CXA3017R Decoder/Driver/Timing Generator for Color LCD Panels For the availability of this product, please contact the sales office. Description The CXA3017R is an IC designed to drive the color LCD panels LCX005BK/BKB, LCX009AK/AKB, LCX024AK/AKB, LCX027AK/AKB and DCX501BK. This IC allows two-panel simultaneous and switching drive by simultaneously outputting the timing pulses for the LCX005BK/BKB, LCX009AK/AKB, LCX024AK/AKB, LCX027AK/AKB and DCX501BK. This IC greatly reduces the number of peripheral circuits and parts by incorporating an RGB decoder, driver, and timing generator for video signals onto a single chip. This chip has a built-in serial interface circuit and electronic attenuators which allow various settings to be performed by microcomputer control, etc. Features • Color LCD panel LCX005BK/BKB, LCX009AK/AKB, LCX024AK/AKB, LCX027AK/AKB and DCX501BK driver • Supports two-panel simultaneous and switching drive using the LCX005BK/BKB, LCX009AK/AKB, LCX024AK/AKB, LCX027AK/AKB and the DCX501BK • Supports NTSC and PAL systems • Supports 16:9 wide display (letter box and pulse elimination display) • Supports composite inputs, Y/C inputs and Y/color difference inputs • Serial interface circuit • Electronic attenuators (D/A converter) • VCO • BPF, trap and delay line • Sharpness function • 2-point γ correction circuit • R, G, B signal delay time adjustment circuit • Polarity inversion circuit (line inverted mode) • Supports external RGB input • D/A output pin (0 to 3V, 8 levels) • Supports AC drive for LCD panel during no signal 64 pin LQFP (Plastic) Applications • Compact LCD monitors • LCD viewfinders • Compact liquid crystal projectors, etc. Structure Bi-CMOS IC Absolute Maximum Ratings (Ta = 25°C) • Supply voltage VCC1 – GND1 6 V VCC2 – GND2 14 V VCC3 – GND3 14 V VDD1, 2 – VSS 4.5 V • Analog input pin voltage VINA –0.3 to VCC1 V • Digital input pin voltage VIND –0.3 to VDD1 + 0.3V • Operating temperature Topr –15 to +75 °C • Storage temperature Tstg –40 to +125 °C ∗ 1 • Allowable power dissipation PD (Ta ≤ 75°C) Approximately 350mW Operating Conditions Supply voltage VCC1 – GND1 VCC2 – GND2 VCC3 – GND3 VDD1, 2 – VSS ∗1 With substrate 2.7 to 3.6 11.0 to 13.5 11.0 to 13.5 2.7 to 3.6 V V V V Size: 30 × 30 × 1.6mm Material: Glass fabric base epoxy Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits. –1– E98Y29-PS CXA3017R 38 37 36 35 34 GND3 VDD2 39 +12V DWN 40 RGT1 41 FB PSIG 42 GND2 GND3 43 PSIG 44 +12V VCC3 G OUT 45 B OUT FB G 46 FB B R OUT 47 GND2 FB R 48 VCC2 SIG.CENTER Block Diagram 33 +3V I/F Buf Buf Buf Buf VCC1 49 +3.0V D/A BLKLIM WHTLIM 32 DA OUT 31 VD VXO OUT 50 POL SW INT/EXT VXO IN 51 PAL ID COLOR DEMOD EXT COLOR & BALANCE APC 52 POL SW 30 EN2 PSIGBRIGHT PSIG-BRT WIDE VGATE VJOG 29 EN1 PALSW HUE B-Y IN 53 INT/EXT SUBBRIGHT LPF BRIGHT MATRIX USER BRIGHT R-BRT B-BRT FRP 28 XEN1 CLAMP R-Y IN 54 APC C OUT 55 VXO PS HUE HUE V REG 56 REG COLOR CONT 26 VCK2 USERBRT PALSW HUE COLOR BRIGHT CONT R-BRT B-BRT γ-1 VCO CONTRAST S/H R-CONT ACC DET SUB CONTRAST RESET 58 B-CONT KILLER R G B γ -1 BPF VPAL VWIN CONT COLOR C IN 57 Y IN 59 27 VCK1 BRIGHT γ-2 PSIG-BRT R-CONT B-CONT PICTURE USER-BRT BLKLIM WHTLIM D/A 25 VCK3 24 VCK4 23 VST 22 XVST GAMMA ACC AMP γ -2 PICTURE HAFC PLL-COUNTER & DECODER PIC CONT FILT ADJ HD EXT SW SYNC IN 61 HCNT H-PULSE CLP BGP SBLK VSEP TC 62 CLAMP DL1 TRAP F0 ADJ 63 H.FILTER 21 HD 20 PCG 19 XPCG HGATE H-SKEW DET PD 18 HCK1 V SEP SYNC SEP VCO GND1 64 GND1 VCO 17 HCK2 SERIAL BAS I/F TRAP VDD1 LOAD DATA 10 11 12 13 14 15 XHST1 EXT B 9 HST1 EXT G 8 HST2 7 CLR 6 BLK 5 TEST1 4 RPD 3 SCLK 2 EXT R +3V 1 –2– VSS 16 VSS TEST2 60 CXA3017R Pin Description Pin No. Symbol I/O Description 1 EXT R I External digital R input 2 EXT G I External digital G input 3 EXT B I External digital B input 4 TRAP O External trap connection 5 VDD1 6 LOAD I Serial interface load input 7 DATA I Serial interface data input 8 SCLK I Serial interface clock input 9 RPD O Phase comparator output 10 TEST1 I Test (Connect to GND.) 11 BLK O BLK pulse output 12 CLR O CLR pulse output 13 HST2 O H start pulse 2 output 14 HST1 O H start pulse 1 output 15 XHST1 O XH start pulse 1 output (reverse polarity of HST1) 16 VSS 17 HCK2 O H clock pulse 2 output 18 HCK1 O H clock pulse 1 output 19 XPCG O XPCG pulse output (reverse polarity of PCG) 20 PCG O PCG (precharge) pulse output 21 HD O HD pulse output 22 XVST O XV start pulse output (reverse polarity of VST) 23 VST O V start pulse output 24 VCK4 O V clock pulse 4 output 25 VCK3 O V clock pulse 3 output 26 VCK2 O V clock pulse 2 output 27 VCK1 O V clock pulse 1 output 28 XEN1 O XEN pulse 1 output (reverse polarity of EN1) 29 EN1 O EN pulse 1 output 30 EN2 O EN pulse 2 output 31 VD O VD pulse output 32 DA OUT O DAC output 33 VDD2 34 DWN Input pin processing for open status Digital 3V power supply for oscillation cell Digital 3V GND Digital 3V power supply O DCX501BK up/down inverted display switching (open collector output) –3– L CXA3017R Pin No. Symbol I/O Description 35 RGT1 O DCX501BK right/left inverted display switching (open collector output) 36 FB PSIG I PSIG signal DC voltage feedback circuit capacitor connection 37 GND3 38 PSIG 39 VCC3 40 B OUT O B signal output 41 FB B I B signal DC voltage feedback circuit capacitor connection 42 GND2 43 G OUT O G signal output 44 FB G I G signal DC voltage feedback circuit capacitor connection 45 R OUT O R signal output 46 FB R I R signal DC voltage feedback circuit capacitor connection 47 VCC2 48 SIG.CENTER 49 VCC1 50 VXO OUT O VXO output 51 VXO IN I VXO input 52 APC O APC detective filter connection 53 B-Y IN I B-Y color difference signal input 54 R-Y IN I R-Y color difference signal input 55 C OUT O Chroma signal output 56 V REG O Constant voltage capacitor connection 57 C IN I Chroma signal input 58 RESET I System reset 59 Y IN I Y signal input 60 TEST2 I Test (Connect to GND.) 61 SYNC IN I Video input for sync separation 62 VSEP TC 63 F0 ADJ 64 GND1 Input pin processing for open status Analog 12V GND for PSIG O PSIG output Analog 12V power supply for PSIG Analog 12V GND Analog 12V power supply I R, G, B and PSIG output DC voltage adjustment Analog 3V power supply Capacitor connection for vertical sync separation (or external VSYNC input) O Internal filter adjusting resistor connection Analog 3V GND ∗ DWN: DOWN SCAN and UP SCAN RGT: RIGHT SCAN and LEFT SCAN –4– L CXA3017R Analog Block Pin Description Pin No. 1 Symbol Pin voltage EXT-R Equivalent circuit Description VCC1 25µA 1 2 EXT-G — 300 2 3 50k 3 1.1V GND1 EXT-B VCC1 75µA 1k 4 TRAP 1.0V 300 4 200µA GND1 External digital signal inputs. There are two thresholds: Vth1 (= 1.0V) and Vth2 (= 2.0V). When one of the RGB signals exceeds Vth1, all of the RGB outputs go to black level; when an input exceeds Vth2, only the corresponding output goes to white level. Connect these pins to GND when not used. External trap connection. Connect the trap between this pin and GND to eliminate the chroma component. Leave this pin open when using Y/C and Y/color difference mode. VDD2 50k 50k 32 DA OUT 0.2 to 2.9V 32 50k DAC output. 8-level, 7-step DC voltage from approximately 0.2 to 2.9V is output from this pin. VSS 34 DWN VCC2 — 500 34 35 35 RGT1 36 FB PSIG 41 — VCC1 1k FB B 36 1.5V 44 GND2 41 44 FB G 1k 46 46 FB R 37 GND3 DCX501BK up/down and right/left inversion switching. These pins are open collector outputs, so first connect a 100kΩ resistor between these pins and the panel VDD (15.5V) and then connect to the DCX501BK. 100k Smoothing capacitor connection for the feedback circuit of R, G, B and PSIG output DC level control. Use a low-leakage capacitor because of high impedance. GND2 GND for the PSIG circuit. 0V –5– CXA3017R Pin No. Symbol Pin voltage Equivalent circuit Description VCC3 150 38 PSIG VCC2 2 PSIG signal output. 38 20 GND3 39 VCC3 40 B OUT 43 G OUT 12V power supply for the PSIG circuit. 12V VCC2 VCC2 2 40 20 RGB signal outputs. 43 20 45 40µA 45 R OUT 42 GND2 0V 12V GND. 47 VCC2 12V 12V power supply. GND2 VCC2 150k 48 SIG. CENTER VCC2 2 10k 300 48 150k GND2 49 VCC1 RGB/PSIG output DC voltage control. When used with a VCC2 or VCC3 of 12V or more, or when used with a signal center voltage of other than VCC2/2 or VCC3/2, apply voltage of 5.2 to 6.5V from an external source. 3.0V power supply. 3.0V VCC1 200 50 VXO OUT 1.2V 50 370µA VXO output. Leave this pin open when using Y/color difference mode. GND1 VCC1 500 VXO input. Leave this pin open when using Y/color difference mode. 51 51 VXO IN 1.6V 10k 3.5k 10p 3.5k GND1 –6– 1.6V CXA3017R Pin No. Symbol Pin voltage Equivalent circuit Description VCC1 APC detective filter connection. Leave this pin open when using Y/color difference mode. 500 1k 52 APC 1.7V 52 GND1 53 VCC1 B-Y IN 4k 10k 5k 53 — 1k 54 54 4k 40µA R-Y IN 30µA GND1 VCC1 55 C OUT 1.2V 55 50µA GND1 VCC1 V REG 2.0V Color adjusted chroma signal output during D-PAL. The output level is tripled in order to compensate for the attenuation of the external U/V separation delay line. The standard burst output level is approximately 200mVp-p. Leave this pin open in modes other than D-PAL. Smoothing capacitor connection for the internally generated constant voltage source circuit. Connect a capacitor of 1µF or more. 56 56 Y/color difference signal inputs. When using color difference input, the standard signal input level is 0.3Vp-p (75% color bar) and the clamp level is approximately 1.7V. During D-PAL, the COUT (Pin 55) chroma signal is U/V separated and then input. Input at low impedance (75Ω or less). 18.5k 30k GND1 VCC1 15µA 50k 5p 57 C IN — 57 50k 10p 30µA Video signal input when using composite signal input. Chroma signal input when using Y/C signal input. Leave this pin open when using Y/color difference mode. GND1 ∗ D-PAL is a demodulation method that uses an external delay line during demodulation. S-PAL is a demodulation method that internally processes chroma demodulation. –7– CXA3017R Pin No. Symbol Pin voltage Equivalent circuit Description VDD1 2µA TG block system reset pin. The system is reset when this pin is connected to GND. Connect a capacitor between this pin and GND. 300 58 RESET — 58 1k GND1 VCC1 1k 59 Y IN 1.6V 59 20µA Y signal input. The standard signal input level is 0.5Vp-p (100% white level from the sync tip). Input at low impedance (75Ω or less). GND1 VDD1 1k 61 SYNC IN 1k 1.6V 61 500 0.6µA 12µA GND1 Sync input. Normally inputs the Y signal. The standard signal input level is 0.5Vp-p (100% white level from the sync tip). Input at low impedance (75Ω or less). VDD1 500 1k 62 VSEP TC 1.7V Capacitor connection for vertical sync separation. 62 1k 20µA 20µA GND1 VCC1 200 63 F0 ADJ 1.5V 63 5p 500 5p GND1 500 Filter reference current generation. Connect resistance of 15 kΩ between this pin and GND1 to adjust the internal filters using the outflow current value. Leave this pin open when using Y/C or Y/color difference mode. 64 GND1 0V 3.0V GND. 60 TEST2 0V Test. Connect to GND. –8– CXA3017R Digital Block Pin Description Pin No. Symbol 5 VDD1 6 LOAD Pin voltage Equivalent circuit Description Power supply for VCO. 6 1k 7 7 DATA 8 SCLK 9 RPD Phase comparator output. 33 VDD2 Power supply for digital block. 10 TEST1 Test. Connect to GND. 11 BLK 12 CLR 13 HST2 11 14 HST1 12 15 XHST1 17 HCK2 18 HCK1 Serial bus inputs. 8 VSS 13 14 15 17 18 19 XPCG 20 PCG 20 21 HD 21 22 XVST 23 VST 24 VCK4 19 VDD2 Digital block outputs. 22 23 24 25 26 25 VCK3 26 VCK2 28 27 VCK1 29 28 XEN1 29 EN1 30 EN2 31 VD VSS 27 30 31 –9– CXA3017R Setting Conditions for Measuring Electrical Characteristics Use the Electrical Characteristics Measurement Circuit on page 30 while measuring electrical characteristics. Also, the TG (timing generator) block must be initialized by performing Settings 1 and 2 below. Setting 1. System reset After turning on the power, set SW58 to ON and start up V58 from GND in order to activate the TG block system reset. (See Fig. 1-1.) The serial bus is set to the default values. Setting 2. Horizontal AFC adjustment Input SIG5 (VL = 0mV) to (A) and adjust serial bus register VCO so that the TP9 phase comparison output waveform (near VSYNC) is horizontal. SW48 = OFF, SW58 = ON, V58 = 3.0V (See Fig. 1-2.) Note) When measuring a band of 2MHz or more such as Y signal frequency response or sharpness characteristics among the items being measured, the measurement must be made with the sample-and-hold circuit set to through (sample and hold not performed) by the serial bus. VDD V58 (PWRST) TR TR > 10µs Fig. 1-1. System reset SIG5 VSYNC VSYNC TP9 approximately 1/2VDD TP9 Adjust to a horizontal waveform. Fig. 1-2. Horizontal AFC adjustment – 10 – CXA3017R Electrical Characteristics — DC Characteristics Unless otherwise specified, Settings 1 and 2 and the following setting conditions are required. VCC1 = 3.0V, VCC2 = VCC3 = 12.0V, GND1 = GND2 = GND3 = 0V, VDD1 = VDD2 = 3.0V, VSS = 0V, Ta = 25°C SW1/SW2/SW3 = A, SW53/SW54/SW57 = B SW58 = ON, SW48 = OFF V58 = 3.0V Set the serial bus registers to the "Serial Bus Register Initial Settings". Unspecified items should be set to the default settings. Item Symbol Conditions Min. Typ. Max. Unit ICC11 Input SIG4 to (A) and SIG2 (0dB) to (B), and measure the ICC1 current value. COMP input mode. SW57 = A 27 34 41 mA ICC12 Input SIG4 to (A) and SIG2 (0dB) to (B), and measure the ICC1 current value. Y/C input mode. SW57 = A 24 30 37 mA ICC13 Input SIG4 to (A), (D) and (E) and measure the ICC1 current value. Y/color difference input mode. SW53 = SW54 = A 19 25 30 mA ICC2 Input SIG4 to (A) and SIG2 (0dB) to (B), and measure the ICC2 current value. SW57 = A 6 8 10 mA IDD1 Input SIG4 to (A) and SIG2 (0dB) to (B), and measure the IDD3 and IDD4 current values. IDD1 = IDD3 + IDD4, LCX009AK/AKB SW57 = A 8.5 11 13.5 mA IDD2 Input SIG4 to (A) and SIG2 (0dB) to (B), and measure the IDD3 and IDD4 current values. IDD2 = IDD3 + IDD4, LCX005BK/BKB SW57 = A 7.5 10 12.5 mA 0.3VDD V Current characteristics Current consumption VCC1 Current consumption VCC2, 3 Current consumption VDD1, 2 Digital block I/O characteristics Low level input voltage VIL Digital block input pins∗1 SW57 = A (A) = SIG4, (B) = SIG2 High level input voltage VIH Digital block input pins∗1 SW57 = A (A) = SIG4, (B) = SIG2 High level output voltage Low level output voltage V VDD = 3.0V SW57 = A IOH = –1.2mA∗2 (A) = SIG4, (B) = SIG2 2.8 V VDD = 2.7V SW57 = A IOH = –1.2mA∗2 (A) = SIG4, (B) = SIG2 2.6 V VOH1 VOL1 0.7VDD IOL = 1.2mA∗2 SW57 = A (A) = SIG4, (B) = SIG2 0.3 V ∗1 Digital block input pins: SCLK, DATA, LOAD ∗2 Output pins except RPD: BLK, CLR, HST2, HST1, XHST1, HCK2, HCK1, XPCG, PCG, HD, XVST, VST, VCK4, VCK3, VCK2, VCK1, XEN1, EN1, EN2, VD – 11 – CXA3017R Electrical Characteristics — AC Characteristics Unless otherwise specified, Settings 1 and 2 and the following setting conditions are required. VCC1 = 3.0V, VCC2 = VCC3 = 12.0V, GND1 = GND2 = GND3 = 0V, VDD1 = VDD2 = 3.0V, VSS = 0V, Ta = 25°C SW1, SW2, SW3 = A SW53, SW54, SW57 = B SW58 = ON SW48 = OFF V58 = 3.0V Set the serial bus registers to the "Serial Bus Register Initial Settings". Unspecified items should be set to the default settings. Unless otherwise specified, measure the non-inverted outputs for TP40, TP43 and TP45. Item Symbol Conditions Min. Typ. Max. Unit Y signal system Video maximum gain GV Input SIG4 to (A) and measure the ratio between the output amplitude (white-black) and input amplitude at TP43. 19 21 23 dB Contrast characteristics TYP GCNTTP Input SIG4 to (A) and measure the ratio between the output amplitude (white-black) and input amplitude at TP43. 14 16 18 dB Contrast characteristics MIN GCNTMN Input SIG4 to (A) and measure the ratio between the output amplitude (white-black) and input amplitude at TP43. –3 1 3 dB FCYYC Y signal frequency response FCYCMN FCYCMP Picture quality adjustment variable amount 1 (Y/C input) LCX009AK/AKB Picture quality adjustment variable amount 2 (Y/C input) LCX005BK/BKB Picture quality adjustment variable amount 3 (composite input) LCX005BK/BKB Picture quality adjustment variable amount 4 (composite input) LCX009AK/AKB Assume the output amplitude at TP43 when SIG1 (0dB, no burst, 100kHz) is input to (A) as 0dB. Vary the frequency of the input signal to obtain the frequency with an output amplitude of –3dB. CL = 400pF GSHP1X GSHP1N GSHP2X Y/C input 5.0 MHz Composite input (NTSC) 2.5 MHz Composite input (PAL) 3.0 MHz 2.5MHz MAX 11 Assume the output amplitude at TP43 when SIG7 (100kHz) is 2.5MHz MIN input to (A) as 0dB. Obtain the amount by which the output amplitude of SIG7 (2.5MHz or 1.8MHz MAX 1.8MHz) changes when PICTURE is set to the MAX and MIN values. GSHP2N 1.8MHz MIN GSHP3X 1.8MHz MAX GSHP3N GSHP4X Assume the output amplitude at TP43 when SIG7 (100kHz) is 1.8MHz MIN input to (A) as 0dB. Obtain the amount by which the output amplitude of SIG7 (1.8MHz or 2.5MHz MAX 2.5MHz) changes when PICTURE is set to the MAX and MIN values. GSHP4N 2.5MHz MIN – 12 – 14 –3 11 2 dB dB –2 dB dB 9 –6 dB dB 11 –5 6 0 14 –1 8 dB –3 dB CXA3017R Symbol Item Carrier leak (residual carrier) CRLEKY Conditions Y signal I/O delay time TDYCMP Typ. Input SIG2 (0dB) to (A). Using a spectrum analyzer, measure the input and the 3.58MHz or 4.43MHz component of TP43, and obtain CRLEKY = 150mV × 10∆CLK/20 using their difference ∆CLK. TDYYC TDYCMN Min. Input SIG9 to (A). Measure the delay time from the 2T pulse peak of the input signal to the 2T pulse peak of the non-inverted output at TP43. TDYDEF Max. Unit 30 mV Y/C input 260 360 460 ns Composite input (NTSC) 520 620 720 ns Composite input (PAL) 520 620 720 ns Y/color difference input SW53 = SW54 = A 100 200 300 ns NTSC –3 0 3 dB PAL –3 0 3 dB NTSC –3 0 3 dB PAL –3 0 3 dB Chroma signal block ACC amplitude characteristics 1 ACC amplitude characteristics 2 APC pull-in range ACC1 ACC2 FAPC Color adjustment characteristics MAX GCOLMX Color adjustment characteristics MIN GCOLMN HUE adjustment characteristics MAX HUEMX HUE adjustment characteristics MIN HUEMN Input SIG5 (VL = 150mV) to (A) and SIG2 (0dB/+6dB/–20dB, 3.58MHz burst/chroma phase = 180°, or 4.43MHz burst/chroma phase = ±135°) to (B). Measure the output amplitude at TP55, assuming the output corresponding to 0dB, +6dB and –20dB as V0, V1 and V2, respectively. ACC1 = 20 log (V1/V0) ACC2 = 20 log (V2/V0) Input SIG5 (VL = 150mV) to (A) and SIG2 (0dB, 3.58MHz burst/chroma phase = 180°, or 4.43MHz burst/chroma phase = ±135°) to (B). Vary the SIG2 burst frequency and measure the frequency f1 at which the TP40 output appears (the killer mode is canceled). NTSC: FAPCN = f1 – 3579545Hz PAL: FAPCP = f1 – 4433619Hz NTSC ±500 Hz PAL ±500 Hz Input SIG5 (VL = 150mV) to (A) and SIG2 (0dB, 3.58MHz burst/chroma phase = 180°) to (B). Assume the chroma signal amplitude at TP55 when serial bus register COLOR = 128, 255 and 0 as V0, V1 and V2, respectively. GCOLMX = 20 log (V1/V0) GCOLMN = 20 log (V2/V0) Input SIG5 (VL = 150mV) to (A) and SIG2 (0dB, burst/chroma phase variable) to (B). Assume the phase at which the output amplitude at TP40 reaches a minimum when serial bus register HUE = 128, 255 and 0 as θ0, θ1 and θ2, respectively. HUEMX = θ1 – θ0 HUEMN = θ2 – θ0 SW57 = A – 13 – +3 +5 –25 dB –20 dB –30 –40 deg 30 60 deg CXA3017R Item Symbol ACKN Killer operation input level ACKP VRBN Demodulation output amplitude ratio (NTSC) VGBN θRBN Demodulation output phase difference (NTSC) θGBN VRBP Demodulation output amplitude ratio (PAL) VGBP θRBP Demodulation output phase difference (PAL) θGBP Color difference input color adjustment characteristics MAX GEXCMX Color difference input color adjustment characteristics MIN GEXCMN Color difference balance VEXCBL Conditions Input SIG5 (VL = 150mV) to (A) and SIG2 (level variable, 3.58MHz burst/chroma phase = 180°, or 4.43MHz burst/chroma phase = ±135°) to (B), and measure the output amplitude at TP40. Gradually reduce the SIG2 amplitude level and measure the level at which the killer operation is activated. SW57 = A Min. Typ. Max. Unit NTSC –36 –30 dB PAL –36 –30 dB 0.53 0.63 0.73 0.25 0.32 0.39 99 109 119 deg 230 242 254 deg 0.65 0.75 0.85 0.33 0.40 0.47 80 90 100 deg 232 244 256 deg +3 +5 Input SIG5 (VL = 150mV) to (A) and SIG2 (0dB, 3.58MHz) to (B) and vary the chroma phase. Assume the maximum amplitude at TP40 as VB, the maximum amplitude at TP43 as VG, and the maximum amplitude at TP45 as VR. VRBN = VR/VB, VGBN = VG/VB SW57 = A Input SIG5 (VL = 150mV) to (A) and SIG2 (0dB, 3.58MHz) to (B) and vary the chroma phase. Assume the phase at which the amplitude at TP40, TP43 and TP45 reaches a maximum as θB, θG and θR, respectively. θRBN = θR – θB, θGBN = θG – θB SW57 = A Input SIG5 (VL = 150mV) to (A) and SIG2 (0dB, 4.43MHz) to (B) and vary the chroma phase. Assume the maximum amplitude at TP40 as VB, the maximum amplitude at TP43 as VG, and the maximum amplitude at TP45 as VR. VRBP = VR/VB, VGBP = VG/VB SW57 = A Input SIG5 (VL = 150mV) to (A) and SIG2 (0dB, 4.43MHz) to (B) and vary the chroma phase. Assume the phase at which the amplitude at TP40, TP43 and TP45 reaches a maximum as θB, θG and θR, respectively. θRBP = θR – θB, θGBP = θG – θB SW57 = A Input SIG5 (VL = 150mV) to (A) and SIG1 (0dB, 100kHz, no burst) to (D). Assume the output amplitude at TP40 (100kHz) when serial bus register COLOR = 128 as VC0, when COLOR = 0 as VC2, and when SIG1 is set to –10dB and COLOR = 255 as VC1. GEXCMX = 20 log (VC1/VC0) + 10 GEXCMN = 20 log (VC2/VC0) SW53 = SW54 = A Input SIG5 (VL = 150mV) to (A) and SIG1 (0dB, 100kHz, no burst) to (D) and (E). Assume the output amplitude at TP40 (100kHz) as VB and the output amplitude at TP45 (100kHz) as VR. VEXCBL = VR/VB SW53 = SW54 = A – 14 – 0.8 dB –20 –15 1.0 1.2 dB CXA3017R Item Color difference input balance adjustment R Color difference input balance adjustment B Symbol GEXRMX GEXRMN GEXBMX GEXBMN Conditions Input SIG5 (VL = 150mV) to (A) and SIG1 (–6dB, 100kHz, no burst) to (D) and (E). Assume the output amplitude at TP45 (100kHz) and TP40 (100kHz) when serial bus register HUE = 128 as VR0 and VB0, respectively, when HUE = 255 as VR1 and VB1, respectively, and when HUE = 0 as VR2 and VB2, respectively. GEXRMX = 20 log (VR1/VR0) GEXRMN = 20 log (VR2/VR0) GEXBMX = 20 log (VB1/VB0) GEXBMN = 20 log (VB2/VB0) SW53 = SW54 = A Min. Typ. Max. Unit –5 –2 dB +2 +3 dB +2 +3 dB –5 –2 dB VEXGBN Input SIG5 (VL = 150mV) to (A) and SIG1 (0dB, 100kHz, no burst) to (D). Assume the output amplitude at TP40 (100kHz) as VEXB and the output amplitude at TP43 (100kHz) as VEXBG. VEXGBN = VEXBG/VEXB SW53 = SW54 = A 0.23 0.26 0.29 VEXGRN Input SIG5 (VL = 150mV) to (A) and SIG1 (0dB, 100kHz, no burst) to (E). Assume the output amplitude at TP45 (100kHz) as VEXR and the output amplitude at TP43 (100kHz) as VEXRG. VEXGRN = VEXRG/VEXR SW53 = SW54 = A 0.46 0.51 0.56 VEXGBP Input SIG5 (VL = 150mV) to (A) and SIG1 (0dB, 100kHz, no burst) to (D). Assume the output amplitude at TP40 (100kHz) as VEXB and the output amplitude at TP43 (100kHz) as VEXBG. VEXGBP = VEXBG/VEXB SW53 = SW54 = A 0.17 0.20 0.23 VEXGRP Input SIG5 (VL = 150mV) to (A) and SIG1 (0dB, 100kHz, no burst) to (E). Assume the output amplitude at TP45 (100kHz) as VEXR and the output amplitude at TP43 (100kHz) as VEXRG. VEXGRP = VEXRG/VEXR SW53 = SW54 = A 0.46 0.51 0.56 VOUT Input SIG5 (VL = 0mV) to (A). Adjust serial bus registers BRIGHT and PSIG-BRT so that the output (black-black) at TP43 and TP38 is 9Vp-p and measure the DC voltage at TP40, TP43, TP45 and TP38. 5.85 6.00 6.15 V ∆VOUT Input SIG5 (VL = 0mV) to (A). Adjust serial bus registers BRIGHT and PSIG-BRT so that the output (black-black) at TP43 and TP38 is 9Vp-p, measure the DC voltage at TP40, TP43, TP45 and TP38, and obtain the maximum difference between each of these values. 0 100 mV 6.5 V G-Y matrix characteristics (NTSC) G-Y matrix characteristics (PAL) RGB signal output block RGB signal and PSIG output DC voltage RGB signal and PSIG output DC voltage difference SIG center variable VORNG range Set V48 to 5.2V or 6.5V in the VOUT measurement conditions and confirm that ∆VOUT in the preceding item is satisfied and that |V48 – VOUT| ≤ 0.15V. SW48 = ON – 15 – 5.2 CXA3017R Item Symbol VLIMMX RGB and PSIG output black limiter operation voltage VLIMMN Difference in RGB output inverted/ non-inverted gain Difference in black level potential between RGB output signals 7.0 UBRTMX Input SIG3 to (A) and measure the amount of change in the black level output at TP40, TP43 and TP45 when serial bus register USER-BRT is changed from 128 to 255. UBRTMN Input SIG3 to (A) and measure the amount of change in the white level output at TP40, TP43 and TP45 when serial bus register USER-BRT is changed from 128 to 0. BRTMX Input SIG3 to (A) and measure the black level output at TP40, TP43 and TP45 when serial bus register BRIGHT is changed from 128 to 255. BRTMN Input SIG3 to (A) and measure the white level output at TP40, TP43 and TP45 when serial bus register BRIGHT is changed from 128 to 0. SBBRT Input SIG5 (VL = 0mV) to (A) and measure the difference between the outputs (black-black) at TP40 and TP45 and the output (black-black) at TP43 when serial bus registers R-BRT = B-BRT = 0 and when R-BRT = B-BRT = 255. ±1.3 ±1.7 ∆GRGB Input SIG4 to (A) and obtain the level difference between the maximum and minimum non-inverted output amplitudes (white-black) at TP40, TP43 and TP45. –0.6 0 SBCNT Input SIG4 to (A) and measure the difference between the non-inverted outputs (white-black) at TP40 and TP45 and the non-inverted output (white-black) at TP43 when serial bus registers R-CNT = B-CNT = 0 and when R-CNT = B-CNT = 255. ±1.5 ±2 ∆GINV Input SIG4 to (A) and obtain the difference between the non-inverted output amplitudes (white-black) and the inverted output amplitudes at TP40, TP43 and TP45. –0.3 0 ∆VBL Input SIG4 to (A) and obtain the level difference between the maximum and minimum black levels of both the inverted and non-inverted outputs at TP40, TP43 and TP45. 9.0 –2.5 V V 2.5 –2.5 Vp-p V 3.0 –3.0 2.0 Vp-p Vp-p 1.5 2.5 Unit Vp-p Input SIG3 (VL = 0mV) to (A) and measure the output (black-black) at TP38 when serial bus register PSIG-BRT = 0. – 16 – Max. 9.0 PSIGMN Amount of change in brightness Amount of change in sub-contrast Typ. Input SIG3 (VL = 0mV) to (A) and measure the output (black-black) at TP38 when serial bus register PSIG-BRT = 255. Amount of change in user brightness Difference in gain between RGB output signals Input SIG3 to (A). Vary BLKLIM and measure the maximum value VLIMMX and minimum value VLIMMN of the voltage range (black-black) over which the black limiter operates for the TP38, TP40, TP43 and TP45 outputs. Assume the value when BLKLIM = 0 as VLIMMX, and when BLKLIM = 255 as VLIMMN. Min. PSIGMX Amount of change in PSIG output Amount of change in sub-brightness Conditions –2.0 V V 0.6 dB dB 0.3 dB 300 mV CXA3017R Item Symbol Gγ1 γ gain Gγ2 Gγ3 V γ 1MN γ 1 adjustment variable range V γ 1MX V γ 2MN γ 2 adjustment variable range V γ 2MX tPSIGH PSIG transition time tPSIGL RGB output white limiter operation voltage VWLIMX VWLIMN Conditions Input SIG8 to (A). Adjust the non-inverted output amplitude (black-white) at TP43 to 3.5Vp-p with serial bus register CONT and the black level at TP43 to 1.5V with serial bus register RBT. Measure VG1, VG2 and VG3. G γ 1 = 20 log (VG1/0.0375) G γ 2 = 20 log (VG2/0.0375) G γ 3 = 20 log (VG3/0.0375) (See Fig. 5 for definitions of VG1, VG2 and VG3.) Input SIG8 to (A) and adjust serial bus register BRIGHT so that the output at TP43 is 9Vp-p (blackblack). Read the point where the gain of the non-inverted output at TP43 changes when serial bus register γ 1 = 0 and 255 from the input signal IRE level. V γ 1MN when γ 1 = 0, and V γ 1MX when γ 1 = 255. Input SIG8 to (A) and adjust serial bus register BRIGHT so that the output at TP43 is 9Vp-p (blackblack). Read the point where the gain of the non-inverted output at TP43 changes when serial bus register γ 2 = 0 and 255 from the input signal IRE level. V γ 2MN when γ 2 = 0, and V γ 2MX when γ 2 = 255. Typ. Max. Unit 23.0 26.0 29.0 dB 12.0 15.0 18.0 dB 18.0 22.0 26.0 dB 0 IRE 100 IRE 100 IRE 0 IRE 1.5 3.0 µs 1.5 3.0 µs 1.0 1.1 1.2 V 0.45 0.55 0.65 V 0 100 mV 0 100 mV Input SIG4 to (A) and adjust serial bus register PSIGBRT so that the output at TP38 is 9Vp-p (black-black). Measure the time it takes to change to an amplitude of 9Vp-p. tPSIGH: rise time, tPSIGL: fall time Load: 20000pF Input SIG3 to (A) and measure the potential difference between the white limiter level of the TP43 output and SIGCENTER. VWLIMX when WHITELIM = 0 VWLIMN when WHITELIM = 3 Black limiter DC voltage difference ∆VBLIM Input SIG5 (VL = 0mV) to (A) and adjust BLKLIM so that the output at TP43 is 9Vp-p (black-black). Measure the DC voltage at TP40, TP43 and TP45 and obtain the difference versus the RGB output voltage VOUT. White limiter DC voltage difference ∆VWLIM Input SIG5 (VL = 350mV) to (A). Measure the DC voltage at TP40, TP43 and TP45 and obtain the difference versus the RGB output voltage VOUT. RGB output range when FRP polarity VDROFF inversion is stopped Min. Input SIG8 to (A). Assume the black limiter level of the output at TP40, TP43 and TP45 when serial bus register BRIGHT = 0 as VDRB and the white limiter level when BRIGHT = 255 as VDRW. VDROFF = VDRW – VDRB – 17 – 3.0 Vp-p CXA3017R Item Symbol Conditions Min. Typ. Max. Unit NTSC 1.5MHz –18 –12 dB PAL 2.0MHz –16 –10 dB NTSC 5.5MHz –6 –2 dB PAL –6 –2 dB NTSC –40 –30 dB PAL –40 –30 dB 1.2 1.5 MHz Filter characteristics Amount of BPF attenuation ATBPF ATRAPN Amount of TRAP attenuation ATRAPP R-Y and B-Y LPF characteristics Assume the chroma amplitude at TP55 when SIG5 (VL = 0mV) is input to (A) and SIG1 (0dB at input center frequency (3.58MHz or 4.43MHz)) is input to (B) as 0dB. Obtain the amount by which the output at TP55 is attenuated when the frequencies noted on the right are input. SW57 = A Input SIG2 (0dB, 3.58MHz and 4.43MHz) to (A) and measure the output at TP43 with a spectrum analyzer. Assume the amplitude at TP43 during Y/C input mode as 0dB, and obtain the amount of attenuation during COMP input mode. 6.8MHz Assume the amplitude of the 100kHz component of the output at TP43 when SIG5 (VL = 150mV) is input to (A) and SIG2 (0dB, 3.58MHz + 100kHz) is input to (B) as 0dB. Obtain the frequency which attenuates the beat component of the output by 3dB when the SIG2 frequency is increased with respect to 3.58MHz. 0.9 WSSEP Input SIG5 (VL = 0mV, VS = 143mV, WS variable) to (A) and confirm that it is synchronized with the HD output at TP21. Gradually narrow the WS of SIG5 from 4.7µs and obtain the WS at which synchronization with the HD output at TP21 is lost. 2.0 VSSEP Input SIG5 (VL = 0mV, WS = 4.7µs, VS variable) to (A) and confirm that it is synchronized with the HD output at TP21. Gradually reduce the VS of SIG5 from 143mV and obtain the VS at which synchronization with the HD output at TP21 is lost. DEMLPF Sync separation, TG block Input sync signal width sensitivity Sync separation input sensitivity TDSY1 HD output delay time TDSY2 HPLLN Horizontal pull-in range HPLLP Input SIG5 (VL = 0mV, WS = 4.7µs, VS = 143mV) to (A) and measure the delay time with the HD output at TP21. TDSY1 is from the falling edge of the input HSYNC to the rising edge of the HD output, and TDSY2 is from the falling edge of the input HSYNC to the falling edge of the HD output. Input SIG5 (VL = 0mV, WS = 4.7µs, VS = 143mV, horizontal frequency variable) to NTSC (A) and confirm that it is synchronized with the HD output at TP21. Obtain the frequency fH at which the input and output are synchronized by changing the horizontal frequency of SIG5 from the PAL non-synchronized condition. HPLLN = fH – 15734, HPLLP = fH – 15625 – 18 – µs 40 60 mV 2.3 2.6 2.9 µs 4.3 4.6 4.9 µs ±500 ±1000 Hz ±500 ±1000 Hz CXA3017R Item Symbol Conditions Min. Output transition time (page 11∗2 pins) tTLH Cross-point time difference ∆T Input SIG5 (VL = 0mV) to (A) and measure HCK1/HCK2, VCK1/VCK2 and VCK3/VCK4. Load = 50pF (See Fig. 4.) SW57 = A HCK duty DTYHC Input SIG5 (VL = 0mV) to (A) and measure the HCK1/HCK2 duty. Load = 50pF, SW57 = A 47 VBKLTH Measure the output voltage at TP23 when DA OUT = 7. IOH = –1mA 2.7 VBKLTL Measure the output voltage at TP23 when DA OUT = 0. IOH = 1mA tTHL DA OUT output voltage Typ. Input SIG5 (VL = 0mV) to (A) and measure the transition time for each output. Load = 50pF (See Fig. 3.) SW57 = A 50 Max. Unit 30 ns 30 ns 10 ns 53 % V 0.3 V External I/O characteristics VTEXTB External RGB input threshold voltage VTEXTW Propagation delay time between external RGB input and output Output blanking level during external RGB input Output white level during external RGB input Minimum pulse width during external RGB input TD1EXT TD2EXT Input SIG5 (VL = 0mV) to (A) and SIG6 (VL variable) to (C). Raise the SIG6 amplitude (VL) from 0V and assume the voltage where the outputs at TP40, TP43 and TP45 go to black level as VTEXTB. Then raise the amplitude further and assume the voltage where these outputs go to white level as VTEXTW. SW1 = SW2 = SW3 = B Input SIG5 (VL = 0mV) to (A) and SIG6 (VL = 3V) to (C). Measure the rise delay time TD1EXT and the fall delay time TD2EXT of the outputs at TP40, TP43 and TP45. (See Fig. 2.) SW1 = SW2 = SW3 = B EXTBK Input SIG5 (VL = 0mV) to (A) and SIG6 (VL = 1.7V) to (C). Measure the difference from the black level of the outputs at TP40, TP43 and TP45. SW1 = SW2 = SW3 = B EXTWT Input SIG5 (VL = 0mV) to (A) and SIG6 (VL = 2.7V) to (C). Measure the difference from the black level of the outputs at TP40, TP43 and TP45. SW1 = SW2 = SW3 = B TEXMIN Input SIG5 (VL = 0mV) to (A) and SIG6 (VL = 2.7V) to (C). Measure the minimum pulse width at which each of the outputs at TP40, TP43 and TP45 reach the white limiter. SW1 = SW2 = SW3 = B – 19 – 0.8 1.0 1.2 V 1.8 2.0 2.2 V 50 90 130 ns 50 100 140 ns 0 V 3.0 V 180 ns CXA3017R Item Symbol Conditions Min. Typ. Max. Unit ts0 LOAD setup time, activated by the rising edge of SCLK. (See Fig. 6.) 150 ns ts1 DATA setup time, activated by the rising edge of SCLK. (See Fig. 6.) 150 ns th0 LOAD hold time, activated by the rising edge of SCLK. (See Fig. 6.) 150 ns th1 DATA hold time, activated by the rising edge of SCLK. (See Fig. 6.) 150 ns tw1L SCLK pulse width. (See Fig. 6.) 156 ns tw1H SCLK pulse width. (See Fig. 6.) 156 ns tw2 LOAD pulse width. (See Fig. 6.) 1 µs Serial transfer block Data setup time Data hold time Minimum pulse width – 20 – – 21 – ICC13 ICC12 ICC11 Symbol VIL VIH VOH1 VOL1 GV GCNTTP GCNTMN Low level input voltage High level input voltage High level output voltage Low level output voltage Video maximum gain Contrast characteristics TYP Contrast characteristics MIN IDD1 Current consumption VDD1, 2 IDD2 Current ICC2 consumption VCC2, 3 Current consumption VCC1 Horizontal AFC adjustment Item — Y/color NTSC difference COMP NTSC COMP NTSC COMP NTSC COMP NTSC COMP NTSC COMP NTSC — — — — — — — 128 ON 128 128 128 128 ON 128 128 128 128 ON 128 128 128 128 ON 128 128 128 128 ALL ON 128 128 128 0 ALL ON 128 128 128 128 128 128 128 128 128 128 128 128 ON 128 128 128 128 ON 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 0 0 0 0 0 0 0 0 0 0 0 0 0 0 γ1 Serial bus BRBRT BRT ON 128 128 128 128 ON 128 128 128 128 ON 128 128 128 128 ON 128 128 128 128 ON 128 128 128 128 ALL ON 128 128 128 255 1 1 1 1 1 COMP NTSC 005 COMP NTSC 1 1 1 1 1 1 COMP NTSC 009 COMP NTSC 501 — — NTSC Y/C COMP NTSC — System Panel S/H FRP HUE COL BRT CNT COMP NTSC Input Mode settings VCO must be reset when the panel mode is changed. Y signal block Digital block I/O characteristics Current characteristics Setting 2 Description of Electrical Characteristics Measurement Methods Serial Bus Register Initial Settings 0 0 0 0 0 0 0 0 0 0 0 0 0 0 γ2 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 0 0 0 0 0 0 0 0 0 0 0 0 0 0 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 ADJ ADJ ADJ ADJ ADJ ADJ ADJ ADJ ADJ ADJ ADJ ADJ ADJ ADJ 3 3 3 3 3 3 3 3 3 3 3 3 3 3 — — — — — — — — — — — — — — (—: don't care, ADJ: adjustment, SET: setting) 128 128 128 128 128 128 128 128 128 128 128 128 128 128 USER WHITE DA BLK BPSIG RPIC -BRT VCO LIM OUT BRT CNT CNT LIM DAC settings CXA3017R – 22 – Y signal block ALL ON 128 128 128 128 Y/C 128 ALL ON 128 128 128 128 SPAL 005 128 ALL ON 128 128 128 128 — — ACC1 ACC2 FAPC ACC amplitude characteristics 2 APC pull-in range TDYDEF — SPAL 128 ALL ON 128 128 128 128 — COMP NTSC SPAL — ALL ON 128 128 128 128 128 128 ALL ON 128 128 128 128 — COMP NTSC COMP 128 ALL ON 128 128 128 128 — SPAL COMP 128 ALL ON 128 128 128 128 128 ALL ON 128 128 128 128 — — 128 ALL ON 128 128 128 128 — SPAL COMP COMP NTSC Y/color difference TDYCMP COMP 128 128 ALL ON 128 128 128 128 — Y/C TDYCMN COMP NTSC ACC amplitude characteristics 1 Y signal I/O delay time TDYYC ALL ON 128 128 128 128 128 ALL ON 128 128 128 128 — — 128 ALL ON 128 128 128 128 COMP NTSC 009 — 128 ALL ON 128 128 128 128 128 ALL ON 128 128 128 128 COMP NTSC 005 COMP NTSC 009 128 ALL ON 128 128 128 128 128 ALL ON 128 128 128 128 NTSC 005 Y/C COMP NTSC 005 128 ALL ON 128 128 128 128 NTSC 005 Y/C 128 ALL ON 128 128 128 128 NTSC 009 Y/C Carrier leak (Y block) CRLEKY COMP Picture quality GSHP4X adjustment variable GSHP4N amount 4 Picture quality GSHP3X adjustment variable GSHP3N amount 3 Picture quality GSHP2X adjustment variable amount 2 GSHP2N 128 ALL ON 128 128 128 128 NTSC 009 Y/C FCYCMP COMP 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 180 BRBRT BRT ALL ON 128 128 128 128 NTSC 009 System Panel S/H FRP HUE COL BRT CNT Input Mode settings FCYCMN COMP NTSC 005 FCYYC Symbol Picture quality GSHP1X adjustment variable amount 1 GSHP1N Y signal frequency response Item VCO must be reset when the panel mode is changed. Chroma signal block 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 γ1 Serial bus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 γ2 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 128 ADJ 128 ADJ 128 ADJ 128 ADJ 128 128 ADJ 128 128 ADJ 128 128 ADJ 128 128 ADJ 128 128 ADJ 128 128 ADJ 128 128 ADJ 128 128 ADJ 128 128 ADJ 128 128 ADJ 128 128 ADJ 0 255 128 ADJ 0 255 128 ADJ 0 255 128 ADJ 0 255 128 ADJ 128 128 ADJ 128 128 ADJ 180 128 ADJ 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 — — — — — — — — — — — — — — — — — — — — — — (—: don't care, ADJ: adjustment, SET: setting) 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 USER WHITE DA PSIG RBBLK PIC -BRT VCO LIM BRT CNT CNT LIM OUT DAC settings CXA3017R – 23 – COMP NTSC COMP NTSC COMP HUEMN ACKN ACKP HUE adjustment characteristics MIN Color difference balance Color difference input color adjustment Demodulation output phase difference (PAL) Demodulation output amplitude ratio (PAL) Demodulation output phase difference (NTSC) Demodulation output amplitude ratio (NTSC) COMP NTSC COMP NTSC COMP NTSC VGBN θRBN θGBN — — — COMP COMP Y/color difference Y/color difference Y/color difference θRBP θGBP GEXCMX GEXCMN VEXCBL SPAL COMP VGBP SPAL SPAL COMP VRBP SPAL COMP NTSC VRBN SPAL COMP NTSC HUE adjustment HUEMX characteristics MAX Killer operation input level COMP NTSC GCOLMN 0 128 128 — — — — 0 128 128 ALL ON 128 128 128 128 ALL ON 128 ALL ON 128 255 128 128 ALL ON 128 128 150 128 ALL ON 128 128 150 128 128 128 128 128 128 128 ALL ON 128 128 150 128 — — 128 128 ALL ON 128 128 150 128 ALL ON 128 128 150 128 128 — — ALL ON 128 128 150 128 128 ALL ON 128 128 150 128 — — 128 128 ALL ON 128 128 150 128 — ALL ON 128 128 150 128 128 ALL ON 128 128 150 128 — — 128 128 150 128 128 128 128 ALL ON 0 ALL ON 255 128 150 128 ALL ON 128 ALL ON 128 255 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 BRBRT BRT — — — — System Panel S/H FRP HUE COL BRT CNT Color adjustment characteristics MIN Input Mode settings COMP NTSC Symbol Color adjustment GCOLMX characteristics MAX Item VCO must be reset when the panel mode is changed. Chroma signal block 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 γ2 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 0 0 0 0 128 128 ADJ 128 128 ADJ 128 128 ADJ 128 128 ADJ 128 128 ADJ 3 3 3 3 3 3 128 128 ADJ 0 0 3 3 128 128 ADJ 128 128 ADJ 3 0 0 128 128 ADJ 3 128 128 ADJ 0 0 3 3 128 128 ADJ 0 128 128 ADJ 3 128 128 ADJ 0 0 3 3 3 3 128 128 ADJ 128 128 ADJ 128 128 ADJ 128 128 ADJ 0 0 0 0 — — — — — — — — — — — — — — — — — (—: don't care, ADJ: adjustment, SET: setting) 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 USER WHITE DA BLK PSIG RBPIC -BRT VCO LIM OUT BRT CNT CNT LIM DAC settings 0 0 0 0 γ1 Serial bus CXA3017R Chroma signal block – 24 – — — — Y/color difference Y/color NTSC difference Y/color NTSC difference Y/color SPAL difference Y/color SPAL difference GEXBMN VEXGBN VEXGRN VEXGBP VEXGRP Amount of change in PSIG output RGB output/PSIG black limiter operation voltage — SIG center variable range — — — — — — — — VLIMMN PSIGMX PSIGMN — — — VLIMMX VORNG — RGB/PSIG output ∆VOUT DC voltage difference RGB/PSIG output DC voltage G-Y matrix characteristics (PAL) G-Y matrix characteristics (NTSC) — — — Y/color difference GEXBMX VOUT — — Y/color difference GEXRMN Color difference input balance adjustment B — Y/color difference GEXRMX ALL ON ALL ON ALL ON ALL ON — — — ALL ON ALL ON ALL ON ALL ON ALL ON ALL ON ALL ON ALL ON ALL ON ALL ON ALL ON — — — — — — — — 128 128 128 128 128 128 128 128 128 128 128 255 128 255 128 80 80 128 128 128 128 128 255 128 128 128 128 255 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 ADJ 128 128 128 128 ADJ 128 128 128 128 ADJ 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 0 255 128 128 128 128 0 128 BRBRT BRT 255 128 128 128 128 System Panel S/H FRP HUE COL BRT CNT Color difference input balance adjustment R Input Mode settings Symbol Item VCO must be reset when the panel mode is changed. RGB signal output block 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 γ1 Serial bus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 γ2 0 255 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 0 0 128 128 128 128 255 128 128 0 0 0 0 0 0 0 0 0 0 0 0 ADJ ADJ ADJ ADJ ADJ ADJ ADJ ADJ ADJ ADJ ADJ ADJ ADJ ADJ ADJ 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 — — — — — — — — — — — — — — — (—: don't care, ADJ: adjustment, SET: setting) 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 BLK USER WHITE DA PSIG RBPIC VCO -BRT LIM OUT BRT CNT CNT LIM DAC settings CXA3017R – 25 – — Amount of change in sub-contrast — — — — V γ 1MN V γ 1MX V γ 2MN V γ 2MX — — Gγ3 PSIG transition time tPSIG γ 2 adjustment variable range γ 1 adjustment variable range — — Gγ1 Gγ2 — Difference in black level potential ∆VBL between RGB signals γ gain — Difference in RGB inverted/non-inverted ∆GINV gain SBCNT — — — BRTMN Difference in gain ∆GRGB between RGB signals — — BRTMX — — — — — — — — — — — — — — — UBRTMN — — 128 ALL ON 128 128 — — — — — — — — — — — — — — 128 ALL ON 128 128 255 255 128 — 80 80 80 80 60 60 60 60 128 128 128 128 ALL ON 128 128 128 128 128 ALL ON 128 128 ALL ON 128 128 ALL ON 128 128 ALL ON 128 128 ALL ON 128 128 ADJ ADJ 128 ALL ON 128 128 ADJ ADJ 128 ALL ON 128 128 ADJ ADJ 128 ALL ON 128 128 128 128 128 ALL ON 128 128 128 128 128 ALL ON 128 128 128 128 128 ALL ON 128 128 128 128 128 0 0 0 0 0 0 0 0 0 γ1 0 0 0 0 0 0 0 0 0 γ2 128 128 0 0 128 128 128 255 128 0 0 0 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ADJ 128 128 ADJ 128 128 ADJ 128 128 ADJ 128 128 ADJ 128 128 ADJ 128 128 ADJ 128 128 ADJ 128 128 ADJ 128 128 ADJ 128 128 ADJ 128 128 ADJ 128 128 ADJ 128 128 ADJ 128 128 ADJ 128 128 ADJ 128 128 255 ADJ 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 — — — — — — — — — — — — — — — — — (—: don't care, ADJ: adjustment, SET: setting) 128 128 128 SET 128 128 128 128 255 0 128 140 230 128 128 140 230 128 128 128 128 128 128 128 128 128 SET SET 128 128 128 128 128 128 USER WHITE DA BLK PSIG RBPIC -BRT VCO LIM BRT CNT CNT LIM OUT DAC settings 128 140 230 128 128 128 128 128 ALL ON 128 128 160 128 SET SET 255 128 128 ALL ON 128 128 128 255 128 — 0 128 ALL ON 128 128 128 255 128 BRBRT BRT — System Panel S/H FRP HUE COL BRT CNT — Input Mode settings UBRTMX Symbol SBBRT Amount of change in sub brightness Amount of change in brightness Amount of change in user brightness Item VCO must be reset when the panel mode is changed. RGB signal output block Serial bus CXA3017R – 26 – RGB signal output block Filter characteristics RGB output range when FRP polarity VDROFF inversion is stopped Output transition time Horizontal pull-in range SPAL COMP NTSC — HPLLP NTSC tTHL — HPLLN — — — — NTSC 009 COMP NTSC — TDSY2 — — — — — — — — — — NTSC 009 — — NTSC SPAL NTSC SET — — — — 0 128 1 1 ON 128 128 128 128 ON 128 128 128 128 ALL ON 128 128 128 128 ALL ON 128 128 128 128 ALL ON 128 128 128 128 ALL ON 128 128 128 128 ALL ON 128 128 128 128 ALL ON 128 128 128 128 ALL ON 128 128 150 128 ALL ON 128 128 128 128 ALL ON 128 128 128 128 ALL ON 128 128 128 128 ALL OFF 128 128 SET 128 ALL ON 128 128 255 128 ALL ON 128 128 ALL ON 128 128 128 128 System Panel S/H FRP HUE COL BRT CNT Mode settings tTLH — — — TDSY1 VSSEP Sync separation input sensitivity HD output delay time WSSEP Input sync signal width sensitivity Y/C SET ATRAPP DEMLPF SET COMP — ATRAPN R-Y and B-Y LPF characteristics Amount of TRAP attenuation ATBPF — ∆VWLIM White limiter DC voltage difference Amount of BPF attenuation — ∆VBLIM Black limiter DC voltage difference — VWLIM RGB output white limiter operation voltage Input Symbol Item VCO must be reset when the panel mode is changed. Sync, TG block 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 BRBRT BRT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 γ1 Serial bus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 0 128 0 128 128 128 128 128 128 128 128 128 128 128 128 128 128 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ADJ 128 128 ADJ 128 128 ADJ 128 128 ADJ 128 128 ADJ 128 128 ADJ 128 128 ADJ 128 128 ADJ 128 128 ADJ 128 128 ADJ 128 128 ADJ 128 128 ADJ 128 128 ADJ 128 128 128 ADJ 3 3 3 3 3 3 3 3 3 3 3 3 3 0 0 ADJ SET 128 ADJ 128 128 ADJ 128 — — — — — — — — — — — — — — — — (—: don't care, ADJ: adjustment, SET: setting) 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 WHITE DA USER BBLK PSIG RPIC VCO LIM -BRT BRT CNT CNT LIM OUT 255 128 γ2 DAC settings CXA3017R Sync, TG block – 27 – — — — — VTEXTW Propagation delay TD1EXT time between external RGB input and output TD2EXT — — EXTBK EXTWT External RGB input blanking level External RGB input output white level External RGB input TEXMIN minimum pulse width — — — VTEXTB External RGB input threshold voltage — — — — — — — VBKLTL DA OUT output voltage — COMP NTSC — DTYHC HCK duty — — — — — — — — — — ON 128 128 128 128 ON 128 128 128 128 — — ALL ON 128 128 128 128 ALL ON 128 128 100 128 ALL ON 128 128 128 128 128 128 128 128 ALL ON 128 128 128 128 — — 128 128 128 — — 128 128 ALL ON 128 128 128 128 ALL ON 128 128 128 128 ALL ON 128 128 128 128 — — 1 1 128 128 128 128 128 128 128 — — 128 128 BRBRT BRT — — — — — — — System Panel S/H FRP HUE COL BRT CNT COMP NTSC Input Mode settings VBKLTH ∆T Symbol Cross-point time difference Item VCO must be reset when the panel mode is changed. External I/O characteristics 0 0 0 0 0 0 0 — — 0 0 γ1 Serial bus 0 0 0 0 0 0 0 — — 0 0 γ2 128 128 128 128 128 128 128 — — 128 128 128 128 128 128 128 128 128 — — 128 128 0 0 0 0 0 0 0 — — 0 0 — — — — 128 128 ADJ 128 128 ADJ 128 128 ADJ 128 128 ADJ 128 128 ADJ 128 128 ADJ 128 128 ADJ — — 128 128 ADJ 128 128 ADJ 3 3 3 3 3 3 3 — — 3 3 — — — — — — — 0 7 — — (—: don't care, ADJ: adjustment, SET: setting) 128 128 128 128 128 128 128 — — 128 128 USER WHITE DA BLK PSIG RBPIC VCO -BRT LIM OUT BRT CNT CNT LIM DAC settings CXA3017R CXA3017R Electrical Characteristic Measurement Method Diagrams 3V SIG6 0V 100% TP40, 43, 45 non-inverted output 50% TD1EXT TD2EXT Fig. 2. Conditions for measuring the delay between external RGB input and output ∆T 90% 50% 10% tTLH ∆T tTHL Fig. 3. Output transition time measurement conditions Fig. 4. Cross-point time difference measurement conditions White Non-inverted output VG3 VG2 3.5V VG1 Black 1.5V Input Fig. 5. γ characteristics measurement conditions – 28 – CXA3017R DATA D15 D14 D13 D12 D11 D10 D9 ts1 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 th1 SCLK 50% tw1H tw1L 50% LOAD ts0 th0 Fig. 6. Serial transfer block measurement conditions – 29 – tw2 CXA3017R Input Waveforms SG No. Waveform Sine wave video signal: With/without burst Amplitude and frequency variable SIG1 150mV ← Value noted on left: 0 dB 150mV 143mV Chroma signal: Burst, chroma frequency (3.579545MHz, 4.433619MHz) Chroma phase and burst frequency variable SIG2 150mV ← Value noted on left: 0 dB 143mV Ramp waveform 357mV SIG3 143mV 1H 5-step staircase waveform 150mV SIG4 143mV 1H VL amplitude variable VS variable: 143mV unless otherwise specified WS variable: 4.7µs unless otherwise specified fH variable: 15.734kHz (NTSC) or 15.625kHz (PAL) unless otherwise specified VL SIG5 VS fH WS – 30 – CXA3017R SG No. Waveform 30µs 5µs VL amplitude variable VL SIG6 Horizontal sync signal 75mV Frequency variable SIG7 175mV 143mV 10-step staircase waveform 357mV SIG8 143mV 1H SIN2 2T pulse waveform 357mV SIG9 143mV 1H – 31 – CXA3017R Electrical Characteristics Measurement Circuit +12V SW48 ICC2 A V48 TP45 0.01µ 400p 20000p 400p 400p +15.5V TP38 TP40 TP43 100k 100k 47µ +3V 0.1µ 0.1µ 0.1µ 0.01µ IDD4 A 0.1µ 0.22µ 10k 46 45 44 43 42 41 40 39 38 37 36 35 34 33 R OUT FB G G OUT GND2 FB B B OUT VCC3 PSIG GND3 FB PSIG RGT1 DWN VDD2 0.01µ DA OUT 32 TP32 VD 31 TP31 51 VXO IN EN2 30 TP30 52 APC EN1 29 TP29 53 B-Y IN XEN1 28 TP28 54 R-Y IN VCK1 27 TP27 55 C OUT VCK2 26 TP26 56 V REG VCK3 25 TP25 57 C IN VCK4 24 TP24 VST 23 TP23 XVST 22 TP22 HD 21 TP21 61 SYNC IN PCG 20 TP20 62 VSEP TC XPCG 19 TP19 63 F0 ADJ HCK1 18 TP18 64 GND1 HCK2 17 TP17 49 VCC1 ∗1 47 FB R 47µ 48 VCC2 47µ 0.01µ SIG.CENTER ICC1 A +3V TP35 TP34 50 VXO OUT 16p 0.033µ 0.1µ (D) 0.1µ (E) A SW53 B A B SW54 TP55 3.9k 1µ (B) A B SW57 SW58 58 RESET V58 1µ 59 Y IN TP60 60 TEST2 0.01µ (A) 0.33µ EXT G EXT B TRAP VDD1 LOAD DATA SCLK RPD TEST1 BLK CLR HST2 HST1 XHST1 VSS ∗2 EXT R 15k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 SW1 SW2 SW3 B A B A B A TP6 TP7 TP8 ∗3 10k 3.3µ TP10 TP11 TP12 TP13 TP14 TP15 TP9 6800p (C) ∗1 Used crystal: KINSEKI CX-5F Frequency deviation: within ±30ppm, frequency temperature characteristics: within ±30ppm, load capacity: 16pF NTSC: 3.579545MHz PAL: 4.433619MHz ∗2 Resistance value tolerance: ±2%, temperature coefficient: ±200ppm or less ∗3 Trap (TDK) NTSC: NLT4532-S3R6B PAL: NLT4532-S4R4 – 32 – +3V IDD3 A 47µ 0.01µ CXA3017R Description of Operation The CXA3017R incorporates the three functions of an RGB decoder block, an RGB driver block and a timing generator (TG) block onto a single chip using Bi-CMOS technology. 1) RGB decoder block • Input mode switching The input mode (composite input, Y/C input, Y/color difference input) can be switched by the serial bus settings. During composite input: The composite signal is input to Pins 57, 59 and 61. During Y/C input: The Y signal is input to Pins 59 and 61, and the C signal to Pin 57. During Y/color difference input: The Y signal is input to Pins 59 and 61, the B-Y signal to Pin 53, and the R-Y signal to Pin 54. • System switching The input system (NTSC, SPAL, DPAL) can be switched by the serial bus settings. (DPAL uses external delay lines.) • Trap, BPF The center frequency of the built-in trap and BPF can be switched to 3.58MHz during NTSC and 4.43MHz during PAL. During composite input, the Y signal enters the trap circuit and the C signal enters the BPF. These signals do not pass through the trap or BPF during Y/C input and Y/color difference input. • ACC detection, ACC amplifier The amplitude of the burst signal output from the ACC amplifier is detected and the ACC amplifier is controlled to maintain the burst signal amplitude at a constant level. • VXO, APC detection The VXO local oscillation circuit is a crystal oscillation circuit. The phases of the input burst signal and the VXO oscillator output are compared in the APC detection block, and the detective output is used to form a PLL that controls the VXO oscillation frequency, which means that the need for adjustments is eliminated. • External inputs These are digital inputs with two thresholds. When one of the RGB inputs is higher than the lower threshold Vth1 (≈ 1.0V), all RGB outputs go to black level. When the higher threshold Vth2 (≈ 2.0V) is exceeded, the output for only the signal in question goes to white level, while the other outputs remain at black level. – 33 – CXA3017R 2) RGB driver block • γ correction In order to support the characteristics of LCD panels, the I/O characteristics are as shown in Fig. 1. The γ gain transition point A voltage changes as shown in Fig. 2 by adjusting the serial bus register γ1, and the transition point B voltage changes as shown in Fig. 3 by adjusting γ2. Output Output Output B A A Input B' B A' A Input Input Fig. 1 B Fig. 2 Fig. 3 • Sample-and-hold circuit As LCD panels sample RGB signals simultaneously, RGB signals output from the CXA3017R must be sampled-and-held in sync with the LCD panel drive pulses. R S/H1 S/H4 G S/H2 HCK1 A S/H4 B B S/H3 S/H4 C SH1 SH2 SH3 SH4 RGT = H (normal) RGT = L (right/left inversion) SHS1 SHS2 SHS3 SH1 B A C SH2 Through Through Through SH2 A C B SH3 A C B SH3 Through Through Through SH4 C B A SH4 SH1 SHS1 SHS2 SHS3 B A C C B SH1: R signal SH pulse SH2: G signal SH pulse SH3: B signal SH pulse SH4: RGB signal SH pulse A SHS1,2,3: Serial data settings The sample-and-hold circuit performs sample and hold by receiving the SH1 to SH4 pulses from the TG block. Since LCD panels perform color coding using an RGB delta arrangement, each horizontal line must be compensated by 1.5 dots. This relationship is reversed during right/left inversion. This compensation timing is also generated by the TG block. The sample-and-hold timing changes according to the phase relationship with the HCK1 pulse, so the timing should be set to SHS1, 2 or 3 in accordance with the actual board. – 34 – CXA3017R • RGB output RGB outputs (Pins 40, 43 and 45) are inverted each horizontal line by the FRP pulse (internal pulse) supplied from the TG block as shown in the figure below. Feedback is applied so that the center voltage (Vsig center) of the output signal matches the reference voltage (VCC2 + GND2)/2 (or the voltage input to SIG CENTER (Pin 48)). In addition, the white level output is clipped at the limiter operation point that is set by the serial bus register WHITE LIM, and the black level output is clipped at the limiter operation point that is set by the serial bus register BLKLIM. Video IN FRP Black level limiter White level limiter Vsig center White level limiter RGB OUT Black level limiter 3) TG block • PLL and AFC circuits The TG block contains a PLL circuit phase comparator and frequency division counter and a VCO circuit, and comprises a PLL circuit. The PLL error detection signal is generated by the HSYNC block, and the integral value of the phase comparison output of the entire bottom of HSYNC and the internal frequency division counter becomes RPD (Pin 9). The CXA3017R controls the internal VCO with the RPD output to stabilize the oscillation frequency at 690fH (NTSC) or 716fH (PAL) for the LCX005BK/BKB and LCX024AK/AKB, and 1034fH (NTSC) or 1072fH (PAL) for the LCX009AK/AKB, LCX027AK/AKB and DCX501BK. The PLL of this system is adjusted by adjusting the serial bus register VCO so that the RPD output waveform is constant near VSYNC as shown in the figure Video signal RPD (Pin 9) Adjust to a horizontal waveform. Horizontal AFC adjustment • H position The horizontal display position can be set at 2fH intervals in 32 different ways by the serial bus settings. Note that the delay difference between the RGB signal and the drive pulse differs according to the board, so adjust the serial bus register H position so that the picture center matches the center of the LCD panel. – 35 – CXA3017R • Right/left inversion The LCD panel is arranged in a delta arrangement, where identical signal lines are offset by 1.5 dots from adjoining lines. For this reason, a 1.5-bit offset is attached to the horizontal start pulse (HST) between odd lines and even lines. HCK and S/H are also 1.5-bit offset. Therefore, when the panel is driven by left scan (Reverse scan), this offset relationship is inverted for even and odd lines. Moreover, since the dot arrangement is asymmetrical, the HST position is also changed. RGT = H: Right scan mode RGT = L: Left scan mode (H and L are the LCD panel input levels.) Left scan (Reverse scan) Right scan (Normal scan) V SCANNER H SCANNER Active area LCD panel • Wide mode Wide mode can be selected by setting wide mode with the serial bus aspect switching register. In this mode, aspect ratio conversion is performed by pulse elimination processing to enable 16:9 quasi-WIDE display. Vertical pulse elimination scanning of 1/4 for NTSC and 10/28 for PAL is performed and the video signal is compressed in order to achieve a 16:9 aspect ratio during the wide mode period. In addition, high-speed scan is performed in areas outside of the active area to display black in the upper 28 lines and the lower 28 (27) lines. Black display is performed by limiting the video signal input during the V blanking period and writing a black level signal in its place. Vertical high-speed scan 225 LINES (218 LINES) Black active area 28 LINES (28 LINES) Active area 169 LINES (163 LINES) Black active area 28 LINES (27 LINES) Active area 4:3 display Vertical pulse elimination scan 16:9 display Numbers inside parentheses are for the LCX005BK/BKB and LCX024AK/AKB; other numbers are for the LCX009AK/AKB, LCX027AK/AKB and DCX501BK. – 36 – CXA3017R • AC driving of LCD panels during no signal HST, XHST, HCK1, HCK2, VST, XVST, VCK1, VCK2, PCG, XPCG, EN, XEN, HD, VD, and FRP (internal pulse) are made to run freely so that the LCD panel is AC driven even when there is no composite sync from the SYNCIN pin. During this time, the HSYNC separation circuit stops and the PLL counter is made to run freely. In addition, the VSYNC separation circuit is also stopped, so the auxiliary V counter is used to create the reference pulse for generating VD, VST and XVST. The cycle of this V counter is designed to be 525/2H for NTSC and 625/2H for PAL. However, when there is no vertical sync signal for 5 fields, the no signal state is assumed and the free running VD, VST and XVST pulses are generated from the next field. In addition, RPD is kept at high impedance when there is no signal in order to prevent the AFC circuit from causing errors due to phase comparison. – 37 – CXA3017R Description of Serial Control Operation 1) Control method Control data consists of 16 bits of data which is loaded one bit at a time at the rising edge of SCLK. This loading operation starts from the falling edge of LOAD and is completed at the next rising edge. Digital block control data is established by the vertical sync signal, so if data is transferred multiple times for the same item, the data immediately before the vertical sync signal is valid. Analog (electronic attenuator) block control data becomes valid each time the LOAD signal is input. D15 D14 D13 D12 D11 D10 D9 DATA D8 D7 D6 D5 D4 D3 D2 D1 D0 SCLK LOAD Serial transfer timing 2) Serial data map The serial data map is as follows. D15 D14 D13 D12 D11 D10 D9 D8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 PLL adjustment 2 PLL adjustment 1 0 0 0 0 0 0 1 0 1 ∗ ∗ ∗ H-POSITION 0 0 0 0 0 1 1 0 ∗ ∗ ∗ HD-POSITION 1 0 0 0 0 0 0 0 HUE 1 0 0 0 0 0 0 1 COLOR 1 0 0 0 0 0 1 0 BRIGHT 1 0 0 0 0 0 1 1 CONTRAST 1 0 0 0 0 1 0 0 R-BRIGHT 1 0 0 0 0 1 0 1 B-BRIGHT 1 0 0 0 0 1 1 0 γ-1 1 0 0 0 0 1 1 1 γ-2 D7 D6 D5 S/H phase Aspect 0 0 D3 External VSYNC D2 System Panel 2 TEST1 DWN RGT2 RGT1 – 38 – D4 D0 Input switching Supported panels SYNC TEST2 GEN P-FRP D1 Y/color VD HD difference polarity polarity clamp FRP FRP FRP4096 TEST5 inversion inversion inversion inversion TEST4 TEST3 stop stop 0 0 POWER SAVE 0 SYNC detection ∗: don't care CXA3017R Serial data map (cont.) D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 1 0 0 0 1 0 0 0 PSIG-BRIGHT 1 0 0 0 1 0 0 1 R-CONTRAST 1 0 0 0 1 0 1 0 B-CONTRAST 1 0 0 0 1 0 1 1 BLK LIM 1 0 0 0 1 1 0 0 PICTURE 1 0 0 0 1 1 0 1 USER-BRIGHT 1 0 0 0 1 1 1 0 VCO 1 0 0 0 1 1 1 1 ∗ ∗ ∗ ∗ ∗ 1 0 0 1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ 1 1 1 0 0 0 0 0 D2 ∗ D1 D0 WHITE LIM DA OUT TEST6 ∗: don't care 3) Serial data mode settings (X: don't care) • Input switching This switches the input signal format. D1 D0 0 X Composite input (default) 1 0 Y/C input 1 1 Y/color difference input • System switching This switches the input video signal system. D3 D2 0 0 NTSC (default) 0 1 TEST 1 0 D-PAL 1 1 S-PAL • External VSYNC Internal VSYNC separation is not performed and an externally input VSYNC is used. D4 0 OFF (internal separation) (default) 1 ON (external input) • Aspect switching This switches the video display aspect. D5 0 4:3 (normal) (default) 1 16:9 (letterbox, pulse elimination display) – 39 – CXA3017R • Sample-and-hold phase This switches the sample-and-hold timing. D7 D6 0 0 SHS1 (default) 0 1 SHS2 1 0 SHS3 1 1 Through (sample-and-hold not performed) • Supported panels This switches the supported panels. D3 D2 D1 D0 Supported panels 0 0 0 0 LCX005BK/BKB single 0 0 0 1 LCX024AK/AKB single 0 0 1 0 LCX009AK/AKB single 0 0 1 1 LCX027AK/AKB single 0 1 0 0 LCX005BK/BKB + (DCX501BK) 0 1 0 1 LCX024AK/AKB + (DCX501BK) (default) 0 1 1 0 LCX009AK/AKB + (DCX501BK) 0 1 1 1 LCX027AK/AKB + (DCX501BK) 1 0 0 0 1 0 0 1 1 0 1 0 — 1 0 1 1 — 1 1 0 0 DCX501BK + (LCX005BK/BKB) 1 1 0 1 DCX501BK + (LCX024AK/AKB) 1 1 1 0 DCX501BK + (LCX009AK/AKB) 1 1 1 1 DCX501BK + (LCX027AK/AKB) — DCX501BK single Two-panel simultaneous drive mode The supported panels are the main panel and the sub panel (the panel noted inside the parentheses). The video is not displayed correctly on the sub panel for combinations of the LCX005BK (BKB)/024AK (AKB) and the DCX501BK. Therefore, the sub panel back light should be turned off. Two-panel simultaneous display is possible with combinations of the LCX009AK (AKB)/027AK (AKB) and the DCX501BK (only when RGT1 = RGT2). However, when the right/left inversion directions of the main and sub panels differ (RGT1 ≠ RGT2), the picture is not displayed correctly due to the line offset. Therefore, use Panel 2 mode in these cases. • TEST1 This is the test mode. Set to normal mode. D4 0 Normal mode (default) 1 TEST mode • Panel 2 Set this when the right/left inversion direction of the two panels differs (RGT1 ≠ RGT2) during two-panel simultaneous drive using the LCX009AK (AKB)/027AK (AKB)and the DCX501BK. D5 0 OFF (default) 1 ON Notes) 1. The VST connection changes in this mode, so an external inverter is required. 2. Set sample and hold to OFF (through) in this mode. 3. When the right/left inversion direction of the two panels differs (RGT1 ≠ RGT2), the video display start position of the sub panel is advanced by 1H. 4. RGT1 and RGT2 can also be set the same in this mode. – 40 – CXA3017R • HD polarity This switches the HD output (Pin 21) polarity. D0 0 Positive polarity (default) 1 Negative polarity • VD polarity This switches the VD output (Pin 31) polarity. D1 0 Positive polarity (default) 1 Negative polarity • Y/color difference clamp This switches the position at which the R-Y and B-Y input signals are clamped during Y/color difference input mode. D2 0 Pedestal position (default) 1 SYNC position • TEST2 This is the test mode. Set to normal mode. D3 0 Normal mode (default) 1 TEST mode • SYNC GEN This sets the sync generator function. Outputs other than VD and HD of the TG block are stopped. D4 0 OFF (default) 1 ON • RGT1 (right/left inversion 1) This switches the DCX501BK right/left inverted display timing and the RGT1 output (Pin 34). D5 0 OFF (normal display) (default) 1 ON (right/left inverted display) • RGT2 (right/left inversion 2) This switches the LCX005BK (BKB)/009AK (AKB)/024AK (AKB)/027AK (AKB)right/left inverted display timing. D6 0 OFF (normal display) (default) 1 ON (right/left inverted display) • DWN (up/down inversion) This switches the DCX501BK up/down inverted display timing and the DWN output (Pin 35). D7 0 OFF (normal display) (default) – 41 – CXA3017R • TEST3 This is the test mode. Set to normal mode. D0 0 Normal mode (default) 1 TEST mode • TEST4 This is the test mode. Set to normal mode. D1 0 Normal mode (default) 1 TEST mode • FRP4096 inversion This further inverts the polarity of the RGB output that is inverted every 1H for 4096 fields. D2 0 OFF (default) 1 ON • FRP inversion stop This stops R, G and B output polarity inversion. D3 0 OFF (1H inversion) (default) 1 ON (polarity not inverted) • P-FRP inversion stop This stops PSIG output polarity inversion. D4 0 OFF (1H inversion) (default) 1 ON (polarity not inverted) • FRP inversion This switches the FRP output inversion cycle. D5 0 1H inversion (default) 1 1 field inversion • TEST5 This is the test mode. Set to normal mode. D6 0 Normal mode (default) 1 TEST mode • Sync detection This prevents (as much as possible) the vertical sync from being lost during weak magnetic field signal input. Set to ON (0). D0 0 ON (default) 1 OFF – 42 – CXA3017R • POWER SAVE This stops HST1/XHST1 in order to reduce the DCX501BK current consumption. Set to OFF (0). D2 0 OFF (default) 1 ON (HST1/XHST1 stopped) • PLL adjustment 1, 2 These set the PLL adjustment. D7 D6 0 0 (default) 0 1 Set D7 = 0, D6 = 1. 1 0 1 1 • H position setting This sets the horizontal display start position. (2fH intervals in 32 different ways) D4 D3 D2 D1 D0 0 0 0 0 0 : : : : : 1 0 0 0 0 (default) : : : : : 1 1 1 1 1 Variable in 2fH (= 1 bit) increments CLK (internal) 10001 10000 HST 01111 1 step 1 step • HD phase setting This sets the HD output (Pin 21) phase. (4fH intervals in 32 different ways) D4 D3 D2 D1 D0 0 0 0 0 0 (default) : : : : : 1 1 1 1 1 Variable in 4fH (= 1 bit) increments HSYNC 00000 HD 11111 31 steps – 43 – CXA3017R 4) Serial data electronic attenuator (D/A converter) settings • HUE • COLOR • BRIGHT • CONTRAST • R-BRT • B-BRT • γ-1 • γ-2 • PSIG-BRT • R-CONT • B-CONT • BLK LIM • PICTURE • USER-BRIGHT • VCO • WHITE LIM D7 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 — D6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 — D5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 — D4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 — D3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 — D2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 — D1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 (default) (default) (default) (default) (default) (default) (default) (default) (default) (default) (default) (default) (default) (default) (default) (default) 5) DA OUT This controls the DC level (0 to 3V, 8 steps) of the DA OUT (Pin 32) DAC output. DA OUT D7 — D6 — D5 — D4 — D3 — D2 0 D1 0 D0 0 (default) 6) TEST6 TEST6 is a test mode which results automatically if data is sent to these addresses, regardless of the data contents. For this reason, do not perform data transfer using these addresses. D15 1 D14 D13 1 1 D12 0 D11 0 D10 0 D9 0 D8 0 D7 D6 D5 D4 D3 D2 D1 D0 X X X X X X X X – 44 – CXA3017R DCX501BK Color Coding Diagram The CXA3017R supports LCD panels which perform color coding in a delta arrangement. The shaded areas in the figure are not displayed. DCX501BK Pixel Arrangement R G Vline2 R B Vline1 R B G G B R B G B R G B R G B R G B R G B R G HSW266 B R G R G B B G B R R G HSW267 B R G G B R B R G B R G HSW268 Photo-shielding area B R G R G B G B R B G R G R B R 225 Vline3 R HSW3 R G B B R R G G B B R R G G B B R G R G B B R R G G B B R G R G B R Active area B Vline225 dummy2 G R B R G R G B G B R B R G R G B G B R B R G R G B G B R B R G R G B G B R B R G G B G R B R R G 1 Vline224 R Precharge SW 2 800 803 – 45 – 1 227 dummy1 HSW2 1 HSW1 CXA3017R LCX027AK/AKB Pixel Arrangement R B Vline1 Vline2 G R B R G B Vline3 R G G R B R B G B B G R G R B R R B G B G R G G R B R B G B B G B R R G R R B G G B G R HSW266 G R B R B G B B R G B R R G R B R G G B G G R B B R B G dummy5 to 8 HSW268 B G R G R B R R G B R G G B R Photo-shielding area B R G G B R G B B R G B R R G B R G R G B R Active area R B Vline225 dummy3 G R B R G R G B G B R B R G R G B G B R B R G R G B 14 B R 800 827 – 46 – G B R G R G B G B R B R G R G B G B R 13 R G 1 Vline224 228 dummy2 R HSW3 2 B dummy1 HSW1 225 dummy1 to 4 CXA3017R LCX024AK/AKB Pixel Arrangement B G Vline1 Vline2 R B R B B R G B R B R G B R G B B G B B R R G B R B G G R B B G R G G R B R B G R G R B R B G R B R G R B G B R B G R G R HSW179 R G B Photo-shielding area B G R B R B G B G R B G B G R G R B G R G R B R B G R B R B G B G R B G B G R G R B R area G Active G G R B R HSW178 R G B R G R G B R 2 G B G R G R B G R G R B R B G R B R B G B G R B G dummy3 B G R G R B G Vline218 G B G Vline3 R HSW176 dummy4 B R 3 G B R G B R G B 521 R G B R G B R 13 537 – 47 – G 228 dummy2 B HSW3 2 G dummy1 HSW2 218 HSW1 CXA3017R LCX009AK/AKB Pixel Arrangement dummy1 to 4 B R G B HSW2 R G B HSW267 R G B dummy5 to 8 HSW268 R G B R G B R 2 dummy1 HSW1 Vline2 B R R G B Vline3 R dummy3 R R B G G G R G B R G B R 800 827 – 48 – R G B R G B G R B R B G R G R B G B G R B R B G R G R B G B G R B R B G R G R B G G B G R B R G R B R B G R B 14 G R G B R B G R G B G R G R B G B R Active area R G B B B B R B G R G R B G G B G R B R B G R R G R B G B G R B B R B G R G B G R B Vline225 B G R R G R B Vline224 B R G B R 13 R G 228 Vline1 G 225 R 1 dummy2 Photo-shielding area B R G CXA3017R LCX005BK/BKB Pixel Arrangement dummy2 B R G Vline1 Vline2 B B R G B R R B G B G R B B G B B R G R B B B G R R R B G G G R B G R B B G R R G R B R G B R Photo-shielding area G B R G B R B G B R B G R G B G R B R G R B G B R B G R G B G R G R B R G Active area G G R B R dummy2 to 5 HSW175 R B G B G R G G R B R B G B B G R G R B R R G B R G R G B R 2 G B G R G R B G R G R B R B G R B R B G B G R B G dummy3 B G R G R B G Vline217 G R B R B G Vline3 Vline218 B HSW174 HSW3 dummy4 B R 3 G B R G B R G B 521 R G B R G B R 13 537 – 49 – G 222 G dummy1 HSW2 2 HSW1 218 dummy1 – 50 – VST/VD VCK4 VCK3 CLR EN2 (PAL) EN1 (PAL) EN1 PCG VCK2 VCK1 FRP (Internal) SH4 (Internal) SH3 (Internal) SH2 (Internal) SH1 (Internal) HCK2 HCK1 HST2 HST1 HD (BLK) (SYNC) (MCK) 5.0µs (56fH) 3.0µs (34fH) 0.5µs (6fH) 6.5µs (73fH) 3.0µs (34fH) 5.0µs (56.5fH) 6.0µs (67.5fH) 4.5µs (50fH) 4.7µs (53fH) ODD LINE 3.0µs (34fH) 2.0µs (22fH) 4.7µs (53fH) 22.5fH 13fH RGT1 = 0, RGT2 = 0, HP = 10000, HD = 00000 Cycle value NTSC: 690 ck, PAL: 716 ck Note) The first (MCK), second (SYNC) and third (BLK) rows of the timing chart are pulses indicated as a reference and are not pulses output from pins. FRP polarity is not specified for each line and field. LCX005/024 drive pulses: HST2, HCK1, HCK2, EN2, CLR, VCK3, VCK4, VST(EN2 is high during NTSC.) DCX501 drive pulses: HST1, HCK1, HCK2, VCK1, VCK2, PCG, EN1 and VST (HST1, PCG, EN1 and VST output inverted pulses XHST1, XPCG, XEN1 and XVST.) Horizontal Direction Timing Chart — NTSC/PAL LCX005 + (DCX501), LCX024 + (DCX501) CXA3017R – 51 – VST/VD VCK4 VCK3 CLR EN2 (PAL) EN1 (PAL) EN1 PCG VCK2 VCK1 FRP (Internal) SH4 (Internal) SH3 (Internal) SH2 (Internal) SH1 (Internal) HCK2 HCK1 HST2 HST1 HD (BLK) (SYNC) (MCK) 3.0µs (34fH) 3.0µs (34fH) 0.5µs (6fH) 6.5µs (73fH) 5.0µs (55fH) 6.0µs (66fH) 4.5µs (50fH) 4.7µs (53fH) EVEN LINE 3.0µs (34fH) 2.0µs (22fH) 5.0µs (56fH) 4.7µs (53fH) AAA 21fH 13fH RGT1 = 0, RGT2 = 0, HP = 10000, HD = 00000 Cycle value NTSC: 690 ck, PAL: 716 ck Note) The first (MCK), second (SYNC) and third (BLK) rows of the timing chart are pulses indicated as a reference and are not pulses output from pins. FRP polarity is not specified for each line and field. LCX005/024 drive pulses: HST2, HCK1, HCK2, EN2, CLR, VCK3, VCK4 and VST (EN2 is high during NTSC.) DCX501 drive pulses: HST1, HCK1, HCK2, VCK1, VCK2, PCG, EN1 and VST (HST1, PCG, EN1 and VST output inverted pulses XHST1, XPCG, XEN1 and XVST.) Horizontal Direction Timing Chart — NTSC/PAL LCX005 + (DCX501), LCX024 + (DCX501) CXA3017R – 52 – HCK2 HCK1 HST2 HST1 HCK2 HCK1 HST2 HST1 HCK2 HCK1 HST2 HST1 HCK2 HCK1 HST2 HST1 HD (BLK) (SYNC) (MCK) EVEN LINE ODD LINE EVEN LINE ODD LINE 2.0µs (22fH) 4.7µs (53fH) 4.5µs (50fH) 4.7µs (53fH) HST1 and HST2 during right/left inversion 23.5fH 22fH 21fH 22.5fH 13fH 13fH 13fH 13fH Note) The first (MCK), second (SYNC) and third (BLK) rows of the timing chart are pulses indicated as a reference and are not pulses output from pins. HST1: DCX501 horizontal display start pulse (inverted pulse XHST1 output) HST2: LCX005/024 horizontal display start pulse RGT1 = 0 or 1, RGT2 = 1 RGT1 = 0 or 1, RGT2 = 1 RGT1 = 0 or 1, RGT2 = 0 RGT1 = 0 or 1, RGT2 = 0 Horizontal Direction Timing Chart — NTSC/PAL LCX005 + (DCX501), LCX024 + (DCX501) CXA3017R – 53 – VST/VD VCK4, (3) VCK3, (4) CLR EN2 (PAL) EN1 (PAL) EN1 PCG VCK2 VCK1 FRP (Internal) SH4 (Internal) SH3 (Internal) SH2 (Internal) SH1 (Internal) HCK2 HCK1 HST2 HST1 HD (BLK) (SYNC) (MCK) ODD LINE 0.5µs (8fH) 6.5µs (109fH) 3.0µs (50fH) 5.0µs (84.5fH) 6.0µs (101.5fH) 4.5µs (75fH) 4.7µs (79fH) 20.5fH 12fH RGT1 = 0, RGT2 = 0, HP = 10000, HD = 00000 Cycle value NTSC: 1034 ck, PAL: 1072 ck Note) The first (MCK), second (SYNC) and third (BLK) rows of the timing chart are pulses indicated as a reference and are not pulses output from pins. FRP polarity is not specified for each line and field. In LCX009 + (DCX501) and DCX501 + (LCX009) modes, the VCK3 and VCK4 polarities are inverted. (VCK(3) and VCK(4)) LCX009/027, 005/024 drive pulses: HST2, HCK1, HCK2, EN2, CLR, VCK3, VCK4 and VST (EN2 is high during NTSC.) DCX501 drive pulses: HST1, HCK1, HCK2, VCK1, VCK2, PCG, EN1 and VST (HST1, PCG, EN1 and VST output inverted pulses XHST1, XPCG, XEN1 and XVST.) 5.0µs (84fH) 3.0µs (50fH) 2.0µs (34fH) 3.0µs (50fH) 4.7µs (79fH) Horizontal Direction Timing Chart — NTSC/PAL LCX009 + (DCX501), LCX027 + (DCX501) DCX501 + (LCX009), DCX501 + (LCX027), DCX501 + (LCX005), DCX501 + (LCX024) CXA3017R – 54 – VST/VD VCK4, (3) VCK3, (4) CLR EN2 (PAL) EN1 (PAL) EN1 PCG VCK2 VCK1 FRP (Internal) SH4 (Internal) SH3 (Internal) SH2 (Internal) SH1 (Internal) HCK2 HCK1 HST2 HST1 HD (BLK) (SYNC) (MCK) EVEN LINE 0.5µs (8fH) 6.5µs (109fH) 3.0µs (50fH) 5.0µs (83fH) 6.0µs (100fH) 4.5µs (75fH) 19fH 12fH AA AA Note) The first (MCK), second (SYNC) and third (BLK) rows of the timing chart are pulses indicated as a reference and are not pulses output from pins. FRP polarity is not specified for each line and field. In LCX009 + (DCX501) and DCX501 + (LCX009) modes, the VCK3 and VCK4 polarities are inverted. (VCK(3) and VCK(4)) LCX009/027, 005/024 drive pulses: HST2, HCK1, HCK2, EN2, CLR, VCK3, VCK4 and VST (EN2 is high during NTSC.) DCX501 drive pulses: HST1, HCK1, HCK2, VCK1, VCK2, PCG, EN1 and VST (HST1, PCG, EN1 and VST output inverted pulses XHST1, XPCG, XEN1 and XVST.) 5.0µs (84fH) AAA 3.0µs (50fH) 3.0µs (50fH) 2.0µs (34fH) AAA 4.7µs (79fH) AAA AAA RGT1 = 0, RGT2 = 0, HP = 10000, HD = 00000 Cycle value NTSC: 1034 ck, PAL: 1072 ck AAA AAA AAA AAAA AAA AAA AAA AAA AAA AAA 4.7µs (79fH) AAA Horizontal Direction Timing Chart — NTSC/PAL LCX009 + (DCX501), LCX027 + (DCX501) DCX501 + (LCX009), DCX501 + (LCX027), DCX501 + (LCX005), DCX501 + (LCX024) CXA3017R – 55 – HCK2 HCK1 HST2 HST1 HCK2 HCK1 HST2 HST1 HCK2 HCK1 HST2 HST1 HCK2 HCK1 HST2 HST1 HD (BLK) (SYNC) (MCK) EVEN LINE ODD LINE EVEN LINE ODD LINE 4.7µs (79fH) 2.0µs (34fH) 4.5µs (75fH) 4.7µs (79fH) HST1 and HST2 during right/left inversion, RGT2 = 0 19fH 22fH 20.5fH 23.5fH 19fH 20.5fH Note) The first (MCK), second (SYNC) and third (BLK) rows of the timing chart are pulses indicated as a reference and are not pulses output from pins. HST1: DCX501 horizontal display start pulse (inverted pulse XHST1 output) HST2: LCX009/027 horizontal display start pulse RGT1 = 1, RGT2 = 0 RGT1 = 1, RGT2 = 0 RGT1 = 0, RGT2 = 0 RGT1 = 0, RGT2 = 0 Horizontal Direction Timing Chart — NTSC/PAL LCX009 + (DCX501), LCX027 + (DCX501) 12fH 12fH 12fH 12fH 12fH 12fH CXA3017R – 56 – HCK2 HCK1 HST2 HST1 HCK2 HCK1 HST2 HST1 HCK2 HCK1 HST2 HST1 HCK2 HCK1 HST2 HST1 HD (BLK) (SYNC) (MCK) EVEN LINE ODD LINE EVEN LINE ODD LINE 2.0µs (34fH) 4.5µs (75fH) 4.7µs (79fH) HST1 and HST2 during right/left inversion, RGT2 = 1 21.5fH 20fH 21.5fH 24.5fH 20fH 23fH Note) The first (MCK), second (SYNC) and third (BLK) rows of the timing chart are pulses indicated as a reference and are not pulses output from pins. HST1: DCX501 horizontal display start pulse (inverted pulse XHST1 output) HST2: LCX009/027 horizontal display start pulse RGT1 = 1, RGT2 = 1 RGT1 = 1, RGT2 = 1 RGT1 = 0, RGT2 = 1 RGT1 = 0, RGT2 = 1 4.7µs (79fH) Horizontal Direction Timing Chart — NTSC/PAL LCX009 + (DCX501), LCX027 + (DCX501) 12fH 12fH 12fH 12fH 12fH 12fH CXA3017R – 57 – HCK2 HCK1 HST2 HST1 HCK2 HCK1 HST2 HST1 HCK2 HCK1 HST2 HST1 HCK2 HCK1 HST2 HST1 HD (BLK) (SYNC) (MCK) EVEN LINE ODD LINE EVEN LINE ODD LINE 4.5µs (75fH) 4.7µs (79fH) 22fH 19fH 23.5fH 20.5fH 19fH 20.5fH Note) The first (MCK), second (SYNC) and third (BLK) rows of the timing chart are pulses indicated as a reference and are not pulses output from pins. HST1: DCX501 horizontal display start pulse (inverted pulse XHST1 output) HST2: LCX009/027 horizontal display start pulse RGT1 = 0, RGT2 = 1 RGT1 = 0, RGT2 = 1 RGT1 = 0, RGT2 = 0 RGT1 = 0, RGT2 = 0 2.0µs (34fH) HST1 and HST2 during right/left inversion, RGT1 = 0 4.7µs (79fH) Horizontal Direction Timing Chart — NTSC/PAL DCX501 + (LCX009), DCX501 + (LCX027) 12fH 12fH 12fH 12fH 12fH 12fH CXA3017R – 58 – HCK2 HCK1 HST2 HST1 HCK2 HCK1 HST2 HST1 HCK2 HCK1 HST2 HST1 HCK2 HCK1 HST2 HST1 HD (BLK) (SYNC) (MCK) EVEN LINE ODD LINE EVEN LINE ODD LINE 4.5µs (75fH) 21.5fH 20fH 24.5fH 21.5fH 23fH 20fH Note) The first (MCK), second (SYNC) and third (BLK) rows of the timing chart are pulses indicated as a reference and are not pulses output from pins. HST1: DCX501 horizontal display start pulse (inverted pulse XHST1 output) HST2: LCX009/027 horizontal display start pulse RGT1 = 1, RGT2 = 1 RGT1 = 1, RGT2 = 1 RGT1 = 1, RGT2 = 0 RGT1 = 1, RGT2 = 0 2.0µs (34fH) 4.7µs (79fH) HST1 and HST2 during right/left inversion, RGT1 = 1 4.7µs (79fH) Horizontal Direction Timing Chart — NTSC/PAL DCX501 + (LCX009), DCX501 + (LCX027) 12fH 12fH 12fH 12fH 12fH 12fH CXA3017R – 59 – HCK2 HCK1 HST2 HST1 HCK2 HCK1 HST2 HST1 HCK2 HCK1 HST2 HST1 HCK2 HCK1 HST2 HST1 HD (BLK) (SYNC) (MCK) EVEN LINE ODD LINE EVEN LINE ODD LINE 4.5µs (75fH) 24.5fH 21.5fH 23fH 20fH 19fH 20.5fH Note) The first (MCK), second (SYNC) and third (BLK) rows of the timing chart are pulses indicated as a reference and are not pulses output from pins. HST1: DCX501 horizontal display start pulse (inverted pulse XHST1 output) HST2: LCX005/024 horizontal display start pulse RGT1 = 1, RGT2 = 0 or 1 RGT1 = 1, RGT2 = 0 or 1 RGT1 = 0, RGT2 = 0 or1 RGT1 = 0, RGT2 = 0 or 1 2.0µs (34fH) 4.7µs (79fH) HST1 and HST2 during right/left inversion 4.7µs (79fH) Horizontal Direction Timing Chart — NTSC/PAL DCX501 + (LCX005), DCX501 + (LCX024) 12fH 12fH 12fH 12fH 12fH 12fH CXA3017R – 60 – SBLK (Internal) BLK CLR EN2 EN1 PCG FRP (Internal) 1F inversion FRP (Internal) VCK1, 4 VCK2, 3 HST2 HST1 HD VST VD (BLK) (SYNC) ODD FIELD AA : Display end line : Display start line AA Note) The first (SYNC) and second (BLK) rows of the timing chart are pulses indicated as a reference and are not pulses output from pins. FRP polarity is not specified for each line and field. LCX005/024 drive pulses: HST2, EN2, CLR, VCK3, VCK4, VST and BLK DCX501 drive pulses: VCK1, VCK2, HST1, EN1, PCG and VST (HST1, EN1, PCG and VST output inverted pulses XHST1, XEN1, XPCG and XVST.) A A Vertical Direction Timing Chart — NTSC LCX005 + (DCX501), LCX024 + (DCX501) CXA3017R – 61 – SBLK (Internal) BLK CLR EN2 EN1 PCG FRP (Internal) 1F inversion FRP (Internal) VCK1, 4 VCK2, 3 HST2 HST1 HD VST VD (BLK) (SYNC) EVEN FIELD AA : Display end line : Display start line AA Note) The first (SYNC) and second (BLK) rows of the timing chart are pulses indicated as a reference and are not pulses output from pins. FRP polarity is not specified for each line and field. LCX005/024 drive pulses: HST2, EN2, CLR, VCK3, VCK4, VST and BLK DCX501 drive pulses: VCK1, VCK2, HST1, EN1, PCG and VST (HST1, EN1, PCG and VST output inverted pulses XHST1, XEN1, XPCG and XVST.) A A Vertical Direction Timing Chart — NTSC LCX005 + (DCX501), LCX024 + (DCX501) CXA3017R – 62 – SBLK (Internal) BLK CLR EN2 EN1 PCG FRP (Internal) 1F inversion FRP (Internal) VCK1, 4 VCK2, 3 HST2 HST1 HD VST VD (BLK) (SYNC) ODD FIELD A A : Display end line : Display start line AA Note) The first (SYNC) and second (BLK) rows of the timing chart are pulses indicated as a reference and are not pulses output from pins. FRP polarity is not specified for each line and field. LCX005/024 drive pulses: HST2, EN2, CLR, VCK3, VCK4, VST and BLK DCX501 drive pulses: VCK1, VCK2, HST1, EN1, PCG and VST (HST1, EN1, PCG and VST output inverted pulses XHST1, XEN1, XPCG and XVST.) AA AA Vertical Direction Timing Chart — PAL LCX005 + (DCX501), LCX024 + (DCX501) CXA3017R – 63 – SBLK (Internal) BLK CLR EN2 EN1 PCG FRP (Internal) 1F inversion FRP (Internal) VCK1, 4 VCK2, 3 HST2 HST1 HD VST VD (BLK) (SYNC) EVEN FIELD AA AA : Display end line : Display start line AA Note) The first (SYNC) and second (BLK) rows of the timing chart are pulses indicated as a reference and are not pulses output from pins. FRP polarity is not specified for each line and field. LCX005/024 drive pulses: HST2, EN2, CLR, VCK3, VCK4, VST and BLK DCX501 drive pulses: VCK1, VCK2, HST1, EN1, PCG and VST (HST1, EN1, PCG and VST output inverted pulses XHST1, XEN1, XPCG and XVST.) AA AA Vertical Direction Timing Chart — PAL LCX005 + (DCX501), LCX024 + (DCX501) CXA3017R – 64 – SBLK (Internal) BLK CLR EN2 EN1 PCG FRP (Internal) 1F inversion FRP (Internal) VCK2, 3, (4) VCK1, 4, (3) HST2 HST1 HD VST VD (BLK) (SYNC) ODD FIELD A A : Display end line : Display start line AA Note) The first (SYNC) and second (BLK) rows of the timing chart are pulses indicated as a reference and are not pulses output from pins. FRP polarity is not specified for each line and field. In LCX009 + (DCX501) and DCX501 + (LCX009) modes, the VCK3 and VCK4 polarities are inverted. (VCK(3) and VCK(4)) LCX009/027 drive pulses: HST2, EN2, CLR, VCK3, VCK4, VST and BLK DCX501 drive pulses: VCK1, VCK2, HST1, EN1, PCG and VST (HST1, EN1, PCG and VST output inverted pulses XHST1, XEN1, XPCG and XVST.) A A Vertical Direction Timing Chart — NTSC LCX009 + (DCX501), LCX027 + (DCX501), DCX501 + (LCX009), DCX501 + (LCX027), DCX501 + (LCX005), DCX501 + (LCX024) CXA3017R – 65 – SBLK (Internal) BLK CLR EN2 EN1 PCG FRP (Internal) 1F inversion FRP (Internal) VCK2, 3, (4) VCK1, 4, (3) HST2 HST1 HD VST VD (BLK) (SYNC) EVEN FIELD A A : Display end line : Display start line AA Note) The first (SYNC) and second (BLK) rows of the timing chart are pulses indicated as a reference and are not pulses output from pins. FRP polarity is not specified for each line and field. In LCX009 + (DCX501) and DCX501 + (LCX009) modes, the VCK3 and VCK4 polarities are inverted. (VCK(3) and VCK(4)) LCX009/027 drive pulses: HST2, EN2, CLR, VCK3, VCK4, VST and BLK DCX501 drive pulses: VCK1, VCK2, HST1, EN1, PCG and VST (HST1, EN1, PCG and VST output inverted pulses XHST1, XEN1, XPCG and XVST.) A A Vertical Direction Timing Chart — NTSC LCX009 + (DCX501), LCX027 + (DCX501), DCX501 + (LCX009), DCX501 + (LCX027), DCX501 + (LCX005), DCX501 + (LCX024) CXA3017R – 66 – SBLK (Internal) BLK CLR EN2 EN1 PCG FRP (Internal) 1F inversion FRP (Internal) VCK2, 3, (4) VCK1, 4, (3) HST2 HST1 HD VST VD (BLK) (SYNC) ODD FIELD A A : Display end line : Display start line AA Note) The first (SYNC) and second (BLK) rows of the timing chart are pulses indicated as a reference and are not pulses output from pins. FRP polarity is not specified for each line and field. In LCX009 + (DCX501) and DCX501 + (LCX009) modes, the VCK3 and VCK4 polarities are inverted. (VCK(3) and VCK(4)) LCX009/027 drive pulses: HST2, EN2, CLR, VCK3, VCK4, VST and BLK DCX501 drive pulses: VCK1, VCK2, HST1, EN1, PCG and VST (HST1, EN1, PCG and VST output inverted pulses XHST1, XEN1, XPCG and XVST.) A A Vertical Direction Timing Chart — PAL LCX009 + (DCX501), LCX027 + (DCX501), DCX501 + (LCX009), DCX501 + (LCX027), DCX501 + (LCX005), DCX501 + (LCX024) CXA3017R – 67 – SBLK (Internal) BLK CLR EN2 EN1 PCG FRP (Internal) 1F inversion AA AA EVEN FIELD AA AA Note) The first (SYNC) and second (BLK) rows of the timing chart are pulses indicated as a reference and are not pulses output from pins. FRP polarity is not specified for each line and field. In LCX009 + (DCX501) and DCX501 + (LCX009) modes, the VCK3 and VCK4 polarities are inverted. (VCK(3) and VCK(4)) LCX009/027 drive pulses: HST2, EN2, CLR, VCK3, VCK4, VST and BLK DCX501 drive pulses: VCK1, VCK2, HST1, EN1, PCG and VST (HST1, EN1, PCG and VST output inverted pulses XHST1, XEN1, XPCG and XVST.) FRP (Internal) VCK2, 3, (4) VCK1, 4, (3) HST2 HST1 HD VST VD (BLK) (SYNC) Vertical Direction Timing Chart — PAL LCX009 + (DCX501), LCX027 + (DCX501), DCX501 + (LCX009), DCX501 + (LCX027), DCX501 + (LCX005), DCX501 + (LCX024) : Display end line : Display start line AA CXA3017R – 68 – SBLK (Internal) BLK CLR EN2 EN1 PCG FRP (Internal) 1F inversion FRP (Internal) (B) VCK1, 4 (B) VCK2, 3 (B) FRP (Internal) (A) VCK1, 4 (A) VCK2, 3 (A) HST2 HST1 HD VST VD (BLK) (SYNC) ODD FIELD A A : Display end line : Display start line AA Note) The first (SYNC) and second (BLK) rows of the timing chart are pulses indicated as a reference and are not pulses output from pins. FRP polarity is not specified for each line and field. LCX005 + (DCX501) mode: VCK(A) output LCX024 + (DCX501) mode: VCK(B) output LCX005/024 drive pulses: HST2, EN2, CLR, VCK3, VCK4, VST and BLK DCX501 drive pulses: VCK1, VCK2, HST1, EN1, PCG and VST (HST1, EN1, PCG and VST output inverted pulses XHST1, XEN1, XPCG and XVST.) A A Vertical Direction Timing Chart — NTSC-WIDE LCX005 + (DCX501), LCX024 + (DCX501) CXA3017R – 69 – SBLK (Internal) BLK CLR EN2 EN1 PCG FRP (Internal) 1F inversion FRP (Internal) (B) VCK1, 4 (B) VCK2, 3 (B) FRP (Internal) (A) VCK1, 4 (A) VCK2, 3 (A) HST2 HST1 HD VST VD (BLK) (SYNC) EVEN FIELD A A : Display end line : Display start line A A Note) The first (SYNC) and second (BLK) rows of the timing chart are pulses indicated as a reference and are not pulses output from pins. FRP polarity is not specified for each line and field. LCX005 + (DCX501) mode: VCK(A) output LCX024 + (DCX501) mode: VCK(B) output LCX005/024 drive pulses: HST2, EN2, CLR, VCK3, VCK4, VST and BLK DCX501 drive pulses: VCK1, VCK2, HST1, EN1, PCG and VST (HST1, EN1, PCG and VST output inverted pulses XHST1, XEN1, XPCG and XVST.) A A Vertical Direction Timing Chart — NTSC-WIDE LCX005 + (DCX501), LCX024 + (DCX501) CXA3017R – 70 – SBLK (Internal) BLK CLR EN2 EN1 PCG FRP (Internal) 1F inversion FRP (Internal) (B) VCK1, 4 (B) VCK2, 3 (B) FRP (Internal) (A) VCK1, 4 (A) VCK2, 3 (A) HST2 HST1 HD VST VD (BLK) (SYNC) ODD FIELD A A : Display end line : Display start line A A Note) The first (SYNC) and second (BLK) rows of the timing chart are pulses indicated as a reference and are not pulses output from pins. FRP polarity is not specified for each line and field. LCX005 + (DCX501) mode: VCK(A) output LCX024 + (DCX501) mode: VCK(B) output LCX005/024 drive pulses: HST2, EN2, CLR, VCK3, VCK4, VST and BLK DCX501 drive pulses: VCK1, VCK2, HST1, EN1, PCG and VST (HST1, EN1, PCG and VST output inverted pulses XHST1, XEN1, XPCG and XVST.) A A Vertical Direction Timing Chart — PAL-WIDE LCX005 + (DCX501), LCX024 + (DCX501) CXA3017R – 71 – SBLK (Internal) BLK CLR EN2 EN1 PCG FRP (Internal) 1F inversion FRP (Internal) (B) VCK1, 4 (B) VCK2, 3 (B) FRP (Internal) (A) VCK1, 4 (A) VCK2, 3 (A) HST2 HST1 HD VST VD (BLK) (SYNC) EVEN FIELD A A : Display end line : Display start line A A Note) The first (SYNC) and second (BLK) rows of the timing chart are pulses indicated as a reference and are not pulses output from pins. FRP polarity is not specified for each line and field. LCX005 + (DCX501) mode: VCK(A) output LCX024 + (DCX501) mode: VCK(B) output LCX005/024 drive pulses: HST2, EN2, CLR, VCK3, VCK4, VST and BLK DCX501 drive pulses: VCK1, VCK2, HST1, EN1, PCG and VST (HST1, EN1, PCG and VST output inverted pulses XHST1, XEN1, XPCG and XVST.) AA AA Vertical Direction Timing Chart — PAL-WIDE LCX005 + (DCX501), LCX024 + (DCX501) CXA3017R – 72 – SBLK (Internal) BLK CLR EN2 EN1 PCG FRP (Internal) 1F inversion FRP (Internal) (B) VCK2, 3 (B) VCK1, 4 (B) FRP (Internal) (A) VCK2, 4, (3) (A) VCK1, 3, (4) (A) HST2 HST1 HD VST VD (BLK) (SYNC) ODD FIELD A A : Display end line : Display start line A A Note) The first (SYNC) and second (BLK) rows of the timing chart are pulses indicated as a reference and are not pulses output from pins. FRP polarity is not specified for each line and field. LCX009 + (DCX501), DCX501 + (LCX009) and DCX501 + (LCX005) modes: VCK(A) output (In DCX501 + (LCX005) mode the polarity is inverted. (VCK(3)(A) and VCK(4)(A))) LCX027 + (DCX501) and DCX501 + (LCX027) modes: VCK(B) output LCX009/027 drive pulses: HST2, EN2, CLR, VCK3, VCK4, VST and BLK DCX501 drive pulses: VCK1, VCK2, HST1, EN1, PCG and VST (HST1, EN1, PCG and VST output inverted pulses XHST1, XEN1, XPCG and XVST.) A A Vertical Direction Timing Chart — NTSC-WIDE LCX009 + (DCX501), LCX027 + (DCX501), DCX501 + (LCX009), DCX501 + (LCX027), DCX501 + (LCX005) CXA3017R – 73 – SBLK (Internal) BLK CLR EN2 EN1 PCG FRP (Internal) 1F inversion FRP (Internal) (B) VCK2, 3 (B) VCK1, 4 (B) FRP (Internal) (A) VCK2, 4, (3) (A) VCK1, 3, (4) (A) HST2 HST1 HD VST VD (BLK) (SYNC) EVEN FIELD A A : Display end line : Display start line A A Note) The first (SYNC) and second (BLK) rows of the timing chart are pulses indicated as a reference and are not pulses output from pins. FRP polarity is not specified for each line and field. LCX009 + (DCX501), DCX501 + (LCX009) and DCX501 + (LCX005) modes: VCK(A) output (In DCX501 + (LCX005) mode the polarity is inverted. (VCK(3)(A) and VCK(4)(A))) LCX027 + (DCX501) and DCX501 + (LCX027) modes: VCK(B) output LCX009/027 drive pulses: HST2, EN2, CLR, VCK3, VCK4, VST and BLK DCX501 drive pulses: VCK1, VCK2, HST1, EN1, PCG and VST (HST1, EN1, PCG and VST output inverted pulses XHST1, XEN1, XPCG and XVST.) A A Vertical Direction Timing Chart — NTSC-WIDE LCX009 + (DCX501), LCX027 + (DCX501), DCX501 + (LCX009), DCX501 + (LCX027), DCX501 + (LCX005) CXA3017R – 74 – SBLK (Internal) BLK CLR EN2 EN1 PCG FRP (Internal) 1F inversion FRP (Internal) (B) VCK2, 3 (B) VCK1, 4 (B) FRP (Internal) (A) VCK2, 4, (3) (A) VCK1, 3, (4) (A) HST2 HST1 HD VST VD (BLK) (SYNC) ODD FIELD A A : Display end line : Display start line A A Note) The first (SYNC) and second (BLK) rows of the timing chart are pulses indicated as a reference and are not pulses output from pins. FRP polarity is not specified for each line and field. LCX009 + (DCX501), DCX501 + (LCX009) and DCX501 + (LCX005) modes: VCK(A) output (In DCX501 + (LCX005) mode the polarity is inverted. (VCK(3)(A) and VCK(4)(A))) LCX027 + (DCX501) and DCX501 + (LCX027) modes: VCK(B) output LCX009/027 drive pulses: HST2, EN2, CLR, VCK3, VCK4, VST and BLK DCX501 drive pulses: VCK1, VCK2, HST1, EN1, PCG and VST (HST1, EN1, PCG and VST output inverted pulses XHST1, XEN1, XPCG and XVST.) A A Vertical Direction Timing Chart — PAL-WIDE LCX009 + (DCX501), LCX027 + (DCX501), DCX501 + (LCX009), DCX501 + (LCX027), DCX501 + (LCX005) CXA3017R – 75 – SBLK (Internal) BLK CLR EN2 EN1 PCG FRP (Internal) 1F inversion FRP (Internal) (B) VCK2, 3 (B) VCK1, 4 (B) FRP (Internal) (A) VCK2, 4, (3) (A) VCK1, 3, (4) (A) HST2 HST1 HD VST VD (BLK) (SYNC) EVEN FIELD A A : Display end line : Display start line A A Note) The first (SYNC) and second (BLK) rows of the timing chart are pulses indicated as a reference and are not pulses output from pins. FRP polarity is not specified for each line and field. LCX009 + (DCX501), DCX501 + (LCX009) and DCX501 + (LCX005) modes: VCK(A) output (In DCX501 + (LCX005) mode the polarity is inverted. (VCK(3)(A) and VCK(4)(A))) LCX027 + (DCX501) and DCX501 + (LCX027) modes: VCK(B) output LCX009/027 drive pulses: HST2, EN2, CLR, VCK3, VCK4, VST and BLK DCX501 drive pulses: VCK1, VCK2, HST1, EN1, PCG and VST (HST1, EN1, PCG and VST output inverted pulses XHST1, XEN1, XPCG and XVST.) A A Vertical Direction Timing Chart — PAL-WIDE LCX009 + (DCX501), LCX027 + (DCX501), DCX501 + (LCX009), DCX501 + (LCX027), DCX501 + (LCX005) CXA3017R CXA3017R Application Circuit (NTSC/PAL, COMP input) VDD of connected LCD panel +15.5V To LCD panel +12V 0.01µ 100k 100k 47µ 0.01µ 0.47µ 0.47µ 0.47µ 0.47µ 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 FB R R OUT FB G G OUT GND2 FB B B OUT VCC3 PSIG GND3 FB PSIG RGT1 DWN VDD2 49 VCC1 ∗1 48 VCC2 0.01µ 47µ SIG.CENTER +3V DA OUT 32 50 VXO OUT VD 31 16p 51 VXO IN EN2 30 52 APC EN1 29 0.22µ 10k 0.033µ 53 B-Y IN XEN1 28 54 R-Y IN VCK1 27 55 C OUT VCK2 26 56 V REG VCK3 25 57 C IN VCK4 24 To LCD panel 1µ 0.1µ VST 23 58 RESET 59 Y IN XVST 22 1µ 60 TEST2 HD 21 0.01µ COMP IN 61 SYNC IN PCG 20 62 VSEP TC XPCG 19 63 F0 ADJ HCK1 18 64 GND1 HCK2 17 0.33µ EXT G EXT B TRAP VDD1 LOAD DATA SCLK RPD TEST1 BLK CLR HST2 HST1 XHST1 VSS ∗2 EXT R 15k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 +3V To LCD panel From serial controller 47µ 10k ∗3 ∗1 Used crystal: KINSEKI CX-5F Frequency deviation: within ±30ppm, frequency temperature characteristics: within ±30ppm, load capacity: 16pF NTSC: 3.579545MHz PAL: 4.433619MHz 3.3µ 0.01µ 6800p ∗2 Resistance value variation: ±2%, temperature coefficient: ±200ppm or less ∗3 Trap (TDK) NTSC: NLT4532-S3R6B PAL: NLT4532-S4R4 Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same. – 76 – CXA3017R Application Circuit (NTSC/PAL, Y/C input) VDD of connected LCD panel +15.5V To LCD panel +12V 0.01µ 100k 100k 47µ 0.01µ 0.47µ 0.47µ 0.47µ 0.47µ 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 R OUT FB G G OUT GND2 FB B B OUT VCC3 PSIG GND3 FB PSIG RGT1 DWN VDD2 49 VCC1 ∗1 48 FB R 47µ VCC2 0.01µ SIG.CENTER +3V DA OUT 32 50 VXO OUT VD 31 16p 51 VXO IN EN2 30 52 APC EN1 29 0.22µ 10k 0.033µ 53 B-Y IN XEN1 28 54 R-Y IN VCK1 27 55 C OUT VCK2 26 56 V REG VCK3 25 57 C IN VCK4 24 To LCD panel 1µ C IN 0.1µ VST 23 58 RESET 59 Y IN XVST 22 1µ 60 TEST2 HD 21 0.01µ 61 SYNC IN PCG 20 62 VSEP TC XPCG 19 63 F0 ADJ HCK1 18 64 GND1 HCK2 17 Y IN EXT R EXT G EXT B TRAP VDD1 LOAD DATA SCLK RPD TEST1 BLK CLR HST2 HST1 XHST1 VSS 0.33µ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 +3V To LCD panel From serial controller 47µ 10k 3.3µ 0.01µ 6800p ∗1 Used crystal: KINSEKI CX-5F Frequency deviation: within ±30ppm, frequency temperature characteristics: within ±30ppm, load capacity: 16pF NTSC: 3.579545MHz PAL: 4.433619MHz Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same. – 77 – CXA3017R Application Circuit (NTSC/PAL, Y/color difference input) VDD of connected LCD panel +15.5V To LCD panel +12V 0.01µ 0.47µ 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 R OUT FB G G OUT GND2 FB B B OUT VCC3 PSIG GND3 FB PSIG RGT1 DWN VDD2 0.47µ FB R 49 VCC1 47µ 0.47µ VCC2 +3V 0.47µ SIG.CENTER 0.01µ 0.01µ 100k 100k 47µ DA OUT 32 50 VXO OUT VD 31 51 VXO IN EN2 30 52 APC EN1 29 0.1µ B-Y IN 53 B-Y IN XEN1 28 54 R-Y IN VCK1 27 55 C OUT VCK2 26 56 V REG VCK3 25 57 C IN VCK4 24 0.1µ R-Y IN To LCD panel 1µ 0.1µ VST 23 58 RESET 59 Y IN XVST 22 1µ 60 TEST2 HD 21 0.01µ 61 SYNC IN PCG 20 62 VSEP TC XPCG 19 63 F0 ADJ HCK1 18 64 GND1 HCK2 17 COMP/Y IN EXT R EXT G EXT B TRAP VDD1 LOAD DATA SCLK RPD TEST1 BLK CLR HST2 HST1 XHST1 VSS 0.33µ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 +3V To LCD panel From serial controller 47µ 10k 3.3µ 0.01µ 6800p Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same. – 78 – CXA3017R Example of Representative Characteristics HUE adjustment characteristics COLOR adjustment characteristics 10.00 45 0.00 15 Gain [dB] HUE adjustment angle [deg] 30 0 –15 –10.00 –20.00 –30 –30.00 –45 –60 0 32 64 96 128 160 DAC value 192 –40.00 224 256 0 7 13 6 12 5 11 4 10 3 9 2 8 1 7 6 Non-inverted black Inverted black –1 –2 0 32 64 96 128 160 DAC value 192 192 224 256 5 4 224 256 5.00 0.00 –5.00 –10.00 –15.00 –20.00 –25.00 0 SUB-BRIGHT adjustment characteristics 32 64 96 128 160 DAC value 192 224 256 Black limiter control characteristics 2 11 1.5 10 1 Limiter voltage [Vp-p] Voltage change with respect to G output [V] 96 128 160 DAC value 10.00 Output gain [dB] 14 0 64 CONTRAST adjustment characteristics 8 Inverted output black level [V] Non-inverted output black level [V] BRIGHT adjustment characteristics 32 0.5 0 –0.5 9 8 –1 7 –1.5 –2 0 32 64 96 128 160 DAC value 192 6 224 256 – 79 – 0 32 64 96 128 160 DAC value 192 224 256 CXA3017R Color difference balance adjustment 5.00 PSIG adjustment characteristics 10 B-Y output [dB] R-Y output [dB] 8 Output amplitude [Vp-p] 1.00 –1.00 –3.00 –5.00 6 4 2 0 32 64 96 128 160 192 DAC value 224 0 256 SUB-CONTRAST adjustment characteristics (γ1 = γ2 = 0) Non-inverted output black level [V] 2.00 Gain [dB] 1.00 0.00 –1.00 –2.00 –3.00 –4.00 0 32 64 96 128 160 192 DAC value 224 2.5 2 1.5 1 0.5 0 1 2 3 4 DAC value 5 6 7 – 80 – 96 128 160 192 DAC value 224 256 8 14 7 13 6 12 5 11 4 10 3 9 2 8 1 7 0 –2 256 DA OUT output adjustment characteristics Output voltage [V] 64 6 Non-inverted black Inverted black –1 3 0 32 USER-BRIGHT adjustment characteristics 4.00 3.00 0 0 32 64 96 128 160 192 DAC value 224 5 4 256 Inverted output black level [V] Gain [dB] 3.00 CXA3017R Sharpness characteristics (γ1 = γ2 = 0) Sharpness characteristics (γ1 = γ2 = 0) 10.00 20.00 (COMP, PAL, 009AK/AKB) 5.00 15.00 DAC = 0 DAC = 128 DAC = 255 0.00 DAC = 0 DAC = 128 DAC = 255 10.00 –5.00 Gain [dB] Gain [dB] (Y/C, 009AK/AKB) –10.00 5.00 0.00 –15.00 –5.00 –20.00 –10.00 –25.00 –30.00 0 2 4 6 8 Frequency [MHz] 10 –15.00 12 0 Sharpness characteristics (γ1 = γ2 = 0) 4 6 8 Frequency [MHz] 10 12 Sharpness characteristics (γ1 = γ2 = 0) 15.00 15.00 (Y/C, 005BK/BKB) 10.00 (COMP, PAL, 005BK/BKB) 10.00 DAC = 0 DAC = 128 DAC = 0 DAC = 128 DAC = 255 5.00 DAC = 255 0.00 Gain [dB] 5.00 Gain [dB] 2 0.00 –5.00 –5.00 –10.00 –15.00 –20.00 –10.00 –25.00 –15.00 0 2 4 6 8 Frequency [MHz] 10 –30.00 12 0 Sharpness characteristics (γ1 = γ2 = 0) 10 12 10.00 (COMP, NTSC, 005BK/BKB) 10.00 (COMP, NTSC, 009AK/AKB) 5.00 DAC = 0 DAC = 128 DAC = 255 5.00 DAC = 0 DAC = 128 DAC = 255 0.00 Gain [dB] 0.00 Gain [dB] 4 6 8 Frequency [MHz] Sharpness characteristics (γ1 = γ2 = 0) 15.00 –5.00 –10.00 –5.00 –10.00 –15.00 –15.00 –20.00 –20.00 –25.00 –25.00 –30.00 2 0 2 4 6 8 Frequency [MHz] 10 –30.00 12 – 81 – 0 2 4 6 8 Frequency [MHz] 10 12 CXA3017R Notes on Operation The CXA3017R contains digital circuits, so the set board pattern must be designed in consideration of undesired radiation, interference to analog circuits, etc. Care should also be taken for the following items when designing the pattern. • Make the IC power supply and GND patterns as plain as possible. In particular, GND and Vss should not be separated and should be connected to the same GND pattern as close to the pins as possible. • Connect the by-pass capacitors between the power supplies and GND as close to the pins as possible. • The trap connected to Pin 4 should be located as close to the pin as possible. Also, do not pass other signal lines close to this pin or the connected trap. • The wiring for the crystal and capacitor connected to Pins 50 and 51 should be as short as possible in order to prevent floating capacitance. Do not pass other signal lines close to these pins and wiring in order to prevent interference such as color unevenness. In addition, the APC pull-in characteristics vary significantly according to the characteristics of the used crystal and the wiring pattern, so be sure to thoroughly investigate these items before using the set. • The resistor connected to Pin 63 should be located as close to the pin as possible. Also, do not pass other signal lines close to this pin. The composite/Y signal and the external R-Y and B-Y signals are clamped at the inputs using the capacitors connected to the input pins, so these signals should be input at sufficiently low impedance. The C signal is received by the internal capacitor, so this signal should be input at low impedance after applying an appropriate external DC bias. The smoothing capacitor of the DC level control feedback circuit in the output block should have a leak current with a small absolute value and variance. A thorough study of the external buffer for PSIG output should be made before deciding on a circuit to ascertain that it sufficiently brings out the characteristics of the LCD panel. If this IC is used in connection with a circuit other than an LCD, it may cause that circuit to malfunction depending on the order in which power is supplied to the circuits. Thoroughly study the consequences of using this IC with other circuits before deciding on its use. Since this IC utilizes a C-MOS structure, it may latch up due to excessive noise or power surge greater than the maximum rating of the I/O pins, or due to interface with the power supply of another circuit, or due to the order in which power is supplied to circuits. Be sure to take measures against the possibility of latch up. Do not apply a voltage higher than VDD or lower than Vss to I/O pins. Do not use this IC under operating conditions other than those given. Absolute maximum rating values should not be exceeded even momentarily. Exceeding ratings may damage the device, leading to eventual breakdown. This IC has a MOS structure which is easily damaged by static electricity, so thorough measures should be taken to prevent electrostatic discharge. – 82 – CXA3017R Package Outline Unit: mm 64PIN LQFP (PLASTIC) 12.0 ± 0.2 10.0 ± 0.2 0.15 ± 0.05 48 0.1 33 49 32 A 64 17 1 1.25 16 + 0.08 0.18 – 0.03 0.5 1.7 MAX 0.1 M 0° to 10° 0.5 ± 0.2 (0.5) 0.1 ± 0.1 DETAIL A PACKAGE STRUCTURE PACKAGE MATERIAL EPOXY RESIN SONY CODE LQFP-64P-L061 LEAD TREATMENT SOLDER PLATING EIAJ CODE LQFP064-P-1010-AY LEAD MATERIAL 42 ALLOY PACKAGE WEIGHT 0.3g JEDEC CODE – 83 –