ADPOW APT25GP90B

APT25GP90B
TYPICAL PERFORMANCE CURVES
APT25GP90B
900V
POWER MOS 7 IGBT
®
TO-247
®
The POWER MOS 7 IGBT is a new generation of high voltage power IGBTs.
Using Punch Through Technology this IGBT is ideal for many high frequency,
high voltage switching applications and has been optimized for high frequency
switchmode power supplies.
• Low Conduction Loss
• 100 kHz operation @ 600V, 21A
• Low Gate Charge
• 50 kHz operation @ 600V, 33A
• Ultrafast Tail Current shutoff
• SSOA Rated
MAXIMUM RATINGS
Symbol
G
C
G
E
All Ratings: TC = 25°C unless otherwise specified.
Parameter
Collector-Emitter Voltage
900
VGE
Gate-Emitter Voltage
±20
VGEM
Gate-Emitter Voltage Transient
±30
IC1
Continuous Collector Current @ TC = 25°C
72
IC2
Continuous Collector Current @ TC = 110°C
36
ICM
Pulsed Collector Current
PD
TJ,TSTG
TL
UNIT
APT25GP90B
VCES
SSOA
C
E
1
Volts
Amps
110
@ TC = 150°C
110A @ 900V
Switching Safe Operating Area @ TJ = 150°C
417
Total Power Dissipation
Watts
-55 to 150
Operating and Storage Junction Temperature Range
°C
300
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
STATIC ELECTRICAL CHARACTERISTICS
BVCES
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 250µA)
900
VGE(TH)
Gate Threshold Voltage
VCE(ON)
I CES
I GES
TYP
MAX
4.5
6
Collector-Emitter On Voltage (VGE = 15V, I C = 25A, Tj = 25°C)
3.2
3.9
Collector-Emitter On Voltage (VGE = 15V, I C = 25A, Tj = 125°C)
2.7
3
(VCE = VGE, I C = 1mA, Tj = 25°C)
Collector Cut-off Current (VCE = VCES, VGE = 0V, Tj = 25°C)
2
Collector Cut-off Current (VCE = VCES, VGE = 0V, Tj = 125°C)
250
2
Gate-Emitter Leakage Current (VGE = ±20V)
Volts
µA
1000
±100
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
UNIT
nA
7-2004
MIN
Rev D
Characteristic / Test Conditions
050-7477
Symbol
1
APT25GP90B
DYNAMIC CHARACTERISTICS
Symbol
Characteristic
Test Conditions
2100
VGE = 0V, VCE = 25V
220
Reverse Transfer Capacitance
f = 1 MHz
40
Gate-to-Emitter Plateau Voltage
Gate Charge
VGE = 15V
7.5
110
VCE = 450V
16
47
Input Capacitance
Coes
Output Capacitance
Cres
VGEP
Qge
TYP
Capacitance
Cies
Qg
MIN
Total Gate Charge
3
Gate-Emitter Charge
Qgc
Gate-Collector ("Miller ") Charge
I C = 25A
SSOA
Switching Safe Operating Area
TJ = 150°C, R G = 5Ω, VGE =
MAX
UNIT
pF
V
nC
110
A
15V, L = 100µH,VCE = 900V
td(on)
tr
td(off)
tf
Turn-on Delay Time
Current Rise Time
Eoff
Turn-off Switching Energy
td(on)
Turn-on Delay Time
Eon2
Eoff
13
VGE = 15V
95
16
I C = 25A
Current Fall Time
55
ns
95
R G = 5Ω
44
Turn-on Switching Energy (Diode)
µJ
370
Inductive Switching (125°C)
VCC = 600V
Turn-off Delay Time
Turn-off Switching Energy
740
6
Current Rise Time
Turn-on Switching Energy
TBD
TJ = +25°C
5
ns
55
R G = 5Ω
4
Turn-on Switching Energy (Diode)
Eon1
55
16
I C = 25A
Eon2
tf
VGE = 15V
Current Fall Time
Turn-on Switching Energy
td(off)
13
Turn-off Delay Time
Eon1
tr
Inductive Switching (25°C)
VCC = 600V
TBD
TJ = +125°C
1120
66
µJ
750
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
TYP
MAX
RΘJC
Junction to Case (IGBT)
.30
RΘJC
Junction to Case (DIODE)
N/A
Package Weight
5.90
WT
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. (See Figure 24.)
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
050-7477
Rev D
7-2004
APT Reserves the right to change, without notice, the specifications and information contained herein.
TYPICAL PERFORMANCE CURVES
TC = -50°C
40
TC = 25°C
20
FIGURE 1, Output Characteristics(VGE = 15V)
120
60
TJ = -55°C
40
TJ = 25°C
TJ = 125°C
20
0
6
IC = 25A
5
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
4
IC = 50A
3
IC = 12.5A
2
1
0
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
BVCES, COLLECTOR-TO-EMITTER BREAKDOWN
VOLTAGE (NORMALIZED)
6
1.10
1.05
1.00
0.95
0.90
-50
-25
0
25
50
75
100 125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Breakdown Voltage vs. Junction Temperature
40
TC = 25°C
20
0
1
2
3
4
5
6
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
IC = 25A
TJ = 25°C
14
VCE = 180V
12
VCE = 450V
10
8
VCE = 720V
6
4
2
0
2
4
6
8
10
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
0
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
VGE, GATE-TO-EMITTER VOLTAGE (V)
80
TC = 125°C
TC = -50°C
FIGURE 2, Output Characteristics (VGE = 10V)
16
0
20
40
60
80
100
GATE CHARGE (nC)
FIGURE 4, Gate Charge
120
4
3.5
IC = 50A
3
IC = 25A
2.5
2
IC = 12.5A
1.5
1
0.5
0
25
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
50
75
100
125
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
100
IC, DC COLLECTOR CURRENT(A)
IC, COLLECTOR CURRENT (A)
100
60
0
0
1
2
3
4
5
6
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
250µs PULSE TEST
<0.5 % DUTY CYCLE
80
80
60
40
7-2004
TC = 125°C
APT25GP90B
VGE = 10V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
20
0
-50
-25
0
25
50
75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
Rev D
IC, COLLECTOR CURRENT (A)
60
IC, COLLECTOR CURRENT (A)
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
80
0
100
050-7477
100
16
VGE = 15V
14
12
10
8
6
4
VCE = 600V
TJ = 25°C, TJ =125°C
RG = 5Ω
L = 100 µH
2
0
30
20
TJ = 125°C, VGE = 15V
80
60
TJ = 25°C, VGE = 15V
40
TJ = 25 or 125°C,VGE = 15V
20
0
10
20
30
40
50
60
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
2500
EOFF, TURN OFF ENERGY LOSS (µJ)
VCE = 600V
VGE = +15V
RG = 5 Ω
2500
TJ = 125°C,VGE =15V
2000
1500
1000
500
TJ = 25°C,VGE =15V
0
Eon2, 50A
3000
2500
Eoff, 50A
2000
Eon2, 25A
1500
1000
Eon2, 12.5A
Eoff, 25A
500
Eoff, 12.5A
0
TJ = 125°C, VGE = 15V
1500
1000
500
TJ = 25°C, VGE = 15V
3000
VCE = 600V
VGE = +15V
TJ = 125°C
3500
2000
10
20
30
40
50
60
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
SWITCHING ENERGY LOSSES (µJ)
4000
VCE = 600V
VGE = +15V
RG = 5 Ω
0
10
20
30
40
50
60
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
0
RG = 5Ω, L = 100µH, VCE = 600V
100
tf, FALL TIME (ns)
tr, RISE TIME (ns)
VCE = 600V
RG = 5Ω
L = 100 µH
120
RG = 5Ω, L = 100µH, VCE = 600V
3000
EON2, TURN ON ENERGY LOSS (µJ)
20
50
10
20
30
40
50
60
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
SWITCHING ENERGY LOSSES (µJ)
VGE =15V,TJ=25°C
40
0
0
7-2004
60
10
20
30
40
50
60
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
10
Rev D
VGE =15V,TJ=125°C
80
10
20
30
40
50
60
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
40
050-7477
APT25GP90B
100
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
18
VCE = 600V
VGE = +15V
RG = 5 Ω
2500
Eon2,50A
2000
Eoff, 50A
1500
Eon2,25A
1000
500 Eoff,25A
0
Eon2,12.5A
Eoff, 12.5A
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
P
IC, COLLECTOR CURRENT (A)
Cies
C, CAPACITANCE ( F)
APT25GP90B
120
5,000
1,000
500
Coes
100
50
Cres
100
80
60
40
20
10
0
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0
200
400
600
800
1000
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18, Minimim Switching Safe Operating Area
0.30
0.9
0.25
0.7
0.20
0.5
0.15
Note:
PDM
0.3
0.10
t1
t2
SINGLE PULSE
0.1
Peak TJ = PDM x ZθJC + TC
0.05
10-5
10-4
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
RC MODEL
270
0.00852F
Power
(watts)
0.168
0.154F
Case temperature(°C)
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
FMAX, OPERATING FREQUENCY (kHz)
Junction
temp (°C)
0.131
1.0
100
Fmax = min(f max1 , f max 2 )
50
10
TJ = 125°C
TC = 75°C
D = 50 %
VCE = 600V
RG = 5 Ω
f max1 =
0.05
t d (on) + t r + t d(off ) + t f
f max 2 =
Pdiss − Pcond
E on 2 + E off
Pdiss =
TJ − TC
R θJC
5
15
25
35
45
55
65
75
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
7-2004
0
Duty Factor D = t1/t2
Rev D
0.05
050-7477
ZθJC, THERMAL IMPEDANCE (°C/W)
0.35
APT25GP90B
Gate Voltage
APT15DF100
10%
TJ = 125°C
td(on)
IC
V CC
Drain Current
tr
V CE
90%
5%
5%
10%
DrainVoltage
A
Switching Energy
D.U.T.
Figure 21, Inductive Switching Test Circuit
Figure 22, Turn-on Switching Waveforms and Definitions
VTEST
*DRIVER SAME TYPE AS D.U.T.
90%
Gate Voltage
TJ = 125°C
A
td(off)
V CE
DrainVoltage
90%
IC
100uH
tf
10%
V CLAMP
0
Drain Current
A
Switching Energy
D.U.T.
DRIVER*
Figure 23, Turn-off Switching Waveforms and Definitions
Figure 24, EON1 Test Circuit
T0-247 Package Outline
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
15.49 (.610)
16.26 (.640)
5.38 (.212)
6.20 (.244)
6.15 (.242) BSC
Collector
20.80 (.819)
21.46 (.845)
3.50 (.138)
3.81 (.150)
4.50 (.177) Max.
Rev D
7-2004
0.40 (.016)
0.79 (.031)
050-7477
B
19.81 (.780)
20.32 (.800)
1.01 (.040)
1.40 (.055)
Fmax =2.87
min(f
(.113)
max1 , f max 2 )
3.12 (.123)
0.05
f max1 =1.65 (.065)
t d (on
2.13
(.084)
) + t r + t d(off ) + t f
Pdiss − Pcond
Gate
Collector
E +E
f max 2 =
on 2
Emitter
2.21 (.087)
2.59 (.102)
Pdiss
5.45 (.215) BSC
2-Plcs.
off
T − TC
= J
R θJC
Dimensions in Millimeters and (Inches)
APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.