V *2 Seiko Instruments Inc. (Ta=25°C unless otherwise specified) Test Min. Typ. Max. Units circuits VOUT(S) V VOUT(S) OUT(S) V 1 × 0.98 × 1.02 30 − − mA 3 50 − − mA 3 65 − − mA 3 75 − − mA 3 0.46 0.95 V 1 − 0.32 0.68 V 1 − 0.23 0.41 V 1 − 0.19 0.35 V 1 − 0.16 0.30 V 1 − 0.14 0.27 V 1 − 0.12 0.25 V 1 − 0.11 0.23 V 1 − − 5 20 mV 1 − 5 20 mV 1 − 6 30 mV 1 − 10 45 mV 1 − 13 65 mV 1 − 17 80 mV 1 − ±100 − ppm/°C 1 − − − − − 0.9 1.0 1.2 1.5 − 1.6 1.8 2.1 2.5 16 µA µA µA µA V 2 2 2 2 1 − 0.1 0.5 µA 2 2.0 − − V 4 − − 0.4 V 4 -0.1 − 0.1 µA 4 -0.1 − 0.1 µA 4 − 40 − mA 3 11 HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR S-812C Series Rev.4.0_00 *1. VOUT(S): Specified output voltage VOUT(E): Effective output voltage i.e., the output voltage when fixing IOUT(=10 mA) and inputting VOUT(S)+2.0 V. *2. Output current at which output voltage becomes 95% of VOUT(E) after gradually increasing output current. *3. Vdrop = VIN1−(VOUT(E) × 0.98), where VIN1 is the input voltage at which output voltage reaches 98% of VOUT(E) after gradually decreasing input voltage. *4. The ratio of temperature change in output voltage [mV/°C] is calculated using the following equation. ∆VOUT [mV/ °C]*1 = VOUT(S) [V ]*2 × ∆VOUT [ppm/ °C]*3 ÷ 1000 ∆Ta ∆Ta • VOUT *1. The ratio of temperature change in output voltage *2. Specified output voltage *3. Output voltage temperature coefficient 12 Seiko Instruments Inc. HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR S-812C Series Rev.4.0_00 Test Circuits 1. VIN VOUT A (ON/OFF)*1 VSS Set to power ON V Figure 10 2. VOUT VIN A *1 (ON/OFF) VSS Set to VIN or GND Figure 11 3. VIN VOUT A (ON/OFF)*1 VSS V Set to power ON Figure 12 4. VIN A VOUT *1 (ON/OFF) VSS RL V Figure 13 *1. In case of product with power-off function. Standard Circuit OUTPUT INPUT VIN CIN *1 VOUT → (ON/OFF)*3 CL VSS *2 GND Single GND *1. CIN is a capacitor for stabilizing the input. *2. In addition to tantalum capacitor, ceramic capacitor can be used for CL. *3. Control this ON/OFF pin in the product with power-off function. Figure 14 Caution The above connection diagram and constant will not guarantee successful operation. Perform through evaluation using the actual application to set the constant. Seiko Instruments Inc. 13 HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR S-812C Series Rev.4.0_00 Technical Terms 1. Output capacitors (CL) Generally in voltage regulator, output capacitor is used to stabilize regulation and to improve the characteristics of transient response. The S-812C Series operates stably without output capacitor CL. Thus the output capacitor CL is used only for improvement of the transient response. In the applications that users will use the S-812C Series, and they are not cautious about the transient response, it is possible to omit an output capacitor. If using an output capacitor for this IC, users are able to use devices such as ceramic capacitor which has small ESR (Equivalent Series Resistance). 2. Output voltage (VOUT) The accuracy of the output voltage ± 2.0% is assured under the specified conditions for input voltage, which differs depending upon the product items, output current, and temperature. Caution If the above conditions change, the output voltage value may vary and go out of the accuracy range of the output voltage. See the electrical characteristics and characteristics data for details. 3. Line regulations 1 and 2 (∆VOUT1, ∆VOUT2) Indicate the dependency of the output voltage against the input voltage. That is, the value shows how much the output voltage changes due to a change in the input voltage after fixing output current constant. 4. Load regulation (∆VOUT3) Indicates the dependency of the output voltage against the output current. That is, the value shows how much the output voltage changes due to a change in the output current after fixing output current constant. 5. Dropout voltage (Vdrop) Indicates the difference between the output voltage and the input voltage VIN1, which is the input voltage (VIN) when; decreasing input voltage VIN gradually until the output voltage has dropped to the value of 98% of output voltage VOUT(E), which is at VIN = VOUT(S) + 1.0 V. Vdrop = VIN1 − (VOUT(E) × 0.98) 14 Seiko Instruments Inc. Rev.4.0_00 HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR S-812C Series ∆VOUT 6. Temperature coefficient of output voltage ∆Ta • VOUT The shadowed area in Figure 15 is the range where VOUT varies in the operating temperature range when the temperature coefficient of the output voltage is ±100 ppm/°C. The ratio of temperature change in output voltage [mV/°C] is calculated from the following equation. ∆VOUT [mV/ °C]*1 = VOUT(S) [V ]* 2 × ∆Ta∆V•OUT [ppm/ °C]* 3 ÷ 1000 ∆Ta VOUT *1. The ratio of temperature change in output voltage *2. Specified output voltage *3. Output voltage temperature coefficient VOUT[V} +0.30mV/°C VOUT(E) *1 -0.30mV/°C -40 25 85 Ta [°C] *1. VOUT(E) is a measured value of output voltage at 25°C. Figure 15 Ex. S-812C30A Typ. Seiko Instruments Inc. 15 HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR S-812C Series Rev.4.0_00 Operation 1. Basic Operation Figure 16 shows the block diagram of the S-812C Series. The error amplifier compares the reference voltage (Vref) with Vfb, which is the output voltage resistancedivided by feedback resistors Rs and Rf. It supplies the gate voltage necessary to maintain the constant output voltage which is not influenced by the input voltage and temperature change, to the output transistor. VIN *1 Current supply Error amplifier VOUT − Vref Rf + Reference voltage circuit RS VSS *1. Parasitic diode Figure 16 2. Output Transistor In the S-812C Series, a low on-resistance P-channel MOS FET is used as the output transistor. Be sure that VOUT does not exceed VIN + 0.3 V to prevent the voltage regulator from being damaged due to inverse current which flows, because of a parasitic diode between the VIN and VOUT pin. 16 Seiko Instruments Inc. HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR S-812C Series Rev.4.0_00 3. Power-off function (ON/OFF pin) This function starts and stops the regulator. When the ON/OFF pin is set to power-off level, the entire internal circuit stops operating, and the built-in P-channel MOS FET output transistor between the VIN and VOUT pin is turned off, in order to reduce the current consumption significantly. The VOUT pin is set to the VSS level by the internal dividing resistor of several MΩ between the VOUT and VSS pin. The ON/OFF pin is configured as shown in Figure 17 Since the ON/OFF pin is neither pulled down nor pulled up internally, do not use it in the floating state. Note that if applying the voltage of VIN + 0.3 V or more, the current flows to VIN via a parasitic diode in the IC. When not using the power-off pin in the product with the power-off function, connect the ON/OFF pin to the VIN pin (in positive logic), or to the VSS pin (in negative logic). The output voltage may increase by stopping regulation when a lower current (less than 100 µA) is applied. If the output voltage increased during power-off, pull the VOUT pin down to the VSS pin and set the ON/OFF pin to the power-down level. Table 11 Logic Type ON/OFF Pin Internal Circuits VOUT Pin Voltage Current Consumption B “L”: Power off Stop VSS level ISS2 B “H”: Power on Operation Set value ISS1 VIN ON/OFF VSS Figure 17 4. Short-circuit protection circuit In the S-812C Series, users are able to select whether to set the short circuit protection, which protects the output capacitor from short-circuiting the VOUT and VSS pin. The short circuit protection circuit controls the output current against voltage VOUT, as seen in “ Characteristics (Typical Data) 1”, and limits the output current at approx. 40 mA even if the VOUT and VSS pins are short-circuited. However, this short circuit protection circuit does not work as for thermal protection. Pay attention to the conditions of input voltage and load current so that, under the usage condition including short circuit, the loss of the IC will not exceed power dissipation of the package. Even if pins are not short-circuited, this protection circuit works to limit the current to the specified value, in order to protect the output capacitor, when the output current and the potential difference between input and output voltages increase. In the product without the short circuit protection circuit, the S-812C Series allows the relatively larger current because this protection circuit is detached. Seiko Instruments Inc. 17 HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR S-812C Series Rev.4.0_00 Selection of External Components 1. Output Capacitor (CL) The S-812C Series has an internal phase compensation circuit which stabilizes the operation regardless of the change of output load. Therefore it is possible for users to have a stable operation without an output capacitor (CL). However, the values of output overshoot and undershoot, which are the characteristics of transient response, vary depending on the output capacitor. In selecting the value of output capacitor, refer to the data on CL dependency in “ Reference data 1. Transient response characteristics”. Set ESR 10 Ω or less when using a tantalum capacitor or an aluminum electrolytic capacitor. Pay attention at low temperature, that aluminum electrolytic capacitor especially may oscillate because ESR increases. Evaluate sufficiently including the temperature characteristics in use. Application Circuit 1. Output Current Boost Circuit As shown in Figure 18, the output current can be boosted by externally attaching a PNP transistor. Between the input voltage VIN and the VIN pin (for power supply) in the S-812C Series, if setting the base-emitter voltage VBE which fully switches the PNP transistor on, S-812C Series controls the base current in a PNP transistor so that the output voltage VOUT reaches the level of voltage which is set by the S-812C Series. Since the output current boosting circuit in Figure 18 does not have the good characteristics of transient response, under the usage condition, confirm if output fluctuation due to power-on, and fluctuations of power supply and load affect on the operation or not before use. Note that the short-circuit protection circuit in the S-812C Series does not work as short-circuit protection for this boost circuit. Tr1 S-812C Series ON/OFF VSS VIN VIN R1 CIN CL GND Figure 18 18 VOUT Seiko Instruments Inc. VOUT Rev.4.0_00 HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR S-812C Series 2. Constant Current Circuit This circuit can be used as a constant current circuit if making the composition seen in Figure 19 and 20. Constant current IO is calculated from the following equation: IO = (VOUT(E) ÷ RL) + ISS (VOUT(E) = effective output voltage) Note that by using a circuit in Figure 19, it is impossible to set the better driving ability to the constant amperage (IO) than the S-812C Series basically has. To gain the driving ability which exceeds the S-812C Series, there’s a way to combine a constant current circuit and a current boosting circuit, as seen in Figure 20. The maximum input voltage for a constant current circuit is 16 V + the voltage for device (VO). It is not recommended to add a capacitor between the VIN (power supply) and VSS pin or the VOUT (output) and VSS pin because the rush current flows at power-on. VIN VIN S-812C Series VOUT V ON/OFF RL OUT IO Device VO VSS CIN GND Figure 19 Constant Current Circuit Tr1 S-812C Series VIN VOUT R1 ON/OFF VSS CL GND RL VOUT VO IO Device Figure 20 Constant Current Boost Circuit 3. Output Voltage Adjustment Circuit (Only for S-812CxxA Series (No short-circuit protection, power-off function)) By using the composition seen in Figure 21, users are able to increase the output voltage. The value of output voltage VOUT1 is calculated from the following equation: VOUT1 = VOUT(E) × (R1 + R2) ÷ R1 + R2 × ISS (VOUT(E) = effective output voltage) Set the value of resistors R1 and R2 so that the S-812C Series is not affected by current consumption ISS. Capacitor C1 reduces output fluctuation due to power-on, power fluctuation and load fluctuation. Set the value according to the actual evaluation. It is not recommended to add a capacitor between the VIN (power supply) and VSS pin or the VOUT (output) and VSS pin because it causes output fluctuation and output oscillation due to power-on. VIN VIN S-812C Series R1 VSS CIN GND VOUT1 VOUT C1 CL R2 Figure 21 Seiko Instruments Inc. 19 HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR S-812C Series Rev.4.0_00 Precautions • Wiring patterns for the VIN, VOUT and GND pins should be designed so that the impedance is low. When mounting an output capacitor between the VOUT and VSS pins (CL) and a capacitor for stabilizing the input between VIN and VSS pins (CIN), the distance from the capacitors to these pins should be as short as possible. • Note that output voltage may be increased at low load current of less than 1 µA. • At low load current less than 100 µA output voltage may increase when the regulating operation is halted by the ON/OFF pin. • To prevent oscillation, it is recommended to use the external parts under the following conditions. Equivalent Series Resistance (ESR): 10 Ω or less (in case of using output capacitor) Input series resistance (RIN): 10 Ω or less • A voltage regulator may oscillate when power source impedance is high and input capacitor is low or not connected. • Pay attention to the operating conditions for input/output voltage and load current so that the power loss in the IC does not exceed the power dissipation of the package. • Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in electrostatic protection circuit. • SII claims no responsibility for any and all disputes arising out of or in connection with any infringement of the products including this IC upon patents owned by a third party. 20 Seiko Instruments Inc. HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR S-812C Series Rev.4.0_00 Characteristics (Typical Data) 1. Output Voltage vs Output Current (When load current increases) S-812C20B (Ta=25°C) Short- circuit protection 2.5 VIN=2.5V 2.0 5V 7V 1.5 S-812C30B (Ta=25°C) Short-circuit protection 3.5 3.0 VOUT (V) VOUT (V) 1.0 2.0 5V 4V 0.5 0.0 6V VIN=3.5V 1.5 1.0 4V 3V 0.5 8V 2.5 0.0 0 50 100 IOUT (mA) 150 0 50 100 IOUT (mA) 150 200 VOUT (V) S-812C50B (Ta=25°C) Short-circuit protection 6.0 10V 5.0 4.0 3.0 VIN=5.5V 2.0 6V 8V 7V 1.0 0.0 0 100 200 300 IOUT (mA) S-812C20A (Ta=25 ºC) 2.5 No short-circuit protection S-812C30A (Ta=25ºC) 3.5 VIN=2.3V 7V 2.5V 4V 3V 0.5 VOUT (V) VOUT (V) 1.5 1.0 VIN=3.3V 3.0 2.0 5V No short-circuit protection 2.5 2.0 8V 1.5 3.5V 1.0 4V 5V 6V 0.5 0.0 0.0 0 100 200 300 0 IOUT (mA) S-812C50A (Ta=25ºC) 6.0 100 200 IOUT (mA) 300 400 No short-circuit protection VOUT (V) 5.0 4.0 10V 3.0 2.0 VIN=5.3V 1.0 8V 6V 7V 5.5V 0.0 0 100 200 IOUT (mA) 300 400 Seiko Instruments Inc. 21 HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR S-812C Series Rev.4.0_00 2. Maximum Output Current vs Input Voltage S-812C20B Short-circuit protection 140 S-812C30B Ta=-40°C 120 100 IOUTMAX (mA) IOUTMAX (mA) Short-circuit protection 200 80 60 40 25°C 85°C Ta=-40°C 20 150 100 25°C 50 85°C 0 0 0 4 8 12 0 16 4 VIN (V) S-812C50B 12 16 Short-circuit protection 300 Ta=-40°C 250 IOUTMAX (mA) 8 VIN (V) 200 150 100 25°C 50 85°C 0 0 4 8 12 16 VIN (V) S-812C20A S-812C30A 200 No short-circuit protection 140 Ta=-40ºC 100 80 25ºC 60 40 85ºC 20 100 4 S-812C50A 8 VIN (V) 12 16 25ºC 50 0 0 0 Ta=−40ºC 150 IOUTMAX (mA) IOUTMAX (mA) 120 85ºC 0 No short-circuit protection 300 IOUTMAX (mA) 250 Ta=-40ºC 200 150 25ºC 100 85ºC 50 0 0 22 4 8 VIN(V) 12 No short-circuit protection 16 Seiko Instruments Inc. 4 8 VIN (V) 12 16 HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR S-812C Series Rev.4.0_00 3. Maximum Output Current vs. Input Voltage S-812C20B (Ta=25°C) S-812C30B (Ta=25°C) 2.10 3.15 VOUT (V) 3.10 -50 mA -10 mA VOUT (V) IOUT=-1 µA 2.05 -20 mA 2.00 -1 mA 1.95 IOUT=-1 µA 3.05 -20 mA -50 mA -10 mA 3.00 -1 mA 2.95 2.90 1.90 2.85 1.5 2 2.5 3 VIN (V) S-812C50B (Ta=25°C) 3.5 4 6.5 7 2.5 3 3.5 4 VIN (V) 4.5 5 5.25 IOUT=-1 µA VOUT (V) 5.15 5.05 -20 mA -10 mA 4.95 -1 mA -50 mA 4.85 4.75 4.5 5 5.5 6 VIN (V) 4. Dropout Voltage vs Output Current S-812C20B S-812C30B 2000 1600 1400 1200 1000 800 600 400 200 0 85°C Vdrop (mV) Vdrop (mV) 25°C 1500 1000 500 Ta=-40°C 0 0 10 20 30 40 IOUT (mA) 50 85°C 25°C Ta=-40°C 0 10 20 30 IOUT (mA) 40 50 S-812C50B 1000 900 800 700 600 500 400 300 200 100 0 Vdrop (mV) 85°C 25°C Ta=-40°C 0 10 20 30 IOUT (mA) 40 50 Seiko Instruments Inc. 23 HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR S-812C Series Rev.4.0_00 5. Output Voltage vs Ambient Temperature 3.06 2.02 3.03 VOUT (V) S-812C30B 2.04 VOUT (V) S-812C20B 2.00 2.97 1.98 1.96 3.00 -50 0 50 2.94 100 -50 0 Ta (°C) 50 100 Ta (°C) S-812C50B 5.10 VOUT (V) 5.05 5.00 4.95 4.90 -50 0 50 100 Ta (°C) 7. Line Regulation 2 vs Ambient Temperature 20 20 15 15 10 5 0 S-812C20B S-812C50B -50 ∆VOUT2 (mV) ∆VOUT1 (mV) 6. Line Regulation 1 vs Ambient Temperature S-812C30B 10 5 0 50 100 0 Ta (°C) ∆VOUT3 (mV) 80 60 20 0 S-812C20B S-812C30B S-812C50B -50 0 50 100 Ta (°C) 24 S-812C50B -50 0 Seiko Instruments Inc. S-812C30B 50 Ta (°C) 8. Load Regulation vs Ambient Temperature 40 S-812C20B 100 HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR S-812C Series Rev.4.0_00 9. Current Consumption vs Input Voltage S-812C30B S-812C20B 2.5 2.5 2.0 85°C 25°C 1.5 ISS (µA) ISS (µA) 2.0 1.0 0.5 1.5 1.0 0.5 Ta= -40°C 85°C 25°C Ta= -40°C 0.0 0.0 0 4 8 12 V IN (V) 16 0 4 8 V IN (V) 12 16 S-812C50B 2.5 ISS (µA) 2.0 85°C 25°C 1.5 1.0 0.5 Ta= -40°C 0.0 0 4 8 12 V IN (V) 16 10. Power-off Pin Input Threshold vs Input Voltage VSH / VSL (V) 2.5 25°C 85°C 2.0 Ta=−40°C 1.5 1.0 Ta=−40°C 0.5 25°C 85°C 0.0 0 4 8 12 16 VIN (V) Seiko Instruments Inc. 25 HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR S-812C Series Rev.4.0_00 Reference Data 1. Transient Response Characteristics (Typical data: Ta=25 °C) In p u t v o lta g e or L o a d c u rre n t O v e rs h o o t O u tp u t v o lta g e U n d e rs h o o t 1-1. Power-on : S-812C30B (CL=10µF; ceramic capacitor) VIN, VON/OFF=0→5 V, IOUT=10 mA, CL=10 µF VOUT (0.5 V/div) 5V 0V 3V 0V TIME (100 µs/div) Load dependency of overshoot at power-on VIN, VON/OFF=0→VOUT(S)+2 V, CL=10 µF 0.025 S-812C30B 0.020 0.015 S-812C50B 0.010 0.005 0.000 0.02 0.04 0.06 IOUT (A) 0.08 S-812C30B 0.4 0.2 0.1 0 0.030 0.06 S-812C30B 20 30 CL (µF) 40 50 VIN, VON/OFF=0→VOUT(S)+2 V, IOUT=10 mA, CL=10 µF Overshoot (V) 0.05 0.025 S-812C50B 0.020 10 “Ta” dependency of overshoot at power-on VIN, VON/OFF=0→VDD, IOUT=10 mA, CL=10 µF 0.035 Overshoot (V) S-812C50B 0.6 0.0 0 VDD dependency of overshoot at power-on 0.015 0.010 S-812C50B S-812C30B 0.04 0.03 0.02 0.01 0.005 0.000 0.00 0 26 VIN, VON/OFF=0→VOUT(S)+2 V, IOUT=10 mA 0.8 Overshoot (V) Overshoot (V) 0.030 CL dependency of overshoot at power-on 5 10 VDD (V) 15 20 Seiko Instruments Inc. −50 0 50 Ta (°C) 100 HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR S-812C Series Rev.4.0_00 1-2. Power-on by power-off pin : S-812C30A (CL=10µF; ceramic capacitor) VOUT (0.5 V/div) VIN=5 V, VON/OFF=0→5 V, IOUT=10 mA, CL=10µF 5V 0V 3V 0V TIME (200 µs/div) Load dependency of overshoot at power-on by poweroff pin VIN=VOUT(S)+2 V, VON/OFF=0 →VOUT(S)+2 V, CL=10 µF 0.6 S-812C50B 0.4 0.2 S-812C30B 0.0 0.001 0.01 10 Overshoot (V) Overshoot (V) S-812C50B S-812C30B 0.1 0.0 0 5 0.2 10 VDD (V) 15 S-812C30B 0 10 20 30 CL (µF) 40 50 “Ta” dependency of overshoot at power-on by poweroff pin VIN=VDD, VON/OFF=0→VDD, IOUT=10 mA, CL=10 µF 0.5 0.4 0.3 0.2 S-812C50B 0.4 100 VDD dependency of overshoot at power-on by power-off pin 0.7 0.6 0.6 0.0 0.1 1 IOUT (mA) VIN=VOUT(S)+2 V, VON/OFF=0→VOUT(S)+2 V, IOUT=10 mA 0.8 Overshoot (V) Overshoot (V) 0.8 CL dependency of overshoot at power-on by power-off pin 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 20 Seiko Instruments Inc. VIN=VOUT(S)+2 V, VON/OFF=0→VOUT(S)+2 V, IOUT=10 mA, CL=10 µF S-812C50B S-812C30B −50 0 50 100 Ta (°C) 27 HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR S-812C Series Rev.4.0_00 1-3. Line Transient Response : S-812C30B (CL=10µF; ceramic capacitor) VOUT (0.05V / div) VIN, VON/OFF=4 →8 V, IOUT=10 mA 10 V 5V 0V 3V 2.9 V TIME (100µs/div) S-812C50B S-812C30B 0 10 20 30 IOUT (mA) 40 Overshoot (V) 28 VIN, VON/OFF=VOUT(S)+1 V→VDD, IOUT=10 mA, CL=10 µF 0.16 0.14 S-812C50B 0.12 0.10 0.08 0.06 0.04 S-812C30B 0.02 0.00 0 5 10 15 20 VDD (V) 0.20 S-812C30B 0.15 S-812C50B 0.10 0.05 0.00 50 VDD dependency of overshoot at line transient VIN, VON/OFF=VOUT(S)+1 V→VOUT(S)+5 V, IOUT=10 mA 0.25 Overshoot (V) 0.16 0.14 0.12 0.10 0.08 0.06 0.04 0.02 0.00 CL dependency of overshoot at line transient VIN, VON/OFF=VOUT(S)+1 V→VOUT(S)+5 V, CL=10 µF 0 10 20 30 CL (µF) 40 50 “Ta” dependency of overshoot at line transient VIN, VON/OFF=VOUT(S)+1 V→VOUT(S)+5 V, IOUT=10 mA, CL=10 µF Overshoot (V) Overshoot (V) Load dependency of overshoot at line transient 0.16 0.14 S-812C50B 0.12 0.10 0.08 0.06 0.04 0.02 0.00 0 −50 Seiko Instruments Inc. S-812C30B Ta (°C) 50 100 HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR S-812C Series Rev.4.0_00 VOUT (0.05 V / div) VIN, VON/OFF=8→4 V, IOUT=10 mA 10 V 5V 0V 3V 2.9 V 2.8 V TIME (500µs/div) Load dependency of undershoot at line transient Undershoot (V) 0.8 0.6 S-812C50B 0.4 S-812C30B 0.2 CL dependency of undershoot at line transient 10 20 30 IOUT (mA) 40 50 VDD dependency of undershoot at line transient 0.15 S-812C50B 0.05 0.20 0.15 0.10 0.30 Undershoot (V) Undershoot (V) 0.20 0.10 S-812C50B S-812C30B 0 10 20 30 CL (µF) 40 50 “Ta” dependency of undershoot at line transient VIN, VON/OFF=VDD→VOUT(S)+1 V, IOUT=10mA, CL=10 µF 0.25 0.30 0.25 0.05 0.00 0.0 0 VIN, VON/OFF= VOUT(S)+5 V→VOUT(S)+1 V, IOUT=10 mA 0.35 Undershoot (V) VIN, VON/OFF=VOUT(S)+5 V→VOUT(S)+1 V, CL=10 µF S-812C30B VIN, VON/OFF=VOUT(S)+5 V→VOUT(S)+1 V, IOUT=10mA, CL=10 µF 0.25 S-812C50B 0.20 0.15 0.10 S-812C30B 0.05 0.00 0.00 0 5 10 VDD (V) 15 20 Seiko Instruments Inc. −50 0 Ta (°C) 50 100 29 HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR S-812C Series Rev.4.0_00 1-4. Load Transient Response : S-812C30B (CL=10µF; ceramic capacitor) VIN=5 V, IOUT=10 mA→1 µA, CL=10 µF VOUT (0.05 V / div) 10 mA 0 mA 3.1 V 3V 2.9 V TIME(200 µs / div) Load dependency of overshoot at load transient VIN, VON/OFF=VOUT(S)+2 V, IOUT=10 mA→1 µA 1.0 VIN, VON/OFF=VOUT(S)+2 V, IOUT=10 mA→1 µA S-812C50B Overshoot (V) Overshoot (V) 1.2 0.8 0.6 0.4 S-812C30B 0.2 0.0 0 20 40 60 IOUT (mA) 80 100 0.16 0.14 0.12 0.10 0.08 0.06 0.04 0.02 0.00 0.16 0.14 0.12 0.10 0.08 0.06 0.04 0.02 0.00 S-812C50B S-812C30B 0 S-812C30B 5 10 VDD (V) 15 20 30 CL (µF) 40 50 VIN, VON/OFF=VOUT(S)+2 V, IOUT=10 mA→1 µA, CL=10 µF 0.16 0.14 S-812C50B 0 10 “Ta” dependency of overshoot at load transient IOUT=10 mA→1 µA, CL=10 µF Overshoot (V) Overshoot (V) VDD dependency of overshoot at load transient 30 CL dependency of overshoot at load transient 20 S-812C50B 0.12 0.10 0.08 0.06 0.04 0.02 0.00 S-812C30B −50 0 50 Ta (°C) Seiko Instruments Inc. 100 HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR S-812C Series Rev.4.0_00 VOUT (0.05 V / div) VIN=5 V, IOUT=1 µA,→10 mA, CL=10 µF 10 mA 0 mA 3V 2.9 V TIME (500 µs / div) Load dependency of undershoot at load transient VIN, VON/OFF=VOUT(S)+2 V, IOUT=1 µA→IOUT, CL=10µF 1.0 S-812C50B 0.8 0.6 0.4 S-812C30B 0.2 0.0 0 20 40 60 IOUT (mA) 80 0.10 0.05 S-812C30B 0 0.25 Undershoot (V) 0.15 0.10 S-812C30B 0.05 0 5 10 VDD (V) 15 20 10 20 30 CL (µF) 40 50 “Ta” dependency of undershoot at load transient S-812C50B Undershoot (V) S-812C50B 0.15 IOUT=1 µA→10 mA, CL=10 µF 0.20 0.00 0.20 0.00 100 VDD dependency of undershoot at load transient VIN, VON/OFF=VOUT(S)+2 V, IOUT=1 µA→10 mA 0.25 Undershoot (V) Undershoot (V) 1.2 CL dependency of undershoot at load transient 0.20 VIN, VON/OFF=VOUT(S)+2 V, IOUT=1 µA→10 mA, CL=10 µF S-812C50B 0.15 0.10 0.05 0.00 −50 Seiko Instruments Inc. S-812C30B 0 50 100 Ta (°C) 31 1.57±0.03 6 5 1 2 4 +0.05 0.08 -0.02 3 0.5 0.48±0.02 0.2±0.05 No. PI006-A-P-SD-2.0 TITLE SNT-6A(H)-A-PKG Dimensions PI006-A-P-SD-2.0 No. SCALE UNIT mm Seiko Instruments Inc. +0.1 ø1.5 -0 4.0±0.1 2.0±0.05 0.25±0.05 +0.1 1.85±0.05 5° ø0.5 -0 4.0±0.1 0.65±0.05 3 2 1 4 5 6 Feed direction No. PI006-A-C-SD-1.0 TITLE SNT-6A(H)-A-Carrier Tape PI006-A-C-SD-1.0 No. SCALE UNIT mm Seiko Instruments Inc. 12.5max. 9.0±0.3 Enlarged drawing in the central part ø13±0.2 (60°) (60°) No. PI006-A-R-SD-1.0 TITLE SNT-6A(H)-A-Reel No. PI006-A-R-SD-1.0 SCALE UNIT QTY. mm Seiko Instruments Inc. 5,000 0.52 1.36 0.52 0.3 Caution 0.2 0.3 0.2 0.3 Making the wire pattern under the package is possible. However, note that the package may be upraised due to the thickness made by the silk screen printing and of a solder resist on the pattern because this package does not have the standoff. No. PI006-A-L-SD-3.0 TITLE SNT-6A(H)-A-Land Recommendation PI006-A-L-SD-3.0 No. SCALE UNIT mm Seiko Instruments Inc. 2.9±0.2 1.9±0.2 4 5 1 2 +0.1 0.16 -0.06 3 0.95±0.1 0.4±0.1 No. MP005-A-P-SD-1.2 TITLE No. SOT235-A-PKG Dimensions MP005-A-P-SD-1.2 SCALE UNIT mm Seiko Instruments Inc. 4.0±0.1(10 pitches:40.0±0.2) +0.1 ø1.5 -0 2.0±0.05 +0.2 ø1.0 -0 0.25±0.1 4.0±0.1 1.4±0.2 3.2±0.2 3 2 1 4 5 Feed direction No. MP005-A-C-SD-2.1 TITLE SOT235-A-Carrier Tape No. MP005-A-C-SD-2.1 SCALE UNIT mm Seiko Instruments Inc. 12.5max. 9.0±0.3 Enlarged drawing in the central part ø13±0.2 (60°) (60°) No. MP005-A-R-SD-1.1 SOT235-A-Reel TITLE No. MP005-A-R-SD-1.1 SCALE QTY. UNIT mm Seiko Instruments Inc. 3,000 4.5±0.1 1.5±0.1 1.6±0.2 1 2 3 1.5±0.1 1.5±0.1 0.4±0.05 45° 0.4±0.1 0.4±0.1 0.45±0.1 No. UP003-A-P-SD-1.1 TITLE SOT893-A-PKG Dimensions No. UP003-A-P-SD-1.1 SCALE UNIT mm Seiko Instruments Inc. +0.1 ø1.5 -0 4.0±0.1(10 pitches : 40.0±0.2) 2.0±0.05 ø1.5 +0.1 -0 5° max. 0.3±0.05 8.0±0.1 2.0±0.1 4.75±0.1 Feed direction No. UP003-A-C-SD-1.1 TITLE SOT893-A-Carrier Tape No. UP003-A-C-SD-1.1 SCALE UNIT mm Seiko Instruments Inc. 16.5max. 13.0±0.3 Enlarged drawing in the central part (60°) (60°) No. UP003-A-R-SD-1.1 SOT893-A-Reel TITLE No. UP003-A-R-SD-1.1 SCALE UNIT QTY. mm Seiko Instruments Inc. 1,000 4.5±0.1 1.5±0.1 1.6±0.2 5 1 4 2 3 1.5±0.1 1.5±0.1 0.4±0.05 0.3 0.4±0.1 0.4±0.1 45° 0.45±0.1 No. UP005-A-P-SD-1.1 TITLE SOT895-A-PKG Dimensions UP005-A-P-SD-1.1 No. SCALE UNIT mm Seiko Instruments Inc. 4.0±0.1(10 pitches : 40.0±0.2) ø1.5 +0.1 -0 2.0±0.05 5° max. ø1.5 +0.1 -0 0.3±0.05 8.0±0.1 2.0±0.1 4.75±0.1 3 2 1 4 5 Feed direction No. UP005-A-C-SD-1.1 TITLE SOT895-A-Carrier Tape UP005-A-C-SD-1.1 No. SCALE UNIT mm Seiko Instruments Inc. 16.5max. 13.0±0.3 Enlarged drawing in the central part (60°) (60°) No. UP005-A-R-SD-1.1 TITLE SOT895-A-Reel No. UP005-A-R-SD-1.1 SCALE QTY. UNIT mm Seiko Instruments Inc. 1,000 5.2max. 4.2max. Marked side 0.6max. 0.45±0.1 0.45±0.1 1.27 No. YS003-B-P-SD-1.1 TITLE No. TO92-B-PKG Dimensions YS003-B-P-SD-1.1 SCALE UNIT mm Seiko Instruments Inc. 4.2max. 5.2max. Marked side 0.6max. 0.45±0.1 0.45±0.1 +0.4 2.5 -0.1 1.27 No. YF003-A-P-SD-1.1 TITLE TO92-A-PKG Dimensions YF003-A-P-SD-1.1 No. SCALE UNIT mm Seiko Instruments Inc. 12.7±1.0 1.0max. 0.5max. 1.0max. Marked side 1#pin 3#pin 1.45max. 0.7±0.2 6.35±0.4 ø4.0±0.2 12.7±0.3(20 pitches : 254.0±1.0) Feed direction Marked side Feed direction No. YF003-A-C-SD-4.1 TITLE No. TO92-A-Radial Tape YF003-A-C-SD-4.1 SCALE UNIT mm Seiko Instruments Inc. 2±0.5 5±0.5 43±0.5 ø358±2 53±0.5 No. YF003-A-R-SD-2.1 TO92-A-Reel TITLE No. YF003-A-R-SD-2.1 SCALE UNIT QTY. mm Seiko Instruments Inc. 2,000 4.2max. 5.2max. Marked side 0.6max. 0.45±0.1 0.45±0.1 +0.4 2.5 -0.1 1.27 No. YF003-A-P-SD-1.1 TO92-C-PKG Dimensions TITLE YF003-A-P-SD-1.1 No. SCALE UNIT mm Seiko Instruments Inc. 12.7±1.0 1.0max. 0.5max. 1.0max. Marked side 1#pin 3#pin 1.45max. 0.7±0.2 ø4.0±0.2 6.35±0.4 12.7±0.3(20 pitches : 254.0±1.0) Z type Feed direction No. YZ003-C-C-SD-3.1 TITLE TO92-C-Radial Tape No. YZ003-C-C-SD-3.1 SCALE UNIT mm Seiko Instruments Inc. Spacer 60 320 40 Side spacer placed in front side 165 320 Space more than 4 strokes 262 330 47 No. YZ003-C-Z-SD-2.1 TO92-C-Ammo Packing TITLE YZ003-C-Z-SD-2.1 No. SCALE UNIT QTY. mm Seiko Instruments Inc. 2,500 • • • • • • The information described herein is subject to change without notice. Seiko Instruments Inc. is not responsible for any problems caused by circuits or diagrams described herein whose related industrial properties, patents, or other rights belong to third parties. The application circuit examples explain typical applications of the products, and do not guarantee the success of any specific mass-production design. When the products described herein are regulated products subject to the Wassenaar Arrangement or other agreements, they may not be exported without authorization from the appropriate governmental authority. Use of the information described herein for other purposes and/or reproduction or copying without the express permission of Seiko Instruments Inc. is strictly prohibited. The products described herein cannot be used as part of any device or equipment affecting the human body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus installed in airplanes and other vehicles, without prior written permission of Seiko Instruments Inc. Although Seiko Instruments Inc. exerts the greatest possible effort to ensure high quality and reliability, the failure or malfunction of semiconductor products may occur. The user of these products should therefore give thorough consideration to safety design, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.