CXA1386P/K 8-bit 75MSPS Flash A/D Converter Description The CXA1386P/K are 8-bit high-speed flash A/D converter ICs capable of digitizing analog signals at the maximum rate of 75MSPS. The digital I/O levels of these A/D converters are compatible with the ECL 100K/10KH/10K. The CXA1386P/K is pin-compatible with the earlier models CXA1056P/K, CXA1016P/K, respectively. They can be replaced by the CXA1386P/K without any design changes, in most cases. Compared with the earlier models, these new models have been greatly improved in performance, by incorporating advanced process, new circuit design and carefully considered layout. Features • Differential linearity error: ±1/2LSB or less • Integral linearity error: ±1/2LSB or less • High-speed operation with maximum conversion rate of 75MSPS (Min.) • Wide analog input bandwidth: 150MHz (Min. for full-scale input) • Low Power consumption: 580mW (Typ.) • Single power supply: –5.2V • Low input capacitance: 17pF (Typ.) • Built-in integral linearity conpensation circuit • Low error rate • Operable at 50% clock duty cycle • Good temperature characteristics • Capable of driving 50Ω loads CXA1386P 28 pin DIP (Plastic) CXA1386K 44 pin LCC (Ceramic) Structure Bipolar silicon monolithic IC Applications • Digital oscilloscopes • HDTV (high-definition TVs) • Other apparatus requiring high-speed A/D conversion 1 28 AVEE 2 27 VRT DGND 3 26 AVEE (LSB) D0 4 25 AGND D1 5 24 VIN D2 6 23 AGND D3 7 D4 8 D5 9 D6 10 (MSB) D7 11 CXA1386P 22 VRM 21 AGND 20 VIN 19 AGND 18 AVEE DGND 12 17 VRB DVEE 13 16 CLK MINV 14 15 CLK 39 AVEE 40 AVEE 41 VRT 42 43 44 AVEE 1 2 3 LINV 4 DVEE 5 DGND1 6 DGND2 7 38 37 36 35 34 33 32 31 30 29 CXA1386K 28 27 26 25 24 23 22 21 20 19 18 AVEE AVEE VRB CLK CLK MINV DVEE DGND1 8 9 10 11 12 13 14 15 16 17 (LSB) D0 D1 D2 D3 D4 D5 D6 (MSB) D7 DGND2 LINV DVEE AGND VIN AGND VRM AGND VIN AGND Pin Configuration Pins with name are NC pins (not connected). Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits. –1– E90114C54-ST CXA1386P/K Absolute Maximum Ratings (Ta = 25°C) • Supply voltage AVEE, DVEE • Analog input voltage VIN • Reference input voltage VRT, VRB, VRM I VRT – VRB I • Digital input voltage CLK, CLK, MINV, LINV I CLK – CLK I • VRM pin input current IVRM • Digital output current ID0 to ID7 • Storage temperature Tstg Recommended Operating Conditions • Supply voltage AVEE, DVEE AVEE – DVEE AGND – DGND • Reference input voltage VRT VRB • Analog input voltage VIN • Pulse width of clock TPW1 TPW0 • Operating temperature Tc (CXA1386K) Ta (CXA1386P) Min. –5.5 –0.05 –0.05 –0.1 –2.2 VRB 6.6 6.6 –20 –20 –7 to +0.5 –2.7 to +0.5 –2.7 to +0.5 2.5 –4 to +0.5 2.7 –3 to +3 –30 to 0 –65 to +150 V V V V V V mA mA °C Typ. Max. –5.2 –4.95 0 +0.05 0 +0.05 0 +0.1 –2.0 –1.8 VRT Unit V V V V V –2– +100 +75 ns ns °C °C CXA1386P/K Block Diagram MINV r1 VRT Comparator r/2 r r r r 1 2 • • • 63 D7 (MSB) D6 64 VIN r r2 r VRM r r r 127 128 OUTPUT r ENCODE LOGIC r D5 65 • • • 126 129 • • • 191 D1 D0 (LSB) r r r r3 r/2 193 • • • 254 255 VRB CLK CLK D3 D2 192 VIN D4 CLOCK DRIVER LINV –3– CXA1386P/K Pin Description and I/O pin Equivalent circuit Pin No LCC 31, 33, 35, 37 27, 28, 40, 41, 44 DIP Symbol 19, 21, AGND 23, 25 18, 26, 28 AVEE I/O — — Standard voltage level Equivalent circuit Description 0V Anlog GND. Used as GND for input buffers and latches of comparators. Isolated from DGND or DGND 1/2. –5.2V Analog VEE –5.2V (Typ.). Internally connected with DVEE (resistance: 4 to 6Ω). Ceramic chip capacitors of at least 0.1µF should be used to connect to AGND and be placed near the pins. DGND (DGND1) 23 16 CLK CLK input r r r CLK I 22 15 ECL r CLK CLK r DVEE r Input complementary to CLK. With open connection, kept at threshold voltage (–1.3V). Device is operable without CLK input, but use of complementary inputs of CLK and CLK is recommended to obtain the stable highspeed operation. — 3, 12 DGND — 0V Digital GND (Used for internal circuits and output transistors) 5, 19 — DGND1 — 0V Digital GND (Used for internal circuits) 6, 16 — DGND2 — 0V Digital GND (Used for output buffers) –4– CXA1386P/K Pin No LCC DIP Symbol 4, 20 2, 13 DVEE 8 4 D0 9 5 D1 10 6 D2 11 7 D3 12 8 D4 13 9 D5 14 10 D6 15 11 D7 I/O — Standard voltage level Equivalent circuit Description Digital VEE Internally connected with AVEE (resistance: 4 to 6Ω) Ceramic chip capacitors of at least 0.1µF should be used to connect to DGND and be placed near the pins. –5.2V DGND (DGND2) Di O Data outputs. External pull-down resistors are required. ECL MSB of data outputs. External pull-down resistor is required. DVEE Input pin for D0 (LSB) to D6 output polarity inversion (see output code table). With open connection, kept at "L" level. DGND (DGND1) 3 1 LINV I ECL r LINV or MINV 21 14 MINV LSB of data outputs. External pull-down resistor is required. I ECL DVEE –5– r r r –1.3V Input pin for D7 (MSB) output polarity inversion (see output code table). With open connection, kept at "L" level. CXA1386P/K Pin No. LCC DIP Symbol I/O Standard voltage level Equivalent circuit Description AGND Analog input pins. These two pins must be connected externally, since they are not internally connected. See Application Note for precautions. VIN 32, 36 20, 24 VIN I VRT to VRB VIN AVEE VRT 26 17 VRB I r1 –2V r/2 r Comparator 1 Comparator Comparator 2 • • • 127 Comparator 128 Comparator 129 Comparator 130 • • • • • • • 255 r r 34 22 VRM I VRB/2 VRM r2 r Reference voltage (bottom) Typically –2V A ceramic capacitor of at least 0.1µF and a tantalus capacitor of at least 10µF should be used to connect to AGND and be placed near the pins. Reference voltage mid point be used as a pin for integral linearity compensation r r 42 27 VRT I r 0V Comparator VRB 1, 2, 7, 17, 18, 24, 25, 29, 30, 38 39, 43 NC — r3 r/2 Reference voltage (top) Typically 0V When a voltage different from AGND is applied to this pin, a ceramic capacitor of at least 0.1µF and a tantalus capacitor of at least 10µF should be used to connect to AGND and be placed near the pins. Unused pins No internal connections have been made to these pins. Connecting them to AGND or DGND on PC board is recommended. — –6– CXA1386P/K Electrical Characteristics Item (Ta = 25°C, AVEE = DVEE = –5.2V, VRT = 0V, VRB = –2V) Symbol Resolution n DC characteristics Integral linearity error Differential linearity error EIL EDL Analg input Analog input capacitance CIN Analog input resistance RIN Input bias current IIN Reference inputs Reference resistance Offset voltage VRT VRB Digital inputs Logic H level Logic L level Logic H current Logic L current Input capacitance Condition Fc = 75MSPS Fc = 75MSPS ±0.3 ±0.3 VIN = –1V + 0.07Vrms 17 390 VIN = –1V 75 8 0 Input connected to –0.8V Input connected to –1.6V 110 18 10 0 –50 Digital outputs Logic H level Logic L level Output rising time Output falling time VOH VOL Tr Tf RL = 620Ω to DVEE RL = 620Ω to DVEE RL = 620Ω to DVEE, 20% to 80% RL = 620Ω to DVEE, 80% to 20% DG DP VIN = 2Vp-p Input frequency at –3dB Input = 1MHz, FS Clock = 75MHz Input = 18.75MHz, FS Clock = 75MHz Input = 18.749MHz, FS Error > 16LSB Clock = 75MHz NTSC 40IRE mod. ramp, Fc = 75MSPS Dynamic characteristics Input bandwidth S/N ratio Error rate 10–9 TPS∗1 ±0.5 ±0.5 LSB LSB 200 pF kΩ µA 155 32 24 Ω mV mV –1.50 50 50 V V µA µA pF 75 4.0 6.6 6.6 –1.62 0.9 2.1 150 –150 ∗1 TPS: Times Per Sample 2 ∗2 Pd = IEE · VEE + (VRT – VRB) RREF –7– V V ns ns 46 dB 40 dB 10–9 } MSPS ps ns ns ns ns MHz { IEE Pd 9.0 –1.03 { { Error rate 10 3.0 6.5 Unit bits 7 Fc Taj Tds Tdo TPW1 TPW0 Power supply Supply current Power consumption∗2 Max. –1.13 Switching characteristics Maximum conversion rate Aperture jitter Sampling delay Output delay H pulse width of clock L pulse width of clock Differential gain error Differential phase error Typ. 8 RREF EOT EOB VIH VIL IIH IIL Min. TPS∗1 1.0 0.5 % deg –104 580 mA mW CXA1386P/K Output Code Table VIN∗ MINV 1 LINV 1 Step D7 0V 0 1 –1V 127 128 254 255 –2V 0 1 D0 D7 1 0 D0 0 0 D7 D0 D7 D0 0 0 0 ······ 0 0 1 0 0 ······ 0 0 0 1 1 ······ 1 1 1 1 1 ······ 1 1 0 0 0 ······ 0 0 0 0 0 ······ 0 1 : : 0 1 1 ······ 1 1 1 0 0 ······ 0 0 : : 1 1 1 ······ 1 0 1 1 1 ······ 1 1 1 0 0 ······ 0 0 1 0 0 ······ 0 1 : : 1 1 1 ······ 1 1 0 0 0 ······ 0 0 : : 0 1 1 ······ 1 0 0 1 1 ······ 1 1 0 1 1 ······ 1 1 0 1 1 ······ 1 0 : : 0 0 0 ······ 0 0 1 1 1 ······ 1 1 : : 1 0 0 ······ 0 1 1 0 0 ······ 0 0 1 1 1 ······ 1 1 1 1 1 ······ 1 0 : : 1 0 0 ······ 0 0 0 1 1 ······ 1 1 : : 0 0 0 ······ 0 1 0 0 0 ······ 0 0 1 1 1 ······ 1 1 0 1 1 ······ 1 1 1 0 0 ······ 0 0 0 0 0 ······ 0 0 ∗ VRT = 0V, VRB = –2V Timing diagram Tds N N+1 Analog input Tpw1 N+2 Tpw0 CLK CLK 80% N –1 Digital output 20% Tdo Tr –8– N 80% N+1 20% Tf CXA1386P/K Electrical Characteristics Test Circuit Maximum conversion rate test circuit Signal Source Vin fCLK – 1kHz 4 2Vp-p Sin Wave 8 CXA1386 P/K CLK A ECL Latch B CLK Comparator A> B Pulse Counter ECL Latch + DATA 16 Signal Source 1/4 fCLK Differential gain error test circuit Differential phase error test circuit (CX20202A-1) VIN DUT CXA1386 P/K Amp 10Ω CLK 8 ECL Latch 8 10bit D/A CLK NTSC Signal Source Delay VBB Vector Scope SG (CW) 50 DG.DP Integral linearity error test circuit Differential linearity error test circuit +V S2 S1: ON when A < B S2: ON when A > B S1 –V VIN DUT CXA1386 P/K A< BA> B Comparator 8 A8 to A1 A0 B8 to B1 B0 "0" 8 Buffer "1" DVM 8 CLK (75MHz) Controller –9– 00000000 to 11111110 CXA1386P/K Power Supply Current Test Circuit Analog input bias current test circuit –1V A IIN IIN –1V 1 2 27 3 26 4 25 5 24 6 23 7 A 28 CXA1386P 39 40 41 42 43 44 1 2 3 4 5 6 22 8 21 9 20 10 19 11 18 12 17 13 16 14 15 –2V 38 37 36 35 34 33 32 31 30 29 CXA1386K 28 27 26 25 24 23 22 21 20 19 18 –2V 8 9 10 11 12 13 14 15 16 17 7 A IEE A IEE –5.2V –5.2V Sampling delay test circuit Aperture jitter test circuit Aperture jitter test method 0V –1V VIN 37.5MHz –2V Amp OSC1 φ: Variable CLK VIN fr CLK CXA1386 P/K 8 VIN 129 128 127 126 125 CLK Aperture jitter ∆v ∆t Logic Analizer t 1024 samples OSC2 ECL Buffer 37.5MHz σ (LSB) Aperture jitter is defined as follows: Taj = σ/ ∆υ 256 = σ/( ∆t 2 × 2πf ), Where σ (unit: LSB) is the deviation of the output codes when the input frequency is exactly the same as the clock and is sampled at the largest slew rate point. – 10 – CXA1386P/K 8bit 75MSPS ADC and DAC Evaluation Board It is necessary to equip "the CXA1396D/P EVALUATION BOARD WITH DAC" with "A1396D – A1386P ADAPTER" in order to evaluate CXA1386P. In addition to indispensable features such as the reference voltage generator, this tool equips two sets of analog inputs (the direct input and the buffer amplifier input), the input voltage offset generator, the clock decimator, the output data latches, the 10-bit high-speed DAC, and the 20-pin cable connector for digital outputs. This evaluation board provides full performance of the CXA1386P and it is designed to facilitate evaluation. Features Resolution: 8bits Maximum conversion rate: 75MSPS Supply voltage: +5.0V, –5.2V, –2.0V Two analog inputs (Direct input, buffer amplifier input) Clock level converter: Sine wave to ECL level signal Reference voltage adjustment circuit for the A/D converter Built-in clock frequency decimation circuit: (1/1 to 1/16) Fig. 1. Block Diagram –5.2V (A) H L VRB –2V VR2 (2k) –5.2V (A) SW1 VR3 (1k) DIGITAL OUT (CONNECTOR) LINV MINV Vin OFFSET VR1 (2k) SW2 VRB J1 A 1k 8 VRM DATA LATCH 8 BUFFER (D7 to D0) 8 CXA1386P B CLK C AMP.IN 240 CLK X (–2) 51 Vin (D7 to D0) D 8 2 (CLK.CLK) 51 DIR.IN 0.1µ D/A CONVERTER DECIMATOR CLK CLK SW3 1/1 to 1/16 +5V –5.2V (A) AGND –5.2V (D) – 11 – DGND –2V (D) D/A OUT CXA1386P/K Supply Current Item Min. –5.2V +5.0V –2.0V Typ. Max. Unit 0.85 15 0.45 1.0 30 0.6 A mA A (Note: Supply current –2.0V is the value when Rn10, Rn11 and Rn12 are not mounted.) Analog Input (DIR. IN, AMP. IN) Item Min. Input voltage (DIR. IN) (AMP. IN)∗1 Input impedance Typ. –2.0 –0.5 Max. Unit 0 +0.5 V V Ω Max. Unit 50 (∗1: Adjustable by VR1) Clock Input (CLK) Item Min. Input voltage (Peak to Peak) Input impedance Typ. 2.0 Vp-p 50 Ω Digital Output (D0 to D7) ECL 10KH level Clock Output ECL 10KH level, complementary output Output Code Table VIN MINV LINV 0 0 0 1 1 0 1 1 0V : : : : : : : : –2V 1 1 1 ······ 1 1 1 1 1 ······ 1 0 : : 1 0 0 ······ 0 0 0 1 1 ······ 1 1 : : 0 0 0 ······ 0 1 0 0 0 ······ 0 0 1 0 0 ······ 0 0 1 0 0 ······ 0 1 : : 1 1 1 ······ 1 1 0 0 0 ······ 0 0 : : 0 1 1 ······ 1 0 0 1 1 ······ 1 1 0 1 1 ······ 1 1 0 1 1 ······ 1 0 : : 0 0 0 ······ 0 0 1 1 1 ······ 1 1 : : 1 0 0 ······ 0 1 1 0 0 ······ 0 0 0 0 0 ······ 0 0 0 0 0 ······ 0 1 : : 0 1 1 ······ 1 1 1 0 0 ······ 0 0 : : 1 1 1 ······ 1 0 1 1 1 ······ 1 1 – 12 – CXA1386P/K Fig. 2. Timing Chart N A/D input pin Vin (DIR. IN, AMP. IN) N+1 PCB input pin CLK CLK A/D clock CLK A/D output D7 to D0 N –1 N D7 to D0 PCB output pin (For 1/1 frequency division) N –2 N –1 N Tdh 1.8ns (Typ) CLKN PCB output pin CLK (For 1/1 frequency division) PCB output pin DATA OUT (For 1/2 frequency division) N –4 N –2 N Tdh 1.8ns (Typ) CLKN PCB output pin CLK (For 1/2 frequency division) Adjustment Methods and Notes on Operation 1) Vin Offset (VR1) The volume to adjust the signal range (0V center assumed) with the A/D converter input range when a waveform is input through AMP. IN. 2) A/D Full Scale (VR2) The volume to adjust A/D converter VRB voltage. 3) Linearity (VR3) The volume to adjust VRM (linearity) voltage. – 13 – CXA1386P/K 4) D/A Full Scale (VR4) The volume to adjust D/A output full scale (–1V) 5) J1 (input selection) A: Shorts to adjust VRM voltage. B: Shorts to supply DC voltage to Vin. C: Shorts to select AMP.IN input. D: Shorts to select DIR. IN input. [Jumper Poisition at shipment] J1 A B C D 6) SW1 The switch for LINV High/Low 7) SW2 The switch for MINV High/Low 8) SW3 (Decimation) The switch to select clock frequency decimation. Switch position: decimation ratio 0: 1/1 1: 1/2 2: 1/4 3: 1/8 4: 1/16 9) SW4 (D/A INV) The switch for D/A converter output inversion. 10) Rn10, Rn11 and Rn12 are not mounted at shipment. They are not required during evaluation. 11) Waveform probe pins P5 and P8 through P28 are devised to facilitate GND connection in order to reduce the distortion. As shown in the diagram below, the distance between the probe point and the GND is 300 mils, and there is φ1.2mm throughhole at each. The signal and GND locations are suit for a Tektronix GND tip (part number 013-1185-00). φ1.2mm GND Probe point 300mil Fig. 3. 12) D/A converter (IC13) input data (waveform probe pins P21 through P28) are the complementary signals of the decimated A/D converter outputs. Those are inverted again in the D/A converter so that the direction of reproduced waveform can agree with the A/D input signal converter. 13) The part number of the digital output connector is KEL 8830E-020-170S. A corresponding connector and cable assembly is JUNKOSHA KB0020MCG50BI. – 14 – R1 51 CLK DIR.IN DGND AGND C1 0.1µ R2 240 AGND AGND C4 3.3µ 4 C3 IC1-1 TL4558 0.1µ AGND R7 1k Q1 2SA970 AGND 2 3 DGND C2 0.1µ R3 51 R10 R11 510 43 Aout Cout 15 Bin 10 Bin_ 9 8 VEE VBB 11 Cin_ 12 Cin 13 Cout_ 14 7 Bout Bout_ 5 Ain 4 Ain_ 6 R13 1k VCC2 16 AGND AGND 2 Aout_ 3 –5.2V (D) DGND 6 AGND AGND C12 0.1µ P1 AGND VR3 1k AGND AGND C20 10 C16 0.1µ Rn1 Rn1 51 Rn1 51 Rn1 51 Rn1 51 DGND C10 0.1µ AGND C15 1µ 41 VRT C14 0.1µ Q3 Q2 D2 D3 8 VEE 7 S2 6 5 4 Cout_ 3 2 –5.2V (D) DGND 1 VCC1 S1 9 Cin_ 10 D1 11 D0 12 CLK 13 Q0 14 Q1 15 VCC2 16 FERRITE BEAD AVEE 1 NC 2 40 NC 42 NC LINV 3 DVEE 4 DGND1 5 39 AVEE 38 AVEE D0 7 D1 8 D2 9 D3 10 D4 11 D5 12 D6 13 D7 14 DGND2 15 DGND1 16 DVEE 17 MINV 18 NC 19 CLKN 20 CLK 21 DGND2 6 CXA1396D – CXA1386P ADAPTER 37 NC 36 NC 35 AGND 34 VIN 33 AGND 32 VRM 31 AGND 30 VIN 29 AGND 28 NC 27 NC 26 AVEE 25 AVEE 24 NC 23 VRB 22 NC DGND DGND C13 0.1µ AGND AGND –5.2V (A) AVEE P3 AGND P4 VIN P5 C17 0.1µ AGND –5.2V (A) C18 0.1µ C19 0.1µ C5 0.1µ –2V (D) DGND DGND J1 D C B A Linearity VRB P2 4 IC4 CLC404AJP R12 C6 51 1µ AGND C11 0.1µ 7 C7 1µ 1 VCC1 –5.2V (A) AGND AGND +5V (A) –5.2V (A) VRM C8 0.1µ 6 8 7 5 4 IC1-2 IC3 TL4558 TL431CP AGND R8 510 VR1 2K R4 6 122k 2 3 AGND AGND AMP.IN R6 240 Vin Offset –5.2V (A) R5/11k R9 1.3k AGND A/D Full Scale VR2 2k C9 0.1µ IC2 : 10H116 FERRITE BEAD IC5 : 10H136 P17 P6 DGND C37 0.1µ –2V (D) R14 51 DGND H D1 SW1 LINV C24 0.1µ DGND –5.2V (A) 1 DGND DGND C22 C21 0.1µ 0.1µ Rn2 51 Rn2 51 Rn2 51 Rn2 51 VEE A X0 X1 X2 X3 Enable_ –5.2V (D) 8 7 6 5 4 3 VCC –5.2V (D) R15 330 DGND 2 DGND Rn2 C23 0.1µ L D3 –2V (D) D2 C26 1µ SW2 MINV –5.2V (D) DGND DVEE –5.2V (D) DGND C25 0.1µ DGND C27 0.1µ C25 0.1µ P9 P8 CLK CLKN D7 D1 D0 DGND C30 0.1µ Rn4 Rn3 DGND D1 D0 8 VEE 7 D2 6 5 Q1 D1 D0 8 VEE 7 D2 6 5 4 Q2 3 Q0 1 VCC1 2 Aout Bout_ DGND –5.2V (D) 8 VEE 7 Bout 6 5 Ain 4 Ain_ 3 2 Aout_ 1 VCC1 –5.2V (D) DGND DGND C24 0.1µ C34 0.1µ SW3 Decimation DGND C35 0.1µ Rn3 75 Rn3 75 Rn3 75 DGND DGND Q1 Q0 4 Q2 3 2 1 VCC1 –5.2V (D) DGND C36 C26 0.1µ 0.1µ Rn4 75 Rn4 75 Rn4 75 Rn4 75 Rn3 75 DGND C31 0.1µ –2V (D) R18 51 –2V (D) P11 P13 D3 –2V (D) D5 P15 P17 DGND P10 P12 D2 D4 P14 P16 DGND C29 0.1µ DGND B 9 C 10 X4 11 X5 12 X6 13 X7 14 Z 15 VCC1 16 D6 C22 R16 0.1µ 51 –2V (D) R17 51 –2V (D) C37 0.1µ C38 0.1µ 5 4 3 2 1 Bin_ 9 Bin 10 VBB 11 Cin_ 12 Cin 13 Cout_ 14 Cout 15 VCC2 16 CLK 9 DGND –2V (D) R20 51 DGND DGND VEE Bin Bout VCC2 16 VEE Bin Bout Aout Ain –2V (D) C52 0.1µ –2V (D) 51 Rn7 51 Rn7 51 Rn7 DGND 14 CLK DGND C51 0.1µ NC 19 OUT 20 NC 21 NC 22 NC 23 NC 24 C46 0.1µ DGND AGND C57 33µ AGND AGND DGND –5.2V (D) R23 3.2k D6 H D5 AGND AGND DGND D/A OUT –2V (D) DGND –5.2V (D) –5.2V (A) AGND +5V (A) DGND –5.2V (A) C50 33µ DGND C54 33µ P29 –2V (D) P30 DGND C55 33µ 20 DGND 16 DGND 18 DGND 14 DGND DIGITAL OUT P31 –5.2V (D) SW4 D4 D/A INV L C47 0.1µ 15 D7 P32 –5.2V (A) C56 33µ 6 DGND 4 DGND 2 DGND 8 DGND 10 DGND 12 11 D5 DGND 7 D3 3 D1 19 CLKN 17 CLK 13 D6 9 D4 5 D2 1 D0 P33 AGND R22 C49 240 0.1µ –5.2V (D) DGND DGND DVEE 15 INV 16 DGND 17 CONNECTOR KEL: 8830E-020-170S (TOP VIEW) P34 +5V (A) DGND 75 Rn10 75 Rn10 75 Rn10 75 Rn10 Rn10 51 Rn11 51 Rn11 D/A Full Scale IC14 NC 25 TL431CP AVEE 26 VREF 51 Rn11 51 Rn11 R21 C48 0.1µ VR4 1k 27 2k AGND1 18 13 CLKN 11 NC 12 NC 10 LSB 9 D9 8 D8 7 D7 6 D6 5 D5 4 D4 3 D3 2 D2 51 Rn11 AGND –2V (D) –2V (D) DGND 1 MSB AGND2 28 51 Rn7 75 Rn8 75 Rn8 75 Rn8 75 Rn8 Rn8 75 75 Rn9 75 Rn9 75 Rn9 Rn9 Rn9 DGND –2V (D) Rn7 DGND C43 0.1µ CLK P19 CLKN P20 DGND C44 0.1µ D0 P21 D1 P22 D2 P23 D3 P24 D4 P25 D5 P26 D6 P27 D7 P28 C45 0.1µ Dout 9 Cin 10 Cout 11 COM IN 12 Din 13 Bout_ Cout_ 14 Aout_ Dout_ 15 DGND VCC1 Dout 9 Cin 10 Cout 11 COM IN 12 Din 13 Aout Ain 51 Rn12 51 Rn12 51 Rn12 DGND Rn12 Rn12 –2V (D) DGND C53 0.1µ Bout_ Cout_ 14 –5.2V (D) 8 6 C39 0.1µ DGND 7 DGND C40 0.1µ VCC2 16 Aout_ Dout_ 15 VCC1 –5.2V (D) D3 10 DGND –2V (D) Rn5 75 Rn5 75 Rn5 75 Rn5 75 DGND 8 7 D4 11 D5 12 Q3 13 Q4 14 Q5 15 DGND VCC2 16 CLK 9 P18 6 D4 11 D3 10 5 2 4 C41 0.1µ DGND 1 D5 12 Rn5 C42 0.1µ DGND Q3 13 CLK Rn6 75 3 –2V (D) Rn6 75 Rn6 75 Q4 14 R19 51 Q5 15 DGND VCC2 16 Rn6 Rn6 75 IC12 : 10H101 IC11 : 10H101 +5V (A) IC7 : 10H164 IC10 : 10H176 IC9 : 10H176 IC8 : 10H116 – 15 – IC13 : CX20202A-1 Fig. 4. PCB Circuit Schematic CXA1386P/K CXA1386P/K Characteristics Graphs Fig 5. CXA1386P SNR vs. Input Frequency 50 CLK = 75MHz, VEE = –5.2V SNR [dB] 45 40 35 30 25 1 10 100 Input Frequency [MHz] Fig. 6. CXA1386P Effective Bits vs. Input Frequency 8.0 CLK = 75MHz, VEE = –5.2V Effective Bits [bit] 7.0 6.0 5.0 4.0 1 10 100 Input Frequency [MHz] Fig. 7. CXA1386P 2nd, 3rd Harmonic Distortion vs. Input Frequency –20 2nd, 3rd Harmonic Distortion [dB] CLK = 75MHz, VEE = –5.2V –30 –40 –50 2nd Hmnc –60 3rd Hmnc –70 1 10 Input Frequency [MHz] – 16 – 100 CXA1386P/K CXA1396D – CXA1386P ADAPTER (SCALE = 2/1) 55mm CXA1386P ADAPTER 28 15 35mm 1 14 TOP VIEW – 17 – CXA1386P/K Parts Layout – 18 – CXA1386P/K Printed Pattern 1st layer Component plane (Top View) 4th layer Solder plane (Top view) – 19 – CXA1386P/K 2nd layer GND plane (Top View) 3rd layer Power supply plane (Top View) – 20 – CXA1386P/K Package Outline Unit: mm CXA1386P + 0.1 0.05 0.25 – 28PIN DIP (PLASTIC) 600mil + 0.4 37.8 – 0.1 15.24 15 1 + 0.3 13.0 – 0.1 28 0° to 15° 14 + 0.4 4.6 – 0.1 3.0 MIN 0.5 MIN 2.54 0.5 ± 0.1 1.2 ± 0.15 PACKAGE STRUCTURE PACKAGE MATERIAL EPOXY RESIN SONY CODE DIP-28P-03 LEAD TREATMENT SOLDER PLATING EIAJ CODE ∗DIP028-P-0600-C LEAD MATERIAL COPPER PACKAGE WEIGHT 4.2g JEDEC CODE CXA1386K 44PIN LCC (CERAMIC) 1.8g 0.635 ± 0.07 1.27 + 0.35 16.51 – 0.25 1.951 ± 0.25 1.651 ± 0.18 0.3 1.905 ± 0.25 1.27 ± 0.1 8 50 0. C 12.5 ± 0.2 12.7 ± 0.1 6 01 1. C R0.2 PIN NO.1 INDEX 2.159 ± 0.5 PACKAGE STRUCTURE SONY CODE EIAJ CODE LCC-44C-01 ∗QFN044-C-S650-A PACKAGE MATERIAL CERAMIC LEAD TREATMENT GOLD PLATING LEAD MATERIAL JEDEC CODE PACKAGE WEIGHT – 21 – 1.8g