CXA1396D 8-bit 125 MSPS Flash A/D Converter Description The CXA1396D are 8-bit ultrahigh-speed flash A/D converter ICs capable of digitizing analog signals at the maximum rate of 125 MSPS. The digital I/O levels of these A/D converters are compatible with the ECL 100K/10KH/10K. The CXA1396D is pin-compatible with the earlier model CX20116. They can replace the earlier models respectively, without any design changes, in most cases. Compared with the earlier models, these new models have been greatly improved in performance, by incorporating advanced process, new circuit design and carefully considered layout. Features • Ultrahigh-speed operation with maximum conversion rate of 125 MSPS (Min.) • Wide analog input bandwidth: 200MHz (Min. for full-scale input) • Low power consumption: 870mW (Typ.) • Single power supply: –5.2V • Low input capacitance • Built-in integral linearity compensation circuit • Low error rate • Operable at 50% clock duty cycle • Good temperature charactcristics • Capable of driving 50Ω loads 42 pin DIP (Ceramic) Structure Bipolar silicon monolithic IC Applications • Digital oscilloscopes • HDTV (high-definition TVs) • Other apparatus requiring ultrahigh-speed A/D conversion Pin Configuration Pins without name are NC pins (not connected). AVEE 1 42 2 41 VRT LINV 3 40 DVEE 4 39 AVEE DGND1 5 38 AVEE DGND2 6 37 (LSB) D0 7 36 D1 8 35 AGND D2 9 34 VIN D3 10 33 AGND D4 11 32 VRM D5 12 31 AGND D6 13 30 VIN 29 AGND (MSB) D7 14 DGND2 15 28 DGND1 16 27 DVEE 17 26 AVEE MINV 18 25 AVEE 19 24 CLK 20 23 VRB CLK 21 22 (Top View) Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits. –1– E94521A79-PS CXA1396D Absolute Maximum Ratings (Ta = 25°C) • Supply voltage AVEE, DVEE • Analog input voltage VIN • Reference input voltage VRT, VRB, VRM VRT – VRB • Digital input voltage • VRM pin input curent • Digital output current • Storage temperature CLK, CLK, MINV, LINV CLK – CLK IVRM ID0 to ID7 Tstg Recommended Operating Conditions • Supply voltage AVEE, DVEE AVEE – DVEE AGND – DGND • Reference input voltage VRT VRB • Analog input voltage VIN • Pulse width of clock TPW1 TPW0 • Operating temperature Ta –7 to +0.5 –2.7 to +0.5 –2.7 to +0.5 2.5 –4 to +0.5 2.7 –3 to +3 –30 to 0 –65 to +150 Min. –5.5 –0.05 –0.05 –0.1 –2.2 VRB 4.0 4.0 –20 –2– Typ. –5.2 0 0 0 –2.0 V V V V V V mA mA °C Max. –4.95 +0.05 +0.05 +0.1 –1.8 VRT +75 unit V V V V V ns ns °C CXA1396D Block Diagram MINV r1 VRT Comparator r/2 r r r 1 2 D7 (MSB) • • • r 63 D6 64 VIN r D5 65 r2 r VRM r OUTPUT r 126 127 128 ENCODE LOGIC r • • • r D1 • • • 191 D0 (LSB) 192 VIN r 193 r r r3 r/2 • • • 254 255 VRB CLK CLK D3 D2 129 r D4 CLOCK DRIVER LINV –3– CXA1396D Pin Description and I/O Pin Equivalent Circuit Pin No. Symbol 29, 31, 33, 35 1, 25, 26, 38, 39 AGND AVEE I/O — — Standard voltage level Equivalent circuit Description 0V Analog GND. Used as GND for input buffers and latches of comparators. Isolated from DGND1, DGND2. –5.2V Analog VEE. –5.2V (Typ.). Internally connected with DVEE (resistance: 4 to 6Ω). A ceramic chip capacitor of at least 0.1µF should be used to connect to AGND and be placed near the pins. DGND1 r 21 CLK CLK input r CLK I 20 r ECL r CLK CLK DVEE r r Complementary input to CLK. With open connection, kept at threshold voltage (–1.3V). Device is operable without CLK input, but use of omplementary inputs of CLK and CLK is recommended to obtain the stable high-speed operation. 5, 16 DGND1 — 0V Digital GND for internal circuits. 6, 15 DGND2 — 0V Digital GND for output transistors. 4, 17 DVEE — Digital VEE. Internally connected with AVEE (resistance: 4 to 6Ω). A ceramic chip capacitor of at least 0.1µF should be used to connect to DGND near the pins. –5.2V –4– CXA1396D Pin No. Symbol I/O Standard voltage level Equivalent circuit Description DGND2 7 D0 8 D1 9 D2 10 D3 11 D4 12 D5 13 D6 14 D7 Di O Data outputs. External pull-down resistors are required. ECL MSB of data outputs. External pull-down resistor is required. DVEE DGND1 3 LINV I Input pin for D0 (LSB) to D6 output polarity inversion (see output code table). With open connection, kept at "L" level. ECL r LINV or MINV 18 MINV LSB of data outputs. External pull-down resistor is required. I r r –1.3V Input pin for D7(MSB) output polarity inversion (see output code table). With open connection, kept at "L" level. ECL DVEE r AGND Analog input pins. These two pins must be connected externally, since they are not internally connected. See Application Note for precautions. VIN 30, 34 VIN I VRT to VRB VIN AVEE –5– CXA1396D Pin No. Symbol I/O Standard voltage level Equivalent circuit VRT 23 VRB I Description Reference voltage (bottom). Typically –2V. A ceramic capacitor of at least 0.1µF and a tantalum capacitor of at least 10µF should be used to connect to AGND near the pins. r1 –2V r/2 r Comparator 1 Comparator Comparator 2 . . . 127 Comparator 128 Comparator 129 Comparator 130 . . . . . . . Comparator 255 r 32 VRM I VRB/2 r VRM r2 Reference voltage mid point. Can be used as a pin for integral linearity compensation. r r r 41 VRT I 0V r VRB 2, 19, 22, 24, 27, 28, 36, 37, 40, 42 NC — r3 r/2 Reference voltage (top). Typically 0V. When a voltage except for AGND is applied to this pin, a ceramic capacitor of at least 0.1µF and a tantalum capacitor of at least 10µF should be used to connect to AGND near the pins. Unused pins. No internal connections have been made to these pins. Connecting them to AGND or DGND on PC board is recommended. — –6– CXA1396D Electrical Characteristics (Ta = 25°C, AVEE = DVEE = –5.2V, VRT = 0V, VRB = –2V) Symbol Item Condition n Resolution DC characteristics EIL Integral linearity error Differential linearity error EDL Analog input Analog input capacitance Analog input resistance Input bias current CIN RIN IIN Reference inputs Reference resistance Offset voltage VRT VRB RREF EOT EOB Digital inputs Logic H level Logic L level Logic H current Logic L current Input capacitance VIH VIL IIH IIL Typ. Fc = 125MSPS Fc = 125MSPS ±0.3 ±0.3 VIN = –1V + 0.07Vrms VIN = –1V 75 8 0 Input connected to –0.8V Input connected to –1.6V ±0.5 ±0.5 LSB LSB 17 190 130 320 pF kΩ µA 110 19 15 155 32 24 Ω mV mV –1.50 50 50 V V µA µA pF 0 –50 7 Digital outputs Logic H level Logic L level Output rising time Output falling time VOH VOL Tr Tf RL = 50Ω to –2V RL = 50Ω to –2V RL = 50Ω to –2V, 20% to 80% RL = 50Ω to –2V, 80% to 20% DG DP VIN = 2Vp-p, 3dB down Input = 1MHz, FS Clock = 125MHz Input = 31.5MHz, FS Clock = 125MHz Input = 31.249MHz, FS Error > 16LSB Clock = 125MHz NTSC 40IRE mod.ramp, Fc = 125MSPS Dynamic characteristics Input bandwidth S/N ratio Error rate 10–9 TPS∗1 125 3.0 4.0 4.0 10 1.5 3.6 0.8 1.0 46 MHz dB 40 dB 200 Power supply Supply current Power consumption∗2 10–9 } IEE Pd –230 ∗1 TPS: times Per Sample (VRT – VRB)2 RREF –7– MSPS ps ns ns ns ns V V ns ns –1.62 { Error rate 4.2 –1.10 { { Unit bits –1.13 Fc Taj Tds Tdo TPW1 TPW0 Differential gain error Differential phase error Max. 8 Switching characteristics Maximum conversion rate Aperture jitter Sampling delay Output delay H pulse width of clock L pulse width of clock ∗2 Pd = IEE • VEE + Min. TPS∗1 1.0 0.5 % deg –160 870 mA mW CXA1396D Output Code Table VIN∗ MINV LINV Step 1 1 D7 0V 0 1 –1V 127 128 254 255 –2V 0 1 1 0 D0 D7 0 0 0 …… 0 0 0 0 0 …… 0 0 0 0 0 …… 0 1 : : 0 1 1 …… 1 1 1 0 0 …… 0 0 : : 1 1 1 …… 1 0 1 1 1 …… 1 1 1 1 1 …… 1 1 D0 D7 1 0 0 …… 0 0 1 0 0 …… 0 0 1 0 0 …… 0 1 : : 1 1 1 …… 1 1 0 0 0 …… 0 0 : : 0 1 1 …… 1 0 0 1 1 …… 1 1 0 1 1 …… 1 1 0 0 D0 0 1 1 …… 1 1 0 1 1 …… 1 1 0 1 1 …… 1 0 : : 0 0 0 …… 0 0 1 1 1 …… 1 1 : : 1 0 0 …… 0 1 1 0 0 …… 0 0 1 0 0 …… 0 0 D7 D0 1 1 1 …… 1 1 1 1 1 …… 1 1 1 1 1 …… 1 0 : : 1 0 0 …… 0 0 0 1 1 …… 1 1 : : 0 0 0 …… 0 1 0 0 0 …… 0 0 0 0 0 …… 0 0 ∗ VRT = 0V, VRB = –2V Timing diagram Tds N N+1 Analog in Tpw1 N+2 Tpw0 CLK CLK N–1 Digital out 80% 20% Tdo Tr –8– N 80% N+1 20% Tf CXA1396D Electrical Characteristics Test Circuit Maximum conversion rate test circuit Signal Source Vin fCLK – 1kHz 4 2Vp-p Sine Wave 8 CLK A ECL Latch CXA1396D B CLK Comparator A>B Pulse Counter ECL Latch + DATA 16 Signal Source 1/4 fCLK Differential gain error test circuit Differential phase error test circuit (CX20202A-1) VIN Amp 10Ω 8 DUT CXA1396D CLK ECL Latch 8 10bit D/A CLK NTSC Signal Source Delay VBB Vector Scope SG (CW) 50 DG.DP Integral linearity error test circuit Differential linearity error test circuit +V S2 S1 S1: A < B: ON S2: A > B: ON –V A<BA>B Comparator VIN 8 DUT CXA1396D A8 to A1 A0 B8 to B1 B0 "0" 8 Buffer "1" DVM 8 CLK (125MHz) Controller –9– 00000000 to 11111110 CXA1396D Power Supply Current Test Circuit Analog input bias current test circuit –1V 1 42 2 41 3 40 4 39 5 38 6 37 7 36 8 35 9 34 10 33 11 CXA1396D A IIN 32 12 31 13 30 14 29 15 28 16 27 17 26 18 25 19 24 20 23 21 22 –2V A IEE –5.2V Sampling delay test circuit Aperture jitter test circuit Aperture jitter test method 0V 67.5MHz VIN –1V –2V Amp OSC1 φ: Variable CLK VIN 8 CXA1396D fr VIN 129 128 127 126 125 CLK Aperture jitter Logic Analizer ∆v ∆t CLK t 1024 samples OSC2 σ (LSB) ECL Buffer 67.5MHz Apeature jitter is defined as follows: Taj = σ/ ∆v ∆t = σ/( 256 2 × 2πf ), Where σ (unit : LSB) is the deviation of the output codes when the input frequency is exactly the same as the clock and is sampled at the largest slew rate point. – 10 – CXA1396D 8-bit, 125MSPS ADC Evaluation board Description The CXA1396D EVALUATION BOARD WITH DAC is a tool for customers to evaluate the performance of the CXA1396D (8-bit, 125MSPS, high-speed A/D converter). In addition to indispensable features such as the reference voltage generator, this tool equips two sets of analog inputs (the direct input and the buffer amplifier input), the input voltage offset generator, the clock decimator, the output data latches, the 10-bit high-speed DAC, and the 20-pin cable connector for digital outputs. This evaluation board provides full performance of the CXA1396D and it is designed to facilitate evaluation. Features • Resolution: 8bits • Maximum conversion rate: 125MSPS • Supply voltage: +5.0V, –5.2V, –2.0V • Two analog inputs (Direct input, buffer amplifier input) • Clock level converter: Sine wave to ECL level signal • Reference voltage adjustment circuit for the A/D converter • Built-in clock frequency decimation circuit: (1/1 to 1/16) Fig. 1. Block Diagram –5.2V (A) H L VRB –2V VR2 (2k) –5.2V (A) SW1 VR3 (1k) DIGITAL OUT (CONNECTOR) LINV MINV Vin OFFSET VR1 (2k) SW2 VRB J1 A 1k (D7 to D0) 8 VRM DATA LATCH 8 8 BUFFER CXA1396D B CLK C AMP.IN 240 CLK X (–2) 51 Vin (D7 to D0) 2 (CLK.CLK) 8 D 51 DIR.IN D/A CONVERTER 0.1µ DECIMATOR CLK CLK SW3 1/1 to 1/16 +5V –5.2V (A) AGND –5.2V (D) – 11 – DGND –2V (D) D/A OUT CXA1396D Supply Current Item Min. –5.2V +5.0V –2.0V Typ. Max. Unit 0.85 15 0.45 1.0 30 0.6 A mA A (Note: Supply current –2.0V is the value when Rn10, Rn11 and Rn12 are not mounted.) Analog Input (DIR. IN, AMP. IN) Item Min. Input voltage (DIR. IN) (AMP. IN) ∗1 Input impedance Typ. –2.0 –0.5 Max. Unit 0 +0.5 V V Ω Max. Unit 50 (∗1: Adjustable by VR1) Clock Input (CLK) Item Min. Input voltage (Peak to Peak) Input impedance Typ. 1.0 Vp-p 50 Ω 0 1 1 0 0 …… 0 0 1 0 0 …… 0 1 : : 1 1 1 …… 1 1 0 0 0 …… 0 0 : : 0 1 1 …… 1 0 0 1 1 …… 1 1 1 0 0 1 1 …… 1 1 0 1 1 …… 1 0 : : 0 0 0 …… 0 0 1 1 1 …… 1 1 : : 1 0 0 …… 0 1 1 0 0 …… 0 0 Digital Output (D0 to D7) ECL 10KH level Clock Output ECL 10KH level, complementary output Output Code Table MINV LINV VIN 0V : : : : : : : : –2V 0 0 1 1 1 …… 1 1 1 1 1 …… 1 0 : : 1 0 0 …… 0 0 0 1 1 …… 1 1 : : 0 0 0 …… 0 1 0 0 0 …… 0 0 – 12 – 1 1 0 0 0 …… 0 0 0 0 0 …… 0 1 : : 0 1 1 …… 1 1 1 0 0 …… 0 0 : : 1 1 1 …… 1 0 1 1 1 …… 1 1 CXA1396D Fig. 2. Timing Chart N A/D input pin Vin (DIR. IN, AMP. IN) N+1 PCB input pin CLK CLK A/D clock CLK D7 to D0 N–1 N PCB output pin D7 to D0 (For 1/1 frequency division) N–2 N–1 A/D output N Tdh 1.8ns (Typ) CLKN PCB output pin CLK (For 1/1 frequency division) PCB output pin DATA OUT (For 1/2 frequency division) N–4 N–2 N Tdh 1.8ns (Typ) CLKN PCB output pin CLK (For 1/2 frequency division) – 13 – CXA1396D Adjustment Methods and Notes on Operation 1) Vin Offset (VR1) The volume to adjust the signal range (0V center assumed) with the A/D converter input range when a waveform is input through AMP. IN. 2) A/D Full Scale (VR2) The volume to adjust A/D converter VRB voltage. 3) Linearity (VR3) The volume to adjust VRM (linearity) voltage. When DIR. IN input selected and it is supplied through the capacitor, VR3 can be used to adjust the input offset voltage. 4) D/A Full Scale (VR4) The volume to adjust D/A output full scale (–1V). 5) J1 (Input selection) A: Shorts to adjust VRM voltage. B: Shorts to supply DC voltage to Vin. C: Shorts to select AMP.IN input. D: Shorts to select DIR.IN input. [Jumper Position at Shipment] J1 A Input through the B buffer amplifier C D J1 A B C D J1 Input through the A B buffer amplifier (When the linearity C D is adjusted) 0.1µF 6) SW1 The switch for LINV High/Low. 7) SW2 The switch for MINV High/Low. 8) SW3 (Decimation) The switch to select clock frequency decimation. Switch position: decimation ratio 0: 1/1 1: 1/2 2: 1/4 3: 1/8 4: 1/16 9) SW4 (D/A INV) The switch for D/A converter output inversion. – 14 – Input through the capacitor (When the offset is adjusted using the DIR IN. at the evaluation board) CXA1396D 10) Rn10, Rn11 and Rn12 are not mounted at shipment. They are not required during evaluation. 11) Waveform probe pins P5 and P8 through P28 are devised to facilitate GND connection in order to reduce the distortion. As shown in the diagram below, the distance between the probe point and the GND is 300 mil, and there is φ1.2mm through hole at each. The signal and GND locations are suit for a Tektronix GND tip (part number 013-1185-00). φ1.2mm GND Probe point 300mil Fig. 3 12) D/A converter (IC13) input data (waveform probe pins P21 through P28) are the complementary signals of the decimated A/D converter outputs. Those are inverted again in the D/A converter so that the direction of reproduced waveform can agree with the A/D input signal converter. 13) The part unmber of the digital output connector is KEL 8830E-020-170S. A corresponding connector and cable assembly is JUNKOSMA KBO020MCG50BI. – 15 – CXA1396D PCB Circuit Schematic +5V (A) FERRITE BEAD VRB P2 AGND R9 AGND 1.3k A/D Full Scale VR2 2k –5.2V (A) R5/11k R6 240 Vin Offset Q1 2SA970 VR3 1k 8 7 6 5 IC3 TL431CP 4 C19 0.1µ AGND C20 10 AGND IC1-2 TL4558 R8 510 VR1 2K Linearity AGND C18 0.1µ VRM P1 C8 0.1µ –5.2V (A) R4 2 6 22k 1 3 4 IC1-1 C3 TL4558 0.1µ –5.2V (A) AGND R7 1k AGND +5V (A) C4 3.3µ C12 C7 0.1µ 1µ AGND AGND AGND AGND AGND R13 R2 R10 R11 1k 240 510 43 2 7 6 AMP.IN 3 R1 4 IC4 51 CLC404AJP R12 C6 51 AGND AGND 1µ AGND AGND C11 0.1µ –5.2V (A) AGND CLKN 20 23 VRB NC 19 24 NC 25 AVEE MINV 18 26 AVEE DVEE 17 D J1 VIN P5 AGND P4 AVEE P3 –5.2V (A) DIR.IN C15 1µ C16 0.1µ D7 14 30 VIN D6 13 AGND D7 #2 –5.2V (D) #3 DGND #4 D5 12 P14 P15 D4 D5 D4 11 D3 10 34 VIN D2 9 35 AGND D1 8 D0 7 38 AVEE DGND1 5 39 AVEE DVEE 40 NC LINV 3 4 DGND C25 0.1µ AVEE C26 1µ –5.2V (D) C24 0.1µ NC 2 42 NC DGND P6 DGND2 6 37 NC DGND P17 #1 DVEE 41 VRT AGND C27 0.1µ DGND2 15 29 AGND C22 0.1µ –2V (D) P16 D6 28 NC 36 NC AGND AGND AGND R16 51 P17 33 AGND AGND C25 0.1µ DGND1 16 32 VRM C17 0.1µ B C R17 51 27 NC 31 AGND A P9 P8 CLK CLKN CLK 21 22 NC IC6: CXA1396D C9 0.1µ D2 D3 P12 P13 1 #5 #6 FERRITE BEAD #7 –5.2V (A) #8 SW1 LINV D1 P10 P11 D0 D1 SW2 MINV D2 H D3 L DGND R15 330 –5.2V (D) #9 #10 –2V (D) DGND C2 0.1µ Cout 15 3 Aout Cout_ 14 4 Ain_ 5 Ain Cin 13 VBB 11 7 Bout Bin 10 8 VEE DGND Rn1 51 Bin_ 9 Rn1 –5.2V (D) DGND C5 0.1µ Q1 15 3 Q3 Q0 14 5 D3 Rn1 51 Rn1 51 2 Q2 4 Cout_ Rn1 51 Cin_ 12 6 Bout_ VCC2 16 1 VCC1 DGND C10 0.1µ C13 0.1µ C14 0.1µ DGND DGND –2V (D) DGND DGND CLK 13 D0 12 R14 51 –2V (D) 6 D2 D1 11 7 S2 Cin_ 10 8 VEE S1 9 VCC1 16 1 VCC2 DGND DGND 2 Enable_ DGND Rn2 3 X3 Rn2 51 4 X2 Rn2 51 5 X1 Rn2 51 6 X0 Rn2 IC7: 10H164 R3 51 VCC2 16 2 Aout_ IC5: 10H136 C1 0.1µ CLK 1 VCC1 IC8: 10H116 DGND C23 0.1µ #11 Z 15 X7 14 X6 13 X5 12 R18 C31 51 0.1µ X4 11 51 C37 0.1µ C22 C21 0.1µ 0.1µ –5.2V (D) DGND DGND DGND 7 A C 10 8 B 9 VEE –5.2V (D) –2V (D) DGND C29 0.1µ DGND C30 0.1µ DGND SW3 Decimation DGND #12 #13 #14 – 16 – CXA1396D Rn6 Rn6 75 –2V (D) Rn6 75 Rn6 75 Rn6 75 2 Q0 3 4 Rn4 #1 5 Rn4 75 #2 Rn4 75 Rn4 75 #3 #4 Q1 Q2 D0 DGND 2 Aout_ Dout_ 15 3 Q3 13 4 Ain D5 12 6 D1 D4 11 D2 D3 10 8 VEE 6 CLK P18 C41 0.1µ DGND R19 51 KEL: 8830E-020-170S (TOP VIEW) Rn12 Rn12 51 Rn11 Cout 11 Bout Cin 10 8 VEE Dout 9 4 DGND 6 DGND 8 7 DGND D3 10 9 DGND D4 12 11 D5 DGND 13 14 D6 DGND 15 16 DGND D7 17 18 CLK DGND 19 20 DGND CLKN 5 D2 51 Rn12 Din 13 7 Bin 3 D1 51 Rn12 COM IN 12 51 Rn11 51 Rn11 51 Rn11 C52 0.1µ –5.2V (D) DGND –2V (D) 51 Rn11 Rn10 –5.2V (D) –2V (D) DGND –2V (D) DGND 75 Rn10 Rn5 75 Rn10 Rn5 75 Rn5 75 C51 0.1µ –2V (D) DGND 2 VCC2 16 VCC1 –2V (D) Q5 15 DGND Q0 DGND 75 Rn10 Rn5 75 1 DIGITAL OUT 75 Rn10 Rn5 75 2 DGND 1 D0 51 Rn12 DGND Cout_ 14 Bout_ 5 Aout CLK 9 C36 C26 0.1µ 0.1µ VCC2 16 1 VCC1 Q4 14 7 Rn4 75 –2V (D) DGND Q5 15 DGND C42 0.1µ DGND VCC2 16 IC12: 10H101 VCC1 IC10: 10H176 DGND 1 CONNECTOR C53 0.1µ C40 0.1µ DGND DGND DGND P34 +5V (A) VCC2 16 1 VCC1 +5V (A) 2 Aout_ Dout_ 15 DGND C57 33µ Q1 Q2 5 D0 6 D1 Rn3 #5 Rn3 75 #6 Rn3 75 #7 7 Rn3 75 #8 C24 0.1µ 8 Rn3 75 Q4 14 3 Q3 13 4 Ain D5 12 5 Aout D4 11 6 D3 10 D2 C39 0.1µ CLK 9 VEE –5.2V (D) DGND DGND Bout_ Cout_ 14 IC11: 10H101 3 4 IC9: 10H176 AGND P33 AGND AGND Din 13 AGND COM 12 IN P32 Cout 11 Bout 7 Bin Cin 10 8 VEE Dout 9 –5.2V (A) –5.2V (A) C56 33µ AGND P31 –5.2V (D) –5.2V (D) –5.2V (D) C55 33µ C35 0.1µ DGND –2V (D) P30 DGND DGND DGND DGND P29 –2V (D) –2V (D) #9 –2V (D) #10 DGND C45 0.1µ VCC2 16 2 Aout_ Cout 15 Aout Cout_ 14 3 4 Ain_ 5 6 Ain Bout_ 7 Bout C34 0.1µ IC8: 10H116 DGND #11 1 VCC1 Rn9 8 VEE DGND –5.2V (D) DGND D5 P26 D4 P25 Cin 13 Cin_ 12 VBB 11 Bin 10 Bin_ 9 75 Rn9 D6 P27 D1 P22 DGND R20 51 D0 P21 C38 0.1µ VREF 27 75 Rn9 3 D3 AVEE 26 75 Rn9 4 D4 NC 25 5 D5 NC 24 Rn8 D2 P23 C37 0.1µ 75 Rn8 6 D6 75 Rn8 7 D7 75 Rn8 8 D8 75 Rn8 9 D9 OUT 20 10 LSB NC 19 C44 0.1µ –2V (D) DGND DGND –2V (D) Rn7 #12 51 Rn7 CLKN P20 51 Rn7 #13 CLK P19 51 Rn7 C43 0.1µ DGND 1 MSB AGND2 28 2 D2 75 D3 P24 R22 C49 240 0.1µ Rn9 IC13: CX20202A-1 DGND D7 P28 #14 C54 33µ 51 Rn7 –2V (D) C48 R21 0.1µ VR4 1k 2k D/A Full Scale IC14 TL431CP –5.2V (A) NC 23 NC 22 NC 21 D/A OUT AGND 11 NC AGND1 18 AGND 12 NC DGND 17 DGND DGND AGND C50 33µ 13 CLKN 14 CLK SW4 D4 D/A INV L DGND INV 16 DVEE 15 C46 0.1µ D5 C47 0.1µ –5.2V (D) DGND DGND D6 H R23 3.2k –5.2V (D) – 17 – CXA1396D Characteristic Graph Fig. 5. Gain vs. Input frequency (CLK = 125MHz) 2 0 Gain [dB] –2 –4 –6 –8 –10 10 100 Input frequency [MHz] Fig. 6. SNR vs. Input frequency (CLK = 125MHz) 50 DIR. IN AMP. IN 45 SNR [dB] 40 35 30 25 20 10 Input frequency [MHz] 1 100 Fig. 7. 2nd, 3rd harmonic distortion vs. Input frequency (CLK = 125MHz) 2nd, 3rd harmonic distortion [dB] –20 2nd DIR. IN 2nd AMP. IN 3rd DIR. IN 3rd AMP. IN –30 –40 –50 –60 –70 –80 1 10 Input frequency [MHz] 100 Measurement data Figs. 5, 6 and 7 show the characteristic graphs. DIR. IN is the characteristic where the signal is directry input to the ADC and AMP. IN is the characteristic where the signal is input to ADC through the amplifier. – 18 – CXA1396D Parts Layout – 19 – CXA1396D Printed Pattern 1st layer 4th layer Component plane (Top View) Solder plane (Top View) – 20 – CXA1396D 2nd layer 3rd layer GND plane (Top View) Power supply plane (Top View) – 21 – CXA1396D Package Outline Unit: mm 42PIN DIP (CERAMIC) 600mil + 0.05 0.25 – 0.02 53.4 ± 0.5 13.2 ± 0.2 22 15.24 ± 0.25 42 1 0° to 15° 21 0.46 ± 0.1 1.0 ± 0.1 6.91 MIN 6.6 MIN 3.3 MIN 1.0 MIN 2.54 PACKAGE STRUCTURE SONY CODE EIAJ CODE PACKAGE MATERIAL CERAMIC DIP-42C-01 LEAD TREATMENT GOLD PLATING ∗DIP042-C-0600-A LEAD MATERIAL 42 ALLOY PACKAGE WEIGHT 6.7g JEDEC CODE – 22 –