TI TS3DV621RUAR

TS3DV621
www.ti.com
SCDS330B – JANUARY 2012 – REVISED MAY 2012
12-Channel 1:2 MUX/DEMUX Switch with Integrated 4-Channel Sideband Signal Switching
for DVI/HDMI and DisplayPort (DP) Applications
Check for Samples: TS3DV621
FEATURES
APPLICATIONS
•
•
•
•
1
•
•
•
•
•
•
•
•
•
•
Switch Type: 2:1 or 1:2
Data Rate Compatibility
– HDMI v1.4
– DVI 1.0
– DisplayPort 1.1a
Bandwidth (-3dB) – 2.2 GHz
RON – 8 Ω
CON – 5.6 pF
VCC Range – 3.0V–3.6 V
I/O Voltage Range – 0–5 V
Bit-to-Bit Skew – 6 ps Typical
Propagation Delay – 40 ps Typical
Special Features
– Dedicated Enable Logic Supports Hi-Z
Mode
– IOFF Protection Prevents Current Leakage in
Powered Down State (VCC = 0 V)
ESD Performance
– 2kV Human Body Model (A114B, Class II)
– 1kV Charged Device Model (C101)
42-pin QFN Package (9 x 3.5 mm, 0.5 mm
Pitch)
DVI/HDMI/DisplayPort Signal Switching
General Purpose TMDS Signal Switching
spacer
DESCRIPTION
The TS3DV621 is a 1:2 or 2:1 bi-directional
multiplexer/demultiplexer with a integrated 4 sideband control channel (DDC, AUX, CEC, or HPD)
signal switcher. Operating from a 3 to 3.6V supply,
the TS3DV621 offers low and flat ON-state resistance
as well as low I/O capacitance, which allows the
TS3DV621 to achieve a typical bandwidth of 2.2
GHz. The device provides the high bandwidth
necessary for HDMI, DVI, and DisplayPort
applications. The TS3DV621 expands the high-speed
physical link interface from a single HDMI port to two
HDMI ports (A or B port) or vise-versa. It can also be
used for DisplayPort (DP) source/sink applications.
The integrated side-band control channels allow 5V
signals to pass through, making the TS3DV621
suitable for HDMI applications.
The most common application for the TS3DV621 is
the sink application. In this case, there are two
possible sources (DVD, set-top box, or game
console) that are routed to one receiver. The
unselected port is in the high-impedance mode, such
that the receiver receives information from only one
source. HDCP encryption is passed through the
switch for the receiver to decode.
ORDERING INFORMATION
TA
–40°C to 85°C
PACKAGE
QFN – RUA
ORDERABLE PART NUMBER
TOP-SIDE MARKING
TS3DV621RUAR
SD621
Tape and Reel
Primary HDMI Source
Sideband
Channel
Graphic
Display
Processor
Secondary Source
DDC & CEC or
Aux & HPD
Channel
Video Imaging
HDMI Receiver
Processor
Primary Source
DDC & CEC or
Aux & HPD
TS3DV621
Secondary HDMI or
DisplayPort Source
Data
Figure 1. Multiplexing Dual Video Input Source (HDMI/DisplayPort)
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Copyright © 2012, Texas Instruments Incorporated
TS3DV621
SCDS330B – JANUARY 2012 – REVISED MAY 2012
www.ti.com
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.
PIN FUNCTIONS
VCC
D0+B
D0+A
D0–B
D0–A
42
41
40
39
PIN
38
1
DESCRIPTION
NO.
VCC
1,17, 30
Power
Supply Voltage
GND
PowerPad
Ground
Ground
EN
8
I
Enable Input
SEL1
9
I
Select Input 1
SEL2
10
I
Select Input 2
D0+A
41
I/O
Port A, Lane 0, +ve signal
D0+
2
37
D1+B
D0–
3
36
D1–A
D1+
4
35
D1–B
D0-A
39
I/O
Port A, Lane 0, -ve signal
D1–
5
34
D2+A
D1+A
38
I/O
Port A, Lane 1, +ve signal
D2+
6
33
D2+B
D1-A
36
I/O
Port A, Lane 1, -ve signal
D2–
7
32
D2–A
D2+A
34
I/O
Port A, Lane 2, +ve signal
EN
8
31
D2–B
D2-A
32
I/O
Port A, Lane 2, -ve signal
GND
SEL1
9
30
VCC
D3+A
29
I/O
Port A, Lane 3, +ve signal
SEL2
10
29
D3+A
D3-A
27
I/O
Port A, Lane 3, -ve signal
42
I/O
Port B, Lane 0, +ve signal
D3+
11
28
D3+B
D0+B
D3–
12
27
D3–A
D0-B
40
I/O
Port B, Lane 0, -ve signal
D3–B
D1+B
37
I/O
Port B, Lane 1, +ve signal
35
I/O
Port B, Lane 1, -ve signal
13
AUX–
14
25
AUX+A
D1-B
HPD
15
24
AUX+B
D2+B
33
I/O
Port B, Lane 2, +ve signal
D2-B
31
I/O
Port B, Lane 2, -ve signal
D3+B
28
I/O
Port B, Lane 3, +ve signal
21
26
D3-B
26
I/O
Port B, Lane 3, -ve signal
HPDA
AUX+
D0+
2
I/O
Common Port, Lane 0, +ve signal
D0–
3
I/O
Common Port, Lane 0, -ve signal
D1+
4
I/O
Common Port, Lane 1, +ve signal
D1–
5
I/O
Common Port, Lane 1, -ve signal
D2+
6
I/O
Common Port, Lane 2, +ve signal
D2–
7
I/O
Common Port, Lane 2, -ve signal
D3+
11
I/O
Common Port, Lane 3, +ve signal
D3-
12
I/O
Common Port, Lane 3, -ve signal
AUX+A
25
I/O
+ve AUX Channel for Port A
AUX-A
23
I/O
-ve AUX Channel for Port A
HPDA
21
I/O
Port A HPD
CECA
19
I/O
Port A CEC
AUX+B
24
I/O
+ve AUX Channel for Port B
AUX-B
22
I/O
-ve AUX Channel for Port B
HPDB
20
I/O
Port B HPD
CECB
18
I/O
Port B CEC
AUX+
13
I/O
+ve AUX Channel for Common Port
AUX–
14
I/O
-ve AUX Channel for Common Port
HPD
15
I/O
HPD for Common Port
CEC
16
I/O
CEC for Common Port
23
HPDB
CECB
20
22
19
17
18
VCC
16
CECA
CEC
2
D1+A
I/O TYPE
NAME
AUX–A
AUX–V
Submit Documentation Feedback
Copyright © 2012, Texas Instruments Incorporated
Product Folder Link(s) :TS3DV621
TS3DV621
www.ti.com
SCDS330B – JANUARY 2012 – REVISED MAY 2012
LOGIC DIAGRAM
D0+
D0+A
D0–
D0–A
D1+
D1+A
D1–
D1–A
D2+
D2+A
D2–
D3+
D2–A
D3+A
D3–
D3–A
D0+B
D0–B
D1+B
D1–B
D2+B
D2–B
D3+B
D3–B
AUX+
AUX+A
AUX–
AUX–A
HPD
HPDA
CEC
CECA
AUX+B
AUX–B
HPDB
CECB
EN
Control Logic
SEL1
SEL2
Table 1. FUNCTION TABLE
(1)
EN
SEL1
SEL2
L
X
X
FUNCTION
H
L (1)
L (1)
Output port A = Input
Output Port B = High Impedance
H
H (1)
H (1)
Output Port A = High Impedance
Output Port B = Input
All I/O = High Impedance
Tie SEL1 and SEL2 together for easy output control
Submit Documentation Feedback
Copyright © 2012, Texas Instruments Incorporated
Product Folder Link(s) :TS3DV621
3
TS3DV621
SCDS330B – JANUARY 2012 – REVISED MAY 2012
www.ti.com
APPLICATION EXAMPLES
HDMI
Transmitter 1
D0+A
D0-A
D1+A
D1-A
D2+A
D2-A
D3+A
D3-A
DDC CLK _A
DDC DATA _A
CEC_A
HPD_A
D0+
D0D1+
D1D2+
D2D3+
D3DDC CLK
DDC DATA
CEC
HPD
TS3DV621
HDMI Switch
HDMI
Transmitter 1
D0+B
D0-B
D1+B
D1-B
D2+B
D2-B
D3+B
D3-B
DDC CLK _B
DDC DATA _B
CEC_B
HPD_B
Display
HDMI
HDMI Scalar/
(DLP, LCD, TV,
Receiver
Video Decoder
PDP, HDTV)
Figure 2. Dual HDMI Source Application
D0+
D0D1+
D1D2+
D2D3+
D3AUX/DDC
AUX/DDC
Cab_Detect
HPD
Dual Mode
DisplayPort
Source
TS3DV621
D0+
D0D1+
D1D2+
D2D3+
D3AUX+
AUXCab_Detect
HPD
Dual Mode
DisplayPort
Connector
DP/HDMI
Switch
D0+
D0D1+
D1D2+
D2D3+
D3DDC_CLK
DDC_DATA
HDMI
Connector
HPD
Figure 3. Dual-Mode DisplayPort Application
4
Submit Documentation Feedback
Copyright © 2012, Texas Instruments Incorporated
Product Folder Link(s) :TS3DV621
TS3DV621
www.ti.com
SCDS330B – JANUARY 2012 – REVISED MAY 2012
ABSOLUTE MAXIMUM RATINGS (1)
over operating free-air temperature range (unless otherwise noted)
MIN
MAX
UNIT
VCC
Supply voltage range
-0.5
4.6
V
VI/O
Analog voltage range (2) (3) (4)
All I/O
–0.5
7
V
VIN
Digital input voltage range (2) (3)
SEL1, SEL2
–0.5
7
II/OK
Analog port diode current
VI/O < 0
IIK
Digital input clamp current
VIN < 0
II/O
On-state switch current (5)
All I/O
IDD
IGND
Continuous current through VDD or GND
θJA
Package thermal impedance
Tstg
Storage temperature range
(1)
(2)
(3)
(4)
(5)
(6)
(6)
V
–50
mA
–50
mA
–128
128
mA
–100
100
mA
31.8
°C/W
150
°C
RUA package
–65
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings
only and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating
conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltages are with respect to ground, unless otherwise specified.
The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
VI and VO are used to denote specific conditions for VI/O.
II and IO are used to denote specific conditions for II/O.
The package thermal impedance is calculated in accordance with JESD 51-7
RECOMMENDED OPERATING CONDITIONS (1)
MIN
MAX
UNIT
VCC
Supply voltage
3
3.6
V
VIH
High-level control input voltage
SEL1, SEL2
2
5.5
V
VIL
Low-level control input voltage
SEL1, SEL2
0
0.8
V
VIN
Input voltage
SEL1, SEL2
0
5.5
V
VI/O
Input/Output voltage
0
5.5
V
TA
Operating free-air temperature
–40
85
°C
(1)
All unused control inputs of the device must be held at VDD or GND to ensure proper device operation. Refer to the TI application
report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
Submit Documentation Feedback
Copyright © 2012, Texas Instruments Incorporated
Product Folder Link(s) :TS3DV621
5
TS3DV621
SCDS330B – JANUARY 2012 – REVISED MAY 2012
www.ti.com
ELECTRICAL CHARACTERISTICS
TEST CONDITIONS (1)
PARAMETER
MIN TYP (2)
VIK
Digital input clamp voltage
SEL1,SEL2
VCC = 3.6 V, IIN = -18 mA
– 1. 2
RON
On-state resistance
All I/O
VCC = 3 V, 1.5 V ≤ VI/O ≤ VCC, II/O = –40 mA
RON(flat) (3)
On-state resistance flatness
All I/O
VCC = 3 V, VI/O = 1.5 V and VCC,
II/O = –40mA
1.5
ΔRON (4)
On-state resistance match
between channels
All I/O
VCC = 3 V, 1.5 V ≤ VI/O ≤ VCC, II/O = –40mA
0.4
IIH
Digital input high leakage
current
SEL1,SEL2
IIL
Digital input low leakage
current
IOFF
CIN
UNIT
V
8
Ω
12
Ω
1
Ω
VCC = 3.6 V , VIN = VDD
±1
µA
SEL1,SEL2
VCC = 3.6 V, VIN = GND
±1
µA
Leakage under power off
conditions
All outputs
VCC = 0 V, VI/O = 0 to 3.6 V, VIN = 0 to 5.5V
±1
µA
Digital input capacitance
SEL1,SEL2
f = 1 MHz, VIN = 0 V
3.2
pF
2
pF
pF
2.6
COFF
Switch OFF capacitance
All I/O
f = 1 MHz, VI/O = 0 V, Output is open,
Switch is OFF
CON
Switch ON capacitance
All I/O
f = 1 MHz, VI/O = 0 V, Output is open,
Switch is ON
5.6
ICC
VCC supply current
VCC = 3.6 V, II/O = 0, VIN = VDD or GND
300
(1)
(2)
(3)
(4)
MAX
– 0. 8
400
µA
VI, VO, II, and IO refer to I/O pins, VIN refers to the control inputs
All typical values are at VCC = 3.3V (unless otherwise noted), TA = 25°C
RON(FLAT) is the difference of RON in a given channel at specified voltages.
ΔRON is the difference of RON from center port to any other ports.
SWITCHING CHARACTERISTICS
Over recommended operation free-air temperature range, VCC = 3.3 V ± 0.3 V, RL = 200 Ω, CL = 4 pF (unless otherwise
noted) (see and )
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
tpd (2)
All I/O input side
All I/O output side
tPZH, tPZL
SEL1, SEL2
All I/O
2
7
ns
tPHZ, tPLZ
SEL1, SEL2
All I/O
2
5
ns
All I/O input side
All I/O output side
6
30
ps
6
30
ps
tsk(o)
(3)
MIN TYP (1) MAX
40
tsk(p) (4)
(1)
(2)
(3)
(4)
UNIT
ps
All typical values are at VCC = 3.3 V (unless otherwise noted), TA = 25°C.
The propagation delay is the calculated RC time constant of the typical ON-State resistance of the switch and the specified load
capacitance when driven by an ideal voltage source (zero output impedance).
Output skew between center port and any other channel.
Skew between opposite transitions of the same output |tPHL – tPLH|
DYNAMIC CHARACTERISTICS
Over recommended operation free-air temperature range, VCC = 3.3 V ± 0.3 V (unless otherwise noted)
PARAMETER
6
TYP (1)
UNIT
XTALK
RL = 50 Ω, f = 250 MHz (Figure 11)
–43
OIRR
RL = 50 Ω, f = 250 MHz (Figure 12)
–42
dB
RL = 50 Ω, Switch ON (Figure 10)
2.2
GHz
BW
(1)
TEST CONDITIONS
dB
All typical values are at VCC = 3.3 V (unless otherwise noted), TA = 25°C.
Submit Documentation Feedback
Copyright © 2012, Texas Instruments Incorporated
Product Folder Link(s) :TS3DV621
TS3DV621
www.ti.com
SCDS330B – JANUARY 2012 – REVISED MAY 2012
OPERATING CHARACTERISTICS
0
0
-20
-2
Attenuation - dB
Attenuation - dB
-40
-4
-6
-60
-80
-8
-100
-10
-120
-12
1.00E+05 1.00E+06 1.00E+07 1.00E+08 1.00E+09 1.00E+10
f - Frequency - Hz
-140
1.00E+05 1.00E+06 1.00E+07 1.00E+08 1.00E+09 1.00E+10
f - Frequency - Hz
Figure 4. Gain vs Frequency
Figure 5. Off Isolation vs Frequency
9.0
0
8.8
-20
8.6
8.4
RON - W
Attenuation - dB
-40
-60
8.2
-80
8.0
-100
7.8
-120
7.6
-140
1.00E+05 1.00E+06 1.00E+07 1.00E+08 1.00E+09 1.00E+10
f - Frequency - Hz
7.4
1.4
Figure 6. Crosstalk vs Frequency
1.9
2.9
2.4
VI - Input Voltage - V
Figure 7. RON vs VIN
Submit Documentation Feedback
Copyright © 2012, Texas Instruments Incorporated
Product Folder Link(s) :TS3DV621
3.4
7
TS3DV621
SCDS330B – JANUARY 2012 – REVISED MAY 2012
www.ti.com
PARAMETER MEASUREMENT INFORMATION
Enable and Disable Times
VDD
Input Generator
VIN
50 Ω
50 Ω
VG1
TEST CIRCUIT
DUT
2 × VDD
Input Generator
S1
RL
VO
VI
GND
50 Ω
CL
(see Note A)
50 Ω
VG2
RL
TEST
VDD
S1
RL
Vin
CL
V∆
t PLZ/t PZL
3.3 V ± 0.3 V
2 × VDD
200 Ω
GND
4 pF
0.3 V
t PHZ/t PZH
3.3 V ± 0.3 V
GND
200 Ω
VDD
4 pF
0.3 V
VSEL
VO
3.33 V
Output Control
(VIN)
1.65 V
1.65 V
0V
Output
Waveform 1
S1 at 2 x VCC
(see Note B)
t PZL
t PLZ
VOH
VDC/2
VOL + 0.3 V
t PZH
VO
Open
Output
Waveform 2
S1 at GND
(see Note B)
VOL
t PHZ
VCC/2
VOH - 0.3 V
VOH
VOL
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics:PRR ≤10 MHz, ZO = 50 Ω, tr ≤ 2.5 ns, tf ≤ 2.5 ns.
D. The outputs are measured one at a time, with one transition per measurement.
E. tPLZ and tPHZ are the same as tdis.
F. tPZL and tPZH are the same as ten.
Figure 8. Test Circuit and Voltage Waveforms
8
Submit Documentation Feedback
Copyright © 2012, Texas Instruments Incorporated
Product Folder Link(s) :TS3DV621
TS3DV621
www.ti.com
SCDS330B – JANUARY 2012 – REVISED MAY 2012
PARAMETER MEASUREMENT INFORMATION (continued)
Skew
VDD
Input Generator
VSEL
50 Ω
50 Ω
VG1
TEST CIRCUIT
DUT
2 × VDD
Input Generator
50 Ω
t sk(o)
t sk(p)
RL
S1
RL
Vin
CL
3.3 V ± 0.3 V
Open
200 Ω
VCC or GND
4 pF
3.3 V ± 0.3V
Open
200 Ω
VCC or GND
4 pF
VCC
3.5 V
2.5 V
1.5 V
Data In at
Ax or Ay
t PLHx
t PHLx
VOH
(VOH + VOL)/2
VOL
Data Out at
XB 1 or XB 2
t sk(o)
VO
CL
(see Note A)
50 Ω
TEST
VO
Open
GND
VG2
VI
S1
RL
VO
VI
Input
t sk(o)
VOH
(VOH + VOL)/2
VOL
Data Out at
YB 1 or YB 2
t PLHy
3.5 V
2.5 V
1.5 V
t PHLy
t PLH
VOH
(VOH + VOL)/2
VOL
Output
t sk(o) = t PLHy − tPLHx or t PHLy − tPHLx
VOLTAGE WAVEFORMS
OUTPUT SKEW (t sk(o))
t PHL
t sk(p) = t PHL − tPLH
VOLTAGE WAVEFORMS
PULSE SKEW [t sk(p)]
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤10 MHz, ZO = 50 Ω, tr ≤ 2.5 ns, tf ≤ 2.5 ns.
D. The outputs are measured one at a time, with one transition per measurement.
Figure 9. Test Circuit and Voltage Waveforms
Submit Documentation Feedback
Copyright © 2012, Texas Instruments Incorporated
Product Folder Link(s) :TS3DV621
9
TS3DV621
SCDS330B – JANUARY 2012 – REVISED MAY 2012
www.ti.com
PARAMETER MEASUREMENT INFORMATION (continued)
EXT TRIGGER
BIAS
VBIAS
Network Analyzer
(HP8753ES)
P1
P2
VCC
AX
BX
DUT
SEL
VSEL
Figure 10. Test Circuit for Frequency Response (BW)
Frequency response is measured at the output of the ON channel. For example, when VSEL = 0 and A0 is the
input, the output is measured at B0. All unused analog I/O ports are left open.
HP8753ES Setup
Average = 4
RBW = 3 kHz
VBIAS = 0.35 V
ST = 2 s
P1 = 0 dBM
10
Submit Documentation Feedback
Copyright © 2012, Texas Instruments Incorporated
Product Folder Link(s) :TS3DV621
TS3DV621
www.ti.com
SCDS330B – JANUARY 2012 – REVISED MAY 2012
PARAMETER MEASUREMENT INFORMATION (continued)
EXT TRIGGER
BIAS
VBIAS
Network Analyzer
(HP8753ES)
P1
P2
VCC
A0
BX
RL = 50 W
A1
BX
BX
BX
A2
BX
RL = 50 W
A3
BX
BX
SEL
BX
VSEL
A. CL includes probe and jig capacitance.
B. A 50 W termination resistor is needed to match the loading of the network analyzer.
Figure 11. Test Circuit for Crosstalk (XTALK)
Crosstalk is measured at the output of the nonadjacent ON channel. For example, when VSEL = 0 and A1 is the
input, the output is measured at A3. All unused analog input (A) ports are connected to GND, and output (B)
ports are left open.
HP8753ES Setup
Average = 4
RBW = 3 kHz
VBIAS = 0.35 V
ST = 2 s
P1 = 0 dBM
Submit Documentation Feedback
Copyright © 2012, Texas Instruments Incorporated
Product Folder Link(s) :TS3DV621
11
TS3DV621
SCDS330B – JANUARY 2012 – REVISED MAY 2012
www.ti.com
PARAMETER MEASUREMENT INFORMATION (continued)
EXT TRIGGER
BIAS
VBIAS
Network Analyzer
(HP8753ES)
P1
P2
VDD
A0
0B1
RL = 50 W
A1
1B1
DUT
0B2
1BX2
SEL
VSEL
A. CL includes probe and jig capacitance.
B. A 50 W termination resistor is needed to match the loading of the network analyzer.
Figure 12. Test Circuit for OFF Isolation (OIRR)
OFF isolation is measured at the output of the OFF channel. For example, when VSEL = GND and A1 is the input,
the output is measured at 1B2. All unused analog input (A) ports are connected to ground, and output (B) ports
are left open.
HP8753ES Setup
Average = 4
RBW = 3 kHz
VBIAS = 0.35 V
ST = 2 s
P1 = 0 dBM
12
Submit Documentation Feedback
Copyright © 2012, Texas Instruments Incorporated
Product Folder Link(s) :TS3DV621
TS3DV621
www.ti.com
SCDS330B – JANUARY 2012 – REVISED MAY 2012
REVISION HISTORY
Changes from Original (January 2012) to Revision A
Page
•
Changed CON value in FEATURES from 5.6 pF to 4 pF. ..................................................................................................... 1
•
Deleted LEVEL-SHIFTING REQUIREMENT FOR DUAL-MODE DP/HDMI APPLICATION section from document. ......... 4
•
Added CON TYP value to the ELECTRICAL CHARACTERISTICS table. ............................................................................. 6
Changes from Revision A (February 2012) to Revision B
Page
•
Changed CON value from 4 pF to 5.6 pF. ............................................................................................................................. 1
•
Changed CON TYP value to the ELECTRICAL CHARACTERISTICS table. ........................................................................ 6
Submit Documentation Feedback
Copyright © 2012, Texas Instruments Incorporated
Product Folder Link(s) :TS3DV621
13
PACKAGE OPTION ADDENDUM
www.ti.com
22-May-2012
PACKAGING INFORMATION
Orderable Device
TS3DV621RUAR
Status
(1)
ACTIVE
Package Type Package
Drawing
WQFN
RUA
Pins
Package Qty
42
3000
Eco Plan
(2)
Green (RoHS
& no Sb/Br)
Lead/
Ball Finish
MSL Peak Temp
(3)
Samples
(Requires Login)
CU NIPDAU Level-1-260C-UNLIM
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
Addendum-Page 1
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Mobile Processors
www.ti.com/omap
Wireless Connectivity
www.ti.com/wirelessconnectivity
TI E2E Community Home Page
e2e.ti.com
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated