APT25GP90B TYPICAL PERFORMANCE CURVES APT25GP90B 900V POWER MOS 7 IGBT ® TO-247 ® The POWER MOS 7 IGBT is a new generation of high voltage power IGBTs. Using Punch Through Technology this IGBT is ideal for many high frequency, high voltage switching applications and has been optimized for high frequency switchmode power supplies. • Low Conduction Loss • 100 kHz operation @ 600V, 21A • Low Gate Charge • 50 kHz operation @ 600V, 33A • Ultrafast Tail Current shutoff • SSOA Rated MAXIMUM RATINGS Symbol G C G E All Ratings: TC = 25°C unless otherwise specified. Parameter Collector-Emitter Voltage 900 VGE Gate-Emitter Voltage ±20 VGEM Gate-Emitter Voltage Transient ±30 IC1 Continuous Collector Current @ TC = 25°C 72 IC2 Continuous Collector Current @ TC = 110°C 36 ICM Pulsed Collector Current PD TJ,TSTG TL UNIT APT25GP90B VCES SSOA C E 1 Volts Amps 110 @ TC = 150°C 110A @ 900V Switching Safe Operating Area @ TJ = 150°C 417 Total Power Dissipation Watts -55 to 150 Operating and Storage Junction Temperature Range °C 300 Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. STATIC ELECTRICAL CHARACTERISTICS BVCES Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 250µA) 900 VGE(TH) Gate Threshold Voltage VCE(ON) I CES I GES TYP MAX 4.5 6 Collector-Emitter On Voltage (VGE = 15V, I C = 25A, Tj = 25°C) 3.2 3.9 Collector-Emitter On Voltage (VGE = 15V, I C = 25A, Tj = 125°C) 2.7 3 (VCE = VGE, I C = 1mA, Tj = 25°C) Collector Cut-off Current (VCE = VCES, VGE = 0V, Tj = 25°C) 2 Collector Cut-off Current (VCE = VCES, VGE = 0V, Tj = 125°C) 250 2 Gate-Emitter Leakage Current (VGE = ±20V) Volts µA 1000 ±100 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. APT Website - http://www.advancedpower.com UNIT nA 7-2004 MIN Rev D Characteristic / Test Conditions 050-7477 Symbol 1 APT25GP90B DYNAMIC CHARACTERISTICS Symbol Characteristic Test Conditions 2100 VGE = 0V, VCE = 25V 220 Reverse Transfer Capacitance f = 1 MHz 40 Gate-to-Emitter Plateau Voltage Gate Charge VGE = 15V 7.5 110 VCE = 450V 16 47 Input Capacitance Coes Output Capacitance Cres VGEP Qge TYP Capacitance Cies Qg MIN Total Gate Charge 3 Gate-Emitter Charge Qgc Gate-Collector ("Miller ") Charge I C = 25A SSOA Switching Safe Operating Area TJ = 150°C, R G = 5Ω, VGE = MAX UNIT pF V nC 110 A 15V, L = 100µH,VCE = 900V td(on) tr td(off) tf Turn-on Delay Time Current Rise Time Eoff Turn-off Switching Energy td(on) Turn-on Delay Time Eon2 Eoff 13 VGE = 15V 95 16 I C = 25A Current Fall Time 55 ns 95 R G = 5Ω 44 Turn-on Switching Energy (Diode) µJ 370 Inductive Switching (125°C) VCC = 600V Turn-off Delay Time Turn-off Switching Energy 740 6 Current Rise Time Turn-on Switching Energy TBD TJ = +25°C 5 ns 55 R G = 5Ω 4 Turn-on Switching Energy (Diode) Eon1 55 16 I C = 25A Eon2 tf VGE = 15V Current Fall Time Turn-on Switching Energy td(off) 13 Turn-off Delay Time Eon1 tr Inductive Switching (25°C) VCC = 600V TBD TJ = +125°C 1120 66 µJ 750 THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic MIN TYP MAX RΘJC Junction to Case (IGBT) .30 RΘJC Junction to Case (DIODE) N/A Package Weight 5.90 WT UNIT °C/W gm 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. (See Figure 24.) 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) 050-7477 Rev D 7-2004 APT Reserves the right to change, without notice, the specifications and information contained herein. TYPICAL PERFORMANCE CURVES TC = -50°C 40 TC = 25°C 20 FIGURE 1, Output Characteristics(VGE = 15V) 120 60 TJ = -55°C 40 TJ = 25°C TJ = 125°C 20 0 6 IC = 25A 5 TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE 4 IC = 50A 3 IC = 12.5A 2 1 0 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage BVCES, COLLECTOR-TO-EMITTER BREAKDOWN VOLTAGE (NORMALIZED) 6 1.10 1.05 1.00 0.95 0.90 -50 -25 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Breakdown Voltage vs. Junction Temperature 40 TC = 25°C 20 0 1 2 3 4 5 6 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) IC = 25A TJ = 25°C 14 VCE = 180V 12 VCE = 450V 10 8 VCE = 720V 6 4 2 0 2 4 6 8 10 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 0 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) VGE, GATE-TO-EMITTER VOLTAGE (V) 80 TC = 125°C TC = -50°C FIGURE 2, Output Characteristics (VGE = 10V) 16 0 20 40 60 80 100 GATE CHARGE (nC) FIGURE 4, Gate Charge 120 4 3.5 IC = 50A 3 IC = 25A 2.5 2 IC = 12.5A 1.5 1 0.5 0 25 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 50 75 100 125 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 100 IC, DC COLLECTOR CURRENT(A) IC, COLLECTOR CURRENT (A) 100 60 0 0 1 2 3 4 5 6 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) 250µs PULSE TEST <0.5 % DUTY CYCLE 80 80 60 40 7-2004 TC = 125°C APT25GP90B VGE = 10V. 250µs PULSE TEST <0.5 % DUTY CYCLE 20 0 -50 -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature Rev D IC, COLLECTOR CURRENT (A) 60 IC, COLLECTOR CURRENT (A) VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 80 0 100 050-7477 100 16 VGE = 15V 14 12 10 8 6 4 VCE = 600V TJ = 25°C, TJ =125°C RG = 5Ω L = 100 µH 2 0 30 20 TJ = 125°C, VGE = 15V 80 60 TJ = 25°C, VGE = 15V 40 TJ = 25 or 125°C,VGE = 15V 20 0 10 20 30 40 50 60 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current 2500 EOFF, TURN OFF ENERGY LOSS (µJ) VCE = 600V VGE = +15V RG = 5 Ω 2500 TJ = 125°C,VGE =15V 2000 1500 1000 500 TJ = 25°C,VGE =15V 0 Eon2, 50A 3000 2500 Eoff, 50A 2000 Eon2, 25A 1500 1000 Eon2, 12.5A Eoff, 25A 500 Eoff, 12.5A 0 TJ = 125°C, VGE = 15V 1500 1000 500 TJ = 25°C, VGE = 15V 3000 VCE = 600V VGE = +15V TJ = 125°C 3500 2000 10 20 30 40 50 60 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance SWITCHING ENERGY LOSSES (µJ) 4000 VCE = 600V VGE = +15V RG = 5 Ω 0 10 20 30 40 50 60 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 0 RG = 5Ω, L = 100µH, VCE = 600V 100 tf, FALL TIME (ns) tr, RISE TIME (ns) VCE = 600V RG = 5Ω L = 100 µH 120 RG = 5Ω, L = 100µH, VCE = 600V 3000 EON2, TURN ON ENERGY LOSS (µJ) 20 50 10 20 30 40 50 60 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current SWITCHING ENERGY LOSSES (µJ) VGE =15V,TJ=25°C 40 0 0 7-2004 60 10 20 30 40 50 60 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 10 Rev D VGE =15V,TJ=125°C 80 10 20 30 40 50 60 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 40 050-7477 APT25GP90B 100 td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 18 VCE = 600V VGE = +15V RG = 5 Ω 2500 Eon2,50A 2000 Eoff, 50A 1500 Eon2,25A 1000 500 Eoff,25A 0 Eon2,12.5A Eoff, 12.5A 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature TYPICAL PERFORMANCE CURVES P IC, COLLECTOR CURRENT (A) Cies C, CAPACITANCE ( F) APT25GP90B 120 5,000 1,000 500 Coes 100 50 Cres 100 80 60 40 20 10 0 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 0 200 400 600 800 1000 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18, Minimim Switching Safe Operating Area 0.30 0.9 0.25 0.7 0.20 0.5 0.15 Note: PDM 0.3 0.10 t1 t2 SINGLE PULSE 0.1 Peak TJ = PDM x ZθJC + TC 0.05 10-5 10-4 10-3 10-2 10-1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration RC MODEL 270 0.00852F Power (watts) 0.168 0.154F Case temperature(°C) FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL FMAX, OPERATING FREQUENCY (kHz) Junction temp (°C) 0.131 1.0 100 Fmax = min(f max1 , f max 2 ) 50 10 TJ = 125°C TC = 75°C D = 50 % VCE = 600V RG = 5 Ω f max1 = 0.05 t d (on) + t r + t d(off ) + t f f max 2 = Pdiss − Pcond E on 2 + E off Pdiss = TJ − TC R θJC 5 15 25 35 45 55 65 75 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current 7-2004 0 Duty Factor D = t1/t2 Rev D 0.05 050-7477 ZθJC, THERMAL IMPEDANCE (°C/W) 0.35 APT25GP90B Gate Voltage APT15DF100 10% TJ = 125°C td(on) IC V CC Drain Current tr V CE 90% 5% 5% 10% DrainVoltage A Switching Energy D.U.T. Figure 21, Inductive Switching Test Circuit Figure 22, Turn-on Switching Waveforms and Definitions VTEST *DRIVER SAME TYPE AS D.U.T. 90% Gate Voltage TJ = 125°C A td(off) V CE DrainVoltage 90% IC 100uH tf 10% V CLAMP 0 Drain Current A Switching Energy D.U.T. DRIVER* Figure 23, Turn-off Switching Waveforms and Definitions Figure 24, EON1 Test Circuit T0-247 Package Outline 4.69 (.185) 5.31 (.209) 1.49 (.059) 2.49 (.098) 15.49 (.610) 16.26 (.640) 5.38 (.212) 6.20 (.244) 6.15 (.242) BSC Collector 20.80 (.819) 21.46 (.845) 3.50 (.138) 3.81 (.150) 4.50 (.177) Max. Rev D 7-2004 0.40 (.016) 0.79 (.031) 050-7477 B 19.81 (.780) 20.32 (.800) 1.01 (.040) 1.40 (.055) Fmax =2.87 min(f (.113) max1 , f max 2 ) 3.12 (.123) 0.05 f max1 =1.65 (.065) t d (on 2.13 (.084) ) + t r + t d(off ) + t f Pdiss − Pcond Gate Collector E +E f max 2 = on 2 Emitter 2.21 (.087) 2.59 (.102) Pdiss 5.45 (.215) BSC 2-Plcs. off T − TC = J R θJC Dimensions in Millimeters and (Inches) APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.