ADPOW APT40GP60J

APT40GP60J
600V
®
POWER MOS 7 IGBT
E
E
The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs.
Using Punch Through Technology this IGBT is ideal for many high frequency,
high voltage switching applications and has been optimized for high frequency
switchmode power supplies.
27
2
T-
C
G
SO
C
"UL Recognized"
• Low Conduction Loss
• 100 kHz operation @ 400V, 25A
• Low Gate Charge
• 200 kHz operation @ 400V, 16A
• Ultrafast Tail Current shutoff
• SSOA rated
MAXIMUM RATINGS
Symbol
ISOTOP ®
G
E
All Ratings: TC = 25°C unless otherwise specified.
Parameter
VCES
Collector-Emitter Voltage
600
VGE
Gate-Emitter Voltage
±20
Gate-Emitter Voltage Transient
±30
VGEM
I C1
Continuous Collector Current @ TC = 25°C
86
I C2
Continuous Collector Current @ TC = 110°C
40
I CM
Pulsed Collector Current
SSOA
PD
TJ,TSTG
TL
UNIT
APT40GP60J
1
Volts
Amps
160
@ TC = 25°C
160A @ 600V
Switching Safe Operating Area @ TJ = 150°C
284
Total Power Dissipation
Watts
-55 to 150
Operating and Storage Junction Temperature Range
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
°C
300
STATIC ELECTRICAL CHARACTERISTICS
BVCES
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 250µA)
600
VGE(TH)
Gate Threshold Voltage
VCE(ON)
I CES
I GES
TYP
MAX
4.5
6
Collector-Emitter On Voltage (VGE = 15V, I C = 40A, Tj = 25°C)
2.2
2.7
Collector-Emitter On Voltage (VGE = 15V, I C = 40A, Tj = 125°C)
2.1
3
(VCE = VGE, I C = 1mA, Tj = 25°C)
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C)
2
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C)
250
2
Gate-Emitter Leakage Current (VGE = ±20V)
UNIT
Volts
µA
2500
±100
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
nA
4-2003
MIN
Rev C
Characteristic / Test Conditions
APT Website - http://www.advancedpower.com
050-7410
Symbol
APT40GP60J
DYNAMIC CHARACTERISTICS
Symbol
Characteristic
Test Conditions
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
Qg
Qge
Qgc
SSOA
Total Gate Charge
3
Gate-Emitter Charge
TYP
Capacitance
4610
VGE = 0V, VCE = 25V
395
f = 1 MHz
25
Gate Charge
VGE = 15V
7.5
135
VCE = 300V
30
I C = 40A
40
Gate-Collector ("Miller ") Charge
Switching SOA
MIN
TJ = 150°C, R G = 5Ω, VGE =
MAX
UNIT
pF
V
nC
160
A
15V, L = 100µH,VCE = 600V
td(on)
tr
td(off)
tf
Turn-on Delay Time
Current Rise Time
Eoff
Turn-off Switching Energy
td(on)
Turn-on Delay Time
Eon2
Eoff
I C = 40A
45
4
Turn-on Switching Energy (Diode) 5
Eon1
64
352
20
VGE = 15V
89
I C = 40A
69
Current Fall Time
5
µJ
450
29
R G = 5Ω
4
Turn-on Switching Energy (Diode)
Turn-off Switching Energy
644
Inductive Switching (125°C)
VCC(Peak) = 400V
Turn-off Delay Time
ns
385
TJ = +25°C
6
Current Rise Time
Turn-on Switching Energy
29
R G = 5Ω
Eon2
tf
VGE = 15V
Current Fall Time
Turn-on Switching Energy
td(off)
20
Turn-off Delay Time
Eon1
tr
Inductive Switching (25°C)
VCC(Peak) = 400V
ns
385
TJ = +125°C
972
6
µJ
615
950
TYP
MAX
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
RΘJC
Junction to Case (IGBT)
.44
RΘJC
Junction to Case (DIODE)
N/A
Package Weight
29.2
WT
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. (See Figure24.)
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. A Combi device is used for the clamping diode as shown in the Eon2 test circuit. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance wtih JEDEC standard JESD24-1. (See Figures 21, 23.)
050-7410
Rev C
4-2003
APT Reserves the right to change, without notice, the specifications and information contained herein.
TYPICAL PERFORMANCE CURVES
80
60
50
40
30
TC=25°C
20
TC=125°C
FIGURE 1, Output Characteristics(VGE = 15V)
250
150
TJ = -55°C
100
TJ = 25°C
50
TJ = 125°C
30
20
TC=25°C
TC=125°C
0
0.5
1
1.5
2
2.5
3
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
14
IC = 40A
TJ = 25°C
VCE=120V
12
VCE=300V
10
8
VCE=480V
6
4
2
0
1
2 3
4 5 6
7 8 9 10
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
2.5
IC= 40A
2
IC= 20A
1.5
1
0.5
6
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
1.05
1.0
0.95
0.9
0.85
0.8
-50
-25
0
25 50
75 100 125 150
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Breakdown Voltage vs. Junction Temperature
140
IC= 80A
2.5
IC= 40A
2
IC= 20A
1.5
1
0.5
0
-50
-25
120
IC, DC COLLECTOR CURRENT(A)
1.10
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
120
0
25
50
75
100 125
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
1.2
1.15
3
40
60
80
100
GATE CHARGE (nC)
FIGURE 4, Gate Charge
100
80
60
40
4-2003
IC= 80A
3.5
20
20
0
-50
-25
0
25
50
75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
Rev C
3
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
0
050-7410
0
3.5
BVCES, COLLECTOR-TO-EMITTER BREAKDOWN
VOLTAGE (NORMALIZED)
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
VGE, GATE-TO-EMITTER VOLTAGE (V)
200
0
40
FIGURE 2, Output Characteristics (VGE = 10V)
16
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
IC, COLLECTOR CURRENT (A)
250µs PULSE TEST
<0.5 % DUTY CYCLE
0
50
0
0
0.5
1
1.5
2
2.5
3
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
TC=-55°C
60
10
10
0
VGE = 10V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
70
TC=-55°C
IC, COLLECTOR CURRENT (A)
IC, COLLECTOR CURRENT (A)
70
APT40GP60J
80
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
APT40GP60J
100
35
VGE= 10V
30
25
VGE= 15V
20
15
10
VCE = 400V
TJ = 25°C, TJ =125°C
RG = 5Ω
L = 100 µH
5
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
40
0
20
40
60
80
100
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
tf, FALL TIME (ns)
tr, RISE TIME (ns)
80
60
40
RG =5Ω, L = 100µH, VCE = 400V
RG =5Ω, L = 100µH, VCE = 400V
VCE = 400V
VGE = +15V
RG = 5 Ω
60
40
0
0
20
40
60
80
100
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
2000
TJ =125°C, 15V
TJ =125°C,10V
2000
1500 TJ = 25°C, 10V
1000
500
TJ = 25°C, 15V
TJ = 25°C, VGE = 10V or 15V
20
TJ = 25 or 125°C,VGE = 15V
EOFF, TURN OFF ENERGY LOSS (µJ)
EON1, TURN ON ENERGY LOSS (µJ)
VCE = 400V
RG = 5Ω
L = 100 µH
TJ = 125°C, VGE = 10V or 15V
0
20
40
60
80
100
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
0
VCE = 400V
VGE = +15V
RG = 5 Ω
TJ = 125°C, VGE = 10V or 15V
1500
1000
500
TJ = 25°C, VGE = 10V or 15V
0
0
20
40
60
80
100
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
0
20
40
60
80
100
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
4000
3000
3500
3000
2500
Eoff 80A
2000
Eon2 40A
1500
1000
Eon2 20A
Eoff 40A
500
Eoff20A
0
0
VCE = 400V
VGE = +15V
RG = 5 Ω
Eon2 80A
VCE = 400V
TJ = 125°C
VGE = +15V
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
SWITCHING ENERGY LOSSES (µJ)
SWITCHING ENERGY LOSSES (µJ)
20
80
0
4-2003
VGE =10V,TJ=25°C
40
TJ = 25 or 125°C,VGE = 10V
20
Rev C
60
100
100
050-7410
VGE =15V,TJ=25°C
0
20
40
60
80
100
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
120
2500
VGE =10V,TJ=125°C
80
0
0
3000
VGE =15V,TJ=125°C
2500
Eon2 80A
2000
1500
Eoff 80A
Eon2 40A
1000
500
0
Eoff 40A
Eon2 20A
Eoff 20A
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
APT40GP60J
10,000
180
Cies
160
140
1,000
500
IC, COLLECTOR CURRENT (A)
P
C, CAPACITANCE ( F)
5,000
Coes
100
50
Cres
10
0
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
120
100
80
60
40
20
0
0
100 200 300 400 500 600 700
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18, Minimim Switching Safe Operating Area
0.9
0.40
0.35
0.7
0.30
0.25
0.5
Note:
0.20
0.15
PDM
0.3
t2
0.10
Duty Factor D = t1/t2
0.1
Peak TJ = PDM x ZθJC + TC
0.05
SINGLE PULSE
10-4
10-3
10-2
10-1
1.0
RECTANGULAR PULSE DURATION (SECONDS)
FIGURE 1, MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs PULSE DURATION
210
Junction
temp. ( ”C)
0.109
0.0107F
0.180
0.149F
0.151
1.22F
Case temperature
FIGURE 19B, TRANSIENT THERMAL IMPEDANCE MODEL
FMAX, OPERATING FREQUENCY (kHz)
RC MODEL
Power
(Watts)
10
100
Fmax = min(f max1 , f max 2 )
50
TJ = 125°C
TC = 75°C
D = 50 %
VCE = 400V
RG = 5 Ω
10
f max1 =
0.05
t d (on ) + t r + t d(off ) + t f
f max 2 =
Pdiss − Pcond
E on 2 + E off
Pdiss =
TJ − TC
R θJC
10
20
30
40
50
60
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector
Current
4-2003
10-5
Rev C
0.05
0
t1
050-7410
Z JC, THERMAL IMPEDANCE (°C/W)
θ
0.45
APT40GP60J
Gate Voltage
APT30DF60
10%
TJ = 125 C
IC
V CC
td(on)
V CE
tr
Collector Current
90%
A
5%
5%
Collector Voltage
10%
D.U.T.
Switching Energy
Figure 21, Inductive Switching Test Circuit
Figure 22, Turn-on Switching Waveforms and Definitions
90%
VTEST
Gate Voltage
*DRIVER SAME TYPE AS D.U.T.
TJ = 125 C
td(off)
A
Collector Voltage
V CE
90%
IC
100uH
10%
tf
0
V CLAMP
B
Collector Current
A
Switching Energy
DRIVER*
Figure 23, Turn-off Switching Waveforms and Definitions
Figure 24, EON1 Test Circuit
SOT-227 (ISOTOP®) Package Outline
11.8 (.463)
12.2 (.480)
31.5 (1.240)
31.7 (1.248)
7.8 (.307)
8.2 (.322)
r = 4.0 (.157)
(2 places)
4-2003
14.9 (.587)
15.1 (.594)
Rev C
25.2 (0.992)
0.75 (.030) 12.6 (.496) 25.4 (1.000)
0.85 (.033) 12.8 (.504)
4.0 (.157)
4.2 (.165)
(2 places)
3.3 (.129)
3.6 (.143)
050-7410
8.9 (.350)
9.6 (.378)
Hex Nut M4
(4 places)
W=4.1 (.161)
W=4.3 (.169)
H=4.8 (.187)
H=4.9 (.193)
(4 places)
1.95 (.077)
2.14 (.084)
* Emitter
30.1 (1.185)
30.3 (1.193)
Collector
* Emitter terminals are shorted
internally. Current handling
capability is equal for either
Source terminal.
38.0 (1.496)
38.2 (1.504)
* Emitter
Gate
Dimensions in Millimeters and (Inches)
APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.
D.U.T.