CXA2570N RF Matrix Amplifier Description The CXA2570N is an IC developed for the RF signal processing of compact disc players. Features • Wide band RF signal processing • RF system VCA circuit • RF system equalizer (supports CAV mode) • Supports pickups with built-in RF summing amplifier • Low power consumption mode (EQ Pass mode) • RW/ROM switching mode Functions • RFAC summing amplifier, equalizer, VCA • RFDC summing amplifier • Focus error amplifier • Tracking error amplifier • Automatic power control • VC buffer amplifier 24 pin SSOP (Plastic) Absolute Maximum ratings • Supply voltage Vcc • Operating temperature Topr • Storage temperature Tstg • Allowable power dissipation PD 7 V –20 to +75 °C –65 to +150 °C 620 mW Operating Conditions • Supply voltage Vcc – GND 3.0 to 5.5 V • Operating temperature Topr –20 to +75 °C Applications CD-ROM/RW compatible systems Structure Bipolar silicon monolithic IC Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits. –1– E98259A98-PS CXA2570N Connected Circuit Diagram VCC 0.1µ VCC ACSUM EQI <OP (with RF_SUM)> A VC B A B C D 5.1k ACG DC SUM VC C VC D A B C D RFAC EQ RFDCI RW/ROM 5.1k RFDC VC RW/ROM VC <DSP> RFAC AC VCA AC SUM RF BST Rfc Vfc RFDCO RW/ROM A B C D FEI 100k VC FE FE VC RW/ROM RW/ROM F F E VC 10k F E VC TE TE 10k E PD APC RW/ROM VCC VC VC VCC VCC LD GND APC-OFF (Hi-Z) RW/ROM (H/L) SW VCC VC GND VC VCC 0.1 ACSUM <OP (without RF_SUM)> VC DC SUM B RW/ROM VC VC D 5.1k ACG A B C D A B C D BST Rfc Vfc AC VCA AC SUM A C VCC EQI <DSP> RFAC RFAC EQ RFDCI RW/ROM 5.1k RFDC VC RFDCO RW/ROM FEI 100k VC FE FE VC RW/ROM RW/ROM F VC F E 10k F E VC TE TE 10k E PD APC RW/ROM VCC VC VC LD SW APC-OFF (Hi-Z) RW/ROM (H/L) VCC VC GND VC –2– VCC VCC GND CXA2570N Pin Description Pin No. Symbol I/O Description 1 LD Out 2 PD In APC amplifier input. 3 EQ_IN In RFAC system VCA block and EQ block input. 4 AC_SUM 5 GND In Ground. 6 A In A signal input. 7 B In B signal input. 8 C In C signal input. 9 D In D signal input. 10 E In E signal input. 11 F In F signal input. 12 SW In Mode switching signal input. 13 RFAC Out RFAC signal output. 14 FE Out Focus error signal output. 15 FEI — FE amplifier virtual ground. 16 TE Out Tracking error signal output. 17 VCC In VCC. 18 RFG In RFAC system VCA block low-frequency gain adjustment. 19 BST In EQ boost amount adjustment range. 20 VFC In EQ cut-off frequency adjustment. 21 RFC In EQ cut-off frequency adjustment. 22 VC Out VC voltage output. 23 RFDCO Out RFDC signal output. 24 RFDCI — Out APC amplifier output. RFAC system RF SUM output. RFDC amplifier virtual ground. –3– CXA2570N Pin Description and Equivalent Circuit Pin No. Symbol I/O Equivalent circuit Description 10k 1 LD O 2 PD I 1 APC amplifier output. 1k 55k 20k APC amplifier input. 2 20k 1.1k 3 EQ_IN I 3 5k 1.1k Equalizer circuit input. 1.2k VC 5k VC 1.6k 1.6k 4 AC_SUM O 5 GND — 4 — –4– RFAC summing amplifier output. Ground. CXA2570N Pin No. 6 Symbol A I/O Equivalent circuit Description I 15k 6 7 B 100µA I 7 8 C I RF summing amplifier and focus error amplifier input. 30k 100µA 8 47k 100µA 9 47k 100µA 9 D I 10 E I VC 27k 27k Tracking error amplifier input. 10 11 F I 124 16 11 16 TE Tracking error amplifier output. O 200k 12 SW CD-ROM/RW switching input. RW when connected to VCC, ROM when connected to GND. 200k I 12 200k 13 RFAC 100 O RFAC amplifier output. 13 2mA 14 FE O Focus error amplifier output. 124 50k 14 VC 15 FEI I 124 15 –5– Focus error amplifier gain adjustment. The gain is adjusted by the external resistance value connected between this pin and Pin 14. CXA2570N Pin No. Symbol I/O Equivalent circuit — 17 VCC — 18 RFG I Description Power supply. 20k Sets the RFAC low-frequency gain. 18 VC 100µA 50µA 19 BST I 20k 19 VC 20k 20 VFC I 20 VC 100µA 1.0V 124 21 22 RFC VC I 21 150k 25 O Input for adjusting the equalizer circuit boost amount. Input for adjusting the equalizer circuit boost frequency with the control voltage. Input for adjusting the equalizer circuit boost frequency with external resistance. (VCC + GND)/2 voltage output. 22 150k 23 RFDC O 1.5k 24 RFDCI I RFDC amplifier output. This pin serves as the eye pattern check point. 1mA VC 23 124 124 24 –6– RFDC amplifier gain adjustment. The gain is adjusted by the external resistance value connected between this pin and Pin 23. Measurement No. Icc_Aeqoff Icc_Slp ACSUM_Ofst Current consumption (Active, EQ Off) Current consumption (Sleep) SUM offset voltage Gac_ROM2 Gac_ROM3 Low-frequency gain ROM_cnt Low-frequency gain ROM_max 12 13 O O O O O O Fac_MinH Fac_ECoff Vac_H Vac_L DC_OfstROM DC_OfstRW Gdc_ROM Gdc_RW Fdc_ROM Fdc_RW Vdc_H Vdc_L Frequency response Min_H Frequency response EQ_OFF Maximum output voltage H Maximum output voltage L Offset voltage ROM Offset voltage RW Low-frequency gain ROM Low-frequency gain RW Frequency response ROM Frequency response RW Maximum output voltage H Maximum output voltage L 28 29 30 27 26 25 24 23 22 21 20 19 18 O O O O O O O Fac_MinL Frequency response Min_L O Gac_EQoff Low-frequency gain EQ_off 17 16 O Gac_RW3 Low-frequency gain RW_max O O O O O O Gac_RW2 15 RFDC –7– Low-frequency gain RW_cnt Gac_RW1 Low-frequency gain ROM_min Gac_ROM1 11 Low-frequency gain RW_min AC_OfstRW Offset voltage RW 10 14 O AC_OfstROM Offset voltage ROM 9 O O Vsum_L Vsum_H Fsum Switch conditions O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O 13 0V 1.0V 0.3Vp-p 100kHz O O O 25mVp-p 10MHz 0.1Vp-p 10MHz 25mVp-p 100kHz 0.1Vp-p 100kHz 13 1.9V 0V 0.8Vp-p 30MHz 23 0V 23 23 0.25V –0.25V 23 23 23 23 23 13 –2V 13 13 1.9V 0V 13 –1.9V 0.2Vp-p 30MHz 13 0V 0.8Vp-p 100kHz 0.2Vp-p 10MHz 13 1.0V 75mVp-p 100kHz O 13 13 13 13 13 0.2Vp-p 100kHz 0V –1.0V 0V 0.8Vp-p 100kHz 0.4Vp-p 100kHz –1.0V 1.6Vp-p 100kHz 2V 4 –0.3V 13 4 0.3V 4 4 5 25 45 0 7.5 40 65 V mA mA mA –0.3 –0.3 — 0.9 — 0 0 0.3 0.3 –0.5 –0.3 1.25 –3.0 –1.5 0.3 V V V V dB 14.0 16.0 18.0 dB –1.2 –0.6 3.0 10 25 5.0 dB 8.0 11.0 dB 2.0 — 0 0 V V 400 mV 150 mV –0.8 –0.6 0.8 29.0 32.0 35.0 dB 16.5 19.5 22.5 dB –100 –150 — 0.6 dB Pin voltage Pin voltage 20 log (Vout/Vin) – Gdc_RW — 1.3 — –1.0 –0.6 1.6 V V –6.0 –3.0 –0.5 dB 20 log (Vout/Vin) – Gdc_ROM –3.5 –1.5 –0.5 dB 20 log (Vout/Vin) 20 log (Vout/Vin) Pin voltage Pin voltage Pin voltage – AC_OfstROM Pin voltage – AC_OfstROM –2.0 –1.0 –0.5 dB 8.5 dB 20 log (Vout/Vin) – Gac_EQoff 6.0 8.5 3.5 6.0 3.5 dB 20 log (Vout/Vin) – Gac_ROM2 5.0 20 log (Vout/Vin) – Gac_ROM2 2.0 8.0 11.0 dB 12.0 15.0 dB –1.0 5.0 9.0 –11.0 –8.0 –5.0 dB 5.0 –1.0 20 log (Vout/Vin) 20 log (Vout/Vin) – Gac_RW2 20 log (Vout/Vin) – Gac_ROM2 20 log (Vout/Vin) – Gac_RW2 20 log (Vout/Vin) – Gac_ROM2 20 log (Vout/Vin) 20 log (Vout/Vin) – Gac_ROM2 –11.0 –8.0 –5.0 dB Pin voltage Pin voltage Pin voltage Pin voltage 20 log (Vout/Vin) – Gsum 20 log (Vout/Vin) Pin voltage Pin current Pin current 17 17 Pin current Min. Typ. Max. Unit (VCC = 1.9V, VEE = –1.9V) Measurement conditions 17 0.1Vp-p 30MHz 0V Measurement pin 4 0V 1.9V 0V E5 0.1Vp-p 100kHz 0V 0V E4 O O O Hi-Z 0V E3 E2 Bias conditions S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 V1 amplitude V1 frequency E1 SUM maximum output voltage L SUM maximum output voltage H SUM frequency response Gsum Icc_Aeqon Current consumption (Active, EQ On) SUM frequency gain Symbol Measurement item 8 7 6 5 4 3 2 RFAC SUM RFAC EQ 1 Function Electrical Characteristics CXA2570N Measurement No. FE_OfstRW Gfe_ROM1 Gfe_ROM2 Gfe_RW1 Gfe_RW2 Offset voltage RW Low-frequency gain ROM1 Low-frequency gain ROM2 Low-frequency gain RW1 Low-frequency gain RW2 O O O O O Fte_ROM2 Fte_RW1 Fte_RW2 Vte_H Vte_L Vapc1 Vapc2 Vapc3 Vapc_off Iapc_max Frequency response ROM1 Frequency response ROM2 Frequency response RW1 Frequency response RW2 Maximum output voltage H Maximum output voltage L Output voltage 1 Output voltage 2 Output voltage 3 APC OFF voltage Maximum output current 60 59 58 57 56 55 54 53 52 51 50 49 48 Output voltage O Fte_ROM1 Low-frequency gain RW2 O O Gte_RW2 Low-frequency gain RW1 47 Vvc O O O O O O O O Gte_RW1 Low-frequency gain ROM2 46 TE_OfstROM Vfe_L O Vfe_H O Gte_ROM2 Low-frequency gain ROM1 O Gte_ROM1 Offset voltage RW 44 O TE_OfstRW Offset voltage ROM 43 45 Maximum output voltage L 42 O Ffe_RW2 O Maximum output voltage H O Frequency response RW2 O 41 Ffe_RW1 Ffe_ROM2 40 O O Frequency response RW1 O O O 39 O O O O Frequency response ROM2 O O O 38 APC –8– VC Hi-Z O O O O O O O O O O O 0V 14 14 14 Measurement pin 22 1 1 1 30mV 0V 1 –30mV 1 0V 16 25mVp-p 200kHz 16 16 25mVp-p 200kHz –0.3V 16 0.1Vp-p 200kHz 16 16 0.3V 16 16 16 16 16 16 25mVp-p 10kHz 0V 0.1Vp-p 200kHz 25mVp-p 10kHz 0.1Vp-p 10kHz 0.1Vp-p 10kHz 14 25mVp-p 50kHz 14 14 25mVp-p 50kHz –0.3V 14 0.1Vp-p 100kHz 14 14 0.3V 14 25mVp-p 10kHz 0.1Vp-p 100kHz 14 0V E5 25mVp-p 10kHz 0V E4 14 0V E3 0.1Vp-p 10kHz 0.1Vp-p 10kHz 0V E2 Bias conditions S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 V1 amplitude V1 frequency E1 Switch conditions Frequency response ROM1 Ffe_ROM1 FE_OfstROM Offset voltage ROM Symbol 37 36 35 34 33 32 31 Function FE TE Measurement item 25.0 28.0 31.0 dB 25.0 28.0 31.0 dB 20 log (Vout/Vin) 20 log (Vout/Vin) — 29.0 32.0 35.0 dB 20 log (Vout/Vin) 1.5 dB 85 0.45 –0.95 –0.7 –0.45 V Pin voltage Pin voltage –100 0 0 –0.2 Pin voltage Pin voltage 1.6 1.4 Pin voltage V V V 100 mV 0.6 – 0.7 0.95 135 185 mV V Input where output voltage = 0V –1.5 –1.1 V — — Pin voltage 1.7 1.2 –4.5 –2.0 –0.2 dB –4.5 –2.0 –0.2 dB 0 Pin voltage 20 log (Vout/Vin) – Gte_RW2 20 log (Vout/Vin) – Gte_RW1 20 log (Vout/Vin) – Gte_ROM2 –1.5 dB 29.0 32.0 35.0 dB 20 log (Vout/Vin) 1.5 17.0 20.0 23.0 dB 20 log (Vout/Vin) 0 17.0 20.0 23.0 dB 20 log (Vout/Vin) – Gte_ROM1 –1.5 –150 150 mV 150 mV V V dB 20 log (Vout/Vin) 0 0 –1.5 –1.1 1.7 dB dB Pin voltage –150 — Pin voltage Pin voltage 1.2 –3.5 –0.5 0.3 –3.5 –0.5 0.3 Pin voltage 20 log (Vout/Vin) – Gfe_RW2 20 log (Vout/Vin) – Gfe_RW1 20 log (Vout/Vin) – Gfe_ROM2 –3.5 –0.5 0.3 dB 13.0 16.0 19.0 dB 20 log (Vout/Vin) 20 log (Vout/Vin) – Gfe_ROM1 –3.5 –0.5 0.3 13.0 16.0 19.0 dB 150 mV 150 mV –150 0 0 20 log (Vout/Vin) –150 Min. Typ. Max. Unit Pin voltage Pin voltage Measurement conditions CXA2570N CXA2570N Electrical Characteristics Measurement Circuit VCC 1.9V VCC 10k 5.1k 22 19 BST RFG VCC TE A B C D E F SW 1 2 3 4 5 6 7 8 9 10 11 12 S1 S2 S3 10k E2 VEE S5 –1.9V S6 0.8mA S7 S8 10k 10k S9 S10 RFAC FEI FE VFC 13 GND 14 RFC 15 AC_SUM 16 10k VC 17 10k 100k EQ_ IN 18 10k RFDCO 20 E3 PD 21 E4 RFDCI 23 E5 5.1k LD 24 S12 S11 VEE VCC 0.1µ VCC VEE V1 E1 –9– CXA2570N Application Circuits RFDC OUT VC 5.1k 24 VCC 0.1µ 20k VCC 20k 20k TE OUT FE OUT 100k 5.1k 22 19 14 BST RFG VCC TE A B C D E F SW 2 3 4 5 6 7 8 9 10 11 12 0.1µ LD PD IN Drive B C D FEI 10k RF SUM RFDC OUT 10k VCC 0.1µ 20k VCC 20k 20k TE OUT FE OUT RFAC OUT 14 VCC TE C D E F SW 3 4 5 6 7 8 9 10 11 12 PD IN LD Drive 0.1µ A B C D 10k 10k E F RFAC RFG B 2 FE BST A 1 FEI VFC GND 13 RFC 15 AC_SUM 16 VC 17 EQ_ IN 18 RFDCO 19 PD 20 RFDCI 21 LD 22 MODE Control 100k 5.1k 23 F E VC 5.1k 24 A RFAC VFC GND 1 FE RFC 13 AC_SUM 15 VC 16 EQ_ IN 17 RFDCO 18 PD 20 RFDCI 21 LD 23 RFAC OUT MODE Control Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same. – 10 – CXA2570N Description of Functions • RFAC The RF signal input by connecting capacitance to the EQ_IN pin is equalized, arithmetically amplified and then output from the RFAC pin. VCC A 6 B 7 C 8 AC SUM D 9 AC_SUM 19 0.1 20 21 RFC 4 3 RF 5.1k BST VFC EQ Amp EQ_IN 13 RFAC RFG 18 RW/ROM When BST = VCC Low-frequency gain AC_SUM: 16dB (both ROM/RW) VCA to RFAC ROM: 2dB RW: 14dB The EQ can be bypassed by connecting the BST control pin (Pin 19) to VCC. In this case only the EQ block enters sleep mode and the low power consumption mode (slim mode) is activated. The low-frequency gain is the same value as for EQ ON mode. The RF_SUM input dynamic range is VC ± 300mV (typ.). If RF (summing signal) is present at the pickup output pin, input the addition output signal to the EQ_IN pin (Pin 3) coupled by capacitance. When using a pickup without a summing output function, perform addition with the AC SUM block and then input the signal to the EQ_IN pin coupled by capacitance. RW/ROM switching is done by the VCA block, so either input method can be used without problem. The RW gain is 12dB higher than the ROM gain. The VCA low-frequency gain can be adjusted by the RFG pin (Pin 18) voltage. The control voltage vs. low-frequency gain characteristics are shown in the graph to the right. Gain [dB] VCA variable range 8 0 –8 Vcut [V] VC – 1 VC The RFAC pin (Pin 13) is an NPN transistor emitter follower output. The maximum drive current is approximately 2mA. If the load capacitance distorts the output waveform, increase the drive current. Connect resistance between Pin 13 and GND. – 11 – VC + 1 CXA2570N • EQ In Amp HPF LPF LPF fc Out Boost The diagram to the left shows the EQ internal block diagram. The EQ consists of a combination of HPF and LPF. The HPF and LPF transmittance is the Bessel function. The boost gain can be adjusted by adjusting the HPF gain. The boost frequency is adjusted by the RFC external resistance value and the VFC control voltage value. EQ CNT RFC 21 VFC 20 BST 19 VCC VC VC RFC resistance value: The cut-off frequency fo of each filter is adjusted by the Pin 21 external resistance value. The VFC voltage can be varied using this fo as the reference. VFC voltage: The boost gain can be adjusted by the BST pin control voltage. The control characteristics are shown in the graph below. fo can be changed by the voltage applied to Pin 20. The cut-off frequency control characteristics are shown in the graph below. Boost Gain [dB] fc [Hz] 8dB 1.5fo fo 0dB 0.5fo Vcut [V] VC – 1.0 VC Vcut [V] VC + 1.0 VC – 1.0 Pin 19 voltage VC VC + 1.0 Pin 20 voltage • APC (Automatic Power Control) When the laser diode is driven by a constant current, the optical power output has extremely large negative temperature characteristics. Therefore, the current must be controlled to maintain the monitor photodiode output at a constant level. This control is performed by the APC function VCC 56k PD 2 1 LD 10k 10k 55k 10k 1k 56k 1.25V – 12 – CXA2570N • Focus Error The signals input to the A and C pins and the B and D pins are arithmetically amplified and the focus error signal is output. This circuit has RW/ROM switching, low-frequency gain adjustment and offset adjustment (external resistance) functions. VC R (ofst) ROM 100k RW 50k FEI 15 200k 14 FE A 6 50k C 8 B 7 ROM D 9 VC 50k 30k 200k RW FE = Gain {(B + D) – (A + C)} Low-frequency gain ROM: 16dB RW: 28dB Cut-off frequency fc (typ.) ROM: 400kHz RW: 300kHz • Tracking Error The signals input to the E and F pins are arithmetically amplified and the tracking error signal is output. This circuit has RW/ROM switching, low-frequency gain adjustment and offset adjustment (external resistance) functions. E 10k 27k 373k 10 RW F 10k RW 11 27k TE = Gain (F – E) Low-frequency gain ROM 16 TE ROM 373k VC • VC Buffer This outputs the VC ((1/2) VCC) voltage. The maximum output current is approximately ±3mA. VCC VCC 25 40k 22 40k – 13 – fc (typ.) ROM: 20dB RW: 32dB ROM: 1MHz RW: 250kHz CXA2570N • RFDC The signals input via the A, B, C and D pins are added, amplified and the RFDC signal is output. RW/ROM switching, low-frequency gain adjustment and offset adjustment are possible. 5.1k A 6 B 7 15k 10k C 8 40k ROM RFDCI 24 23 RFDCO RW 1.5k D 9 VC VC RFDC = Gain (A + B + C + D) Low-frequency gain ROM: 20dB RW: 32dB fc (Typ.) ROM: 12MHz RW: 5MHz The gain can be adjusted by the external resistance connected between Pins 23 and 24. • SW This controls the laser (APC) on/off, active/sleep mode, and RW/ROM mode switching. Switching is controlled by the voltage applied to the SW pin (Pin 12). RSW (ofst) 12 RW/ROM, Active/Sleep, APC_ON/OFF The VC buffer is kept active even in sleep mode. In the function block, BGR and MODE_SW are always set to active mode. Item APC Active/Sleep RW/ROM VCC ON Active RW VC or Hi-Z OFF Sleep — GND ON Active ROM Control voltage – 14 – CXA2570N Notes on Operation Stabilizing the RFAC signal The RFAC system (RFSUM + EQ) is comprised entirely of non-inverted function blocks. This is in order to support pickups with built-in RFSUM. Therefore, if the voltage gain of each block is increased, a feedback loop is formed over the entire RFAC system causing the RFAC signal to become unstable (oscillate). In these cases, it is recommended to lower the EQ frequency response and the boost gain. This has a large effect on the board (power supply, I/O signal cross talk, etc.) loop. The RFAC signal easily becomes unstable if the VCA gain is increased, the EQ boost frequency is set to a high frequency, the EQ boost amount is increased, etc. The VCA gain is low in ROM mode, so the RFAC signal is stable. Also, when not using RFSUM, the RFAC signal is stabilized because the overall gain is low. The area where the RFAC signal becomes unstable is thought to vary for each set, as this is greatly affected by the board loop as noted above. Proposed stabilization measures The board and other loop characteristics can be changed by adding external capacitance as noted below. This has a particularly large effect on the stabilization when using RFSUM. RF SUM 0.1µ VCA ACSUM EQI Add capacitance of 10pF to 20pF. – 15 – EQ AMP CXA2570N Example of Representative Characteristics EQ Rfc resistance value – Frequency response EQ boost voltage – Frequency response 10 14 Rfc = 100kΩ Vboost = 1.0V Vbst = VC, Vfc = VC 9 12 Rfc = 20kΩ Rfc = 5.1kΩ 8 8 Rfc = 100kΩ Vboost = 0V 6 [dB] [dB] 6 5 4 4 2 3 0 2 –2 1 –4 1 0.1 10 100 Rfc = 100kΩ Vboost = –1.0V 0.1 10 EQ Vfc frequency response RF AC frequency response 20 Rfc = 20kΩ Vfc = 0V 9 8 Vbst = VC AC SUM 17 Rfc = 20kΩ Vfc = 1V 14 Rfc = 20kΩ Vfc = –1V 7 8 [dB] [dB] EQ_Pass RW mode 11 6 5 5 4 2 3 –1 2 –4 1 –7 1 0.1 10 100 EQ_Pass ROM mode 0.1 1 10 100 [MHz] [MHz] RF DC frequency response FE frequency response 38 34 35 31 RW 32 28 29 25 26 22 23 [dB] [dB] 100 [MHz] 10 ROM 19 20 16 17 13 14 10 11 7 8 Rfc = 5.1kΩ Vboost = –1.0V 1 [MHz] 0 Vfc = VC Rfc = 5.1kΩ Vboost = 0V 10 Rfc = 100kΩ 7 0 Rfc = 5.1kΩ Vboost = 1.0V 0.1 1 10 4 0.01 100 [MHz] RW ROM 0.1 1 [MHz] – 16 – 10 CXA2570N APC I/O characteristics TE frequency response 35 5.5 32 5.0 RW 4.5 VLD – Output voltage [V] 29 26 [dB] 23 20 17 ROM 16 4.0 VCC = 5.5V 3.5 3.0 2.5 2.0 VCC = 3.0V 13 1.5 10 1.0 0.01 0.1 1 0.5 0.05 10 [MHz] – 17 – 0.1 0.15 0.2 VPD – Input voltage [V] 0.25 CXA2570N Package Outline Unit: mm 24PIN SSOP(PLASTIC) + 0.2 1.25 – 0.1 ∗7.8 ± 0.1 24 0.1 13 ∗5.6 ± 0.1 7.6 ± 0.2 A 1 + 0.1 0.22 – 0.05 12 + 0.05 0.15 – 0.02 0.13 M 0.65 0.5 ± 0.2 0.1 ± 0.1 0° to 10° NOTE: Dimensions “∗” does not include mold protrusion. DETAIL A PACKAGE STRUCTURE PACKAGE MATERIAL EPOXY RESIN SONY CODE SSOP-24P-L01 LEAD TREATMENT SOLDER/PALLADIUM PLATING EIAJ CODE SSOP024-P-0056 LEAD MATERIAL 42/COPPER ALLOY PACKAGE MASS 0.1g JEDEC CODE NOTE : PALLADIUM PLATING This product uses S-PdPPF (Sony Spec.-Palladium Pre-Plated Lead Frame). – 18 –