APT40GP60J 600V ® POWER MOS 7 IGBT E E The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs. Using Punch Through Technology this IGBT is ideal for many high frequency, high voltage switching applications and has been optimized for high frequency switchmode power supplies. 27 2 T- C G SO C "UL Recognized" • Low Conduction Loss • 100 kHz operation @ 400V, 25A • Low Gate Charge • 200 kHz operation @ 400V, 16A • Ultrafast Tail Current shutoff • SSOA rated MAXIMUM RATINGS Symbol ISOTOP ® G E All Ratings: TC = 25°C unless otherwise specified. Parameter VCES Collector-Emitter Voltage 600 VGE Gate-Emitter Voltage ±20 Gate-Emitter Voltage Transient ±30 VGEM I C1 Continuous Collector Current @ TC = 25°C 86 I C2 Continuous Collector Current @ TC = 110°C 40 I CM Pulsed Collector Current SSOA PD TJ,TSTG TL UNIT APT40GP60J 1 Volts Amps 160 @ TC = 25°C 160A @ 600V Switching Safe Operating Area @ TJ = 150°C 284 Total Power Dissipation Watts -55 to 150 Operating and Storage Junction Temperature Range Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. °C 300 STATIC ELECTRICAL CHARACTERISTICS BVCES Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 250µA) 600 VGE(TH) Gate Threshold Voltage VCE(ON) I CES I GES TYP MAX 4.5 6 Collector-Emitter On Voltage (VGE = 15V, I C = 40A, Tj = 25°C) 2.2 2.7 Collector-Emitter On Voltage (VGE = 15V, I C = 40A, Tj = 125°C) 2.1 3 (VCE = VGE, I C = 1mA, Tj = 25°C) Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C) 2 Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C) 250 2 Gate-Emitter Leakage Current (VGE = ±20V) UNIT Volts µA 2500 ±100 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. nA 4-2003 MIN Rev C Characteristic / Test Conditions APT Website - http://www.advancedpower.com 050-7410 Symbol APT40GP60J DYNAMIC CHARACTERISTICS Symbol Characteristic Test Conditions Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance VGEP Gate-to-Emitter Plateau Voltage Qg Qge Qgc SSOA Total Gate Charge 3 Gate-Emitter Charge TYP Capacitance 4610 VGE = 0V, VCE = 25V 395 f = 1 MHz 25 Gate Charge VGE = 15V 7.5 135 VCE = 300V 30 I C = 40A 40 Gate-Collector ("Miller ") Charge Switching SOA MIN TJ = 150°C, R G = 5Ω, VGE = MAX UNIT pF V nC 160 A 15V, L = 100µH,VCE = 600V td(on) tr td(off) tf Turn-on Delay Time Current Rise Time Eoff Turn-off Switching Energy td(on) Turn-on Delay Time Eon2 Eoff I C = 40A 45 4 Turn-on Switching Energy (Diode) 5 Eon1 64 352 20 VGE = 15V 89 I C = 40A 69 Current Fall Time 5 µJ 450 29 R G = 5Ω 4 Turn-on Switching Energy (Diode) Turn-off Switching Energy 644 Inductive Switching (125°C) VCC(Peak) = 400V Turn-off Delay Time ns 385 TJ = +25°C 6 Current Rise Time Turn-on Switching Energy 29 R G = 5Ω Eon2 tf VGE = 15V Current Fall Time Turn-on Switching Energy td(off) 20 Turn-off Delay Time Eon1 tr Inductive Switching (25°C) VCC(Peak) = 400V ns 385 TJ = +125°C 972 6 µJ 615 950 TYP MAX THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic MIN RΘJC Junction to Case (IGBT) .44 RΘJC Junction to Case (DIODE) N/A Package Weight 29.2 WT UNIT °C/W gm 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. (See Figure24.) 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. A Combi device is used for the clamping diode as shown in the Eon2 test circuit. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance wtih JEDEC standard JESD24-1. (See Figures 21, 23.) 050-7410 Rev C 4-2003 APT Reserves the right to change, without notice, the specifications and information contained herein. TYPICAL PERFORMANCE CURVES 80 60 50 40 30 TC=25°C 20 TC=125°C FIGURE 1, Output Characteristics(VGE = 15V) 250 150 TJ = -55°C 100 TJ = 25°C 50 TJ = 125°C 30 20 TC=25°C TC=125°C 0 0.5 1 1.5 2 2.5 3 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) 14 IC = 40A TJ = 25°C VCE=120V 12 VCE=300V 10 8 VCE=480V 6 4 2 0 1 2 3 4 5 6 7 8 9 10 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 2.5 IC= 40A 2 IC= 20A 1.5 1 0.5 6 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage 1.05 1.0 0.95 0.9 0.85 0.8 -50 -25 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Breakdown Voltage vs. Junction Temperature 140 IC= 80A 2.5 IC= 40A 2 IC= 20A 1.5 1 0.5 0 -50 -25 120 IC, DC COLLECTOR CURRENT(A) 1.10 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 120 0 25 50 75 100 125 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 1.2 1.15 3 40 60 80 100 GATE CHARGE (nC) FIGURE 4, Gate Charge 100 80 60 40 4-2003 IC= 80A 3.5 20 20 0 -50 -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature Rev C 3 TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE 0 050-7410 0 3.5 BVCES, COLLECTOR-TO-EMITTER BREAKDOWN VOLTAGE (NORMALIZED) VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) VGE, GATE-TO-EMITTER VOLTAGE (V) 200 0 40 FIGURE 2, Output Characteristics (VGE = 10V) 16 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) IC, COLLECTOR CURRENT (A) 250µs PULSE TEST <0.5 % DUTY CYCLE 0 50 0 0 0.5 1 1.5 2 2.5 3 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) TC=-55°C 60 10 10 0 VGE = 10V. 250µs PULSE TEST <0.5 % DUTY CYCLE 70 TC=-55°C IC, COLLECTOR CURRENT (A) IC, COLLECTOR CURRENT (A) 70 APT40GP60J 80 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE APT40GP60J 100 35 VGE= 10V 30 25 VGE= 15V 20 15 10 VCE = 400V TJ = 25°C, TJ =125°C RG = 5Ω L = 100 µH 5 td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 40 0 20 40 60 80 100 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current tf, FALL TIME (ns) tr, RISE TIME (ns) 80 60 40 RG =5Ω, L = 100µH, VCE = 400V RG =5Ω, L = 100µH, VCE = 400V VCE = 400V VGE = +15V RG = 5 Ω 60 40 0 0 20 40 60 80 100 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current 2000 TJ =125°C, 15V TJ =125°C,10V 2000 1500 TJ = 25°C, 10V 1000 500 TJ = 25°C, 15V TJ = 25°C, VGE = 10V or 15V 20 TJ = 25 or 125°C,VGE = 15V EOFF, TURN OFF ENERGY LOSS (µJ) EON1, TURN ON ENERGY LOSS (µJ) VCE = 400V RG = 5Ω L = 100 µH TJ = 125°C, VGE = 10V or 15V 0 20 40 60 80 100 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 0 VCE = 400V VGE = +15V RG = 5 Ω TJ = 125°C, VGE = 10V or 15V 1500 1000 500 TJ = 25°C, VGE = 10V or 15V 0 0 20 40 60 80 100 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 0 20 40 60 80 100 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current 4000 3000 3500 3000 2500 Eoff 80A 2000 Eon2 40A 1500 1000 Eon2 20A Eoff 40A 500 Eoff20A 0 0 VCE = 400V VGE = +15V RG = 5 Ω Eon2 80A VCE = 400V TJ = 125°C VGE = +15V 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance SWITCHING ENERGY LOSSES (µJ) SWITCHING ENERGY LOSSES (µJ) 20 80 0 4-2003 VGE =10V,TJ=25°C 40 TJ = 25 or 125°C,VGE = 10V 20 Rev C 60 100 100 050-7410 VGE =15V,TJ=25°C 0 20 40 60 80 100 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 120 2500 VGE =10V,TJ=125°C 80 0 0 3000 VGE =15V,TJ=125°C 2500 Eon2 80A 2000 1500 Eoff 80A Eon2 40A 1000 500 0 Eoff 40A Eon2 20A Eoff 20A 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature TYPICAL PERFORMANCE CURVES APT40GP60J 10,000 180 Cies 160 140 1,000 500 IC, COLLECTOR CURRENT (A) P C, CAPACITANCE ( F) 5,000 Coes 100 50 Cres 10 0 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 120 100 80 60 40 20 0 0 100 200 300 400 500 600 700 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18, Minimim Switching Safe Operating Area 0.9 0.40 0.35 0.7 0.30 0.25 0.5 Note: 0.20 0.15 PDM 0.3 t2 0.10 Duty Factor D = t1/t2 0.1 Peak TJ = PDM x ZθJC + TC 0.05 SINGLE PULSE 10-4 10-3 10-2 10-1 1.0 RECTANGULAR PULSE DURATION (SECONDS) FIGURE 1, MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs PULSE DURATION 210 Junction temp. ( ”C) 0.109 0.0107F 0.180 0.149F 0.151 1.22F Case temperature FIGURE 19B, TRANSIENT THERMAL IMPEDANCE MODEL FMAX, OPERATING FREQUENCY (kHz) RC MODEL Power (Watts) 10 100 Fmax = min(f max1 , f max 2 ) 50 TJ = 125°C TC = 75°C D = 50 % VCE = 400V RG = 5 Ω 10 f max1 = 0.05 t d (on ) + t r + t d(off ) + t f f max 2 = Pdiss − Pcond E on 2 + E off Pdiss = TJ − TC R θJC 10 20 30 40 50 60 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current 4-2003 10-5 Rev C 0.05 0 t1 050-7410 Z JC, THERMAL IMPEDANCE (°C/W) θ 0.45 APT40GP60J Gate Voltage APT30DF60 10% TJ = 125 C IC V CC td(on) V CE tr Collector Current 90% A 5% 5% Collector Voltage 10% D.U.T. Switching Energy Figure 21, Inductive Switching Test Circuit Figure 22, Turn-on Switching Waveforms and Definitions 90% VTEST Gate Voltage *DRIVER SAME TYPE AS D.U.T. TJ = 125 C td(off) A Collector Voltage V CE 90% IC 100uH 10% tf 0 V CLAMP B Collector Current A Switching Energy DRIVER* Figure 23, Turn-off Switching Waveforms and Definitions Figure 24, EON1 Test Circuit SOT-227 (ISOTOP®) Package Outline 11.8 (.463) 12.2 (.480) 31.5 (1.240) 31.7 (1.248) 7.8 (.307) 8.2 (.322) r = 4.0 (.157) (2 places) 4-2003 14.9 (.587) 15.1 (.594) Rev C 25.2 (0.992) 0.75 (.030) 12.6 (.496) 25.4 (1.000) 0.85 (.033) 12.8 (.504) 4.0 (.157) 4.2 (.165) (2 places) 3.3 (.129) 3.6 (.143) 050-7410 8.9 (.350) 9.6 (.378) Hex Nut M4 (4 places) W=4.1 (.161) W=4.3 (.169) H=4.8 (.187) H=4.9 (.193) (4 places) 1.95 (.077) 2.14 (.084) * Emitter 30.1 (1.185) 30.3 (1.193) Collector * Emitter terminals are shorted internally. Current handling capability is equal for either Source terminal. 38.0 (1.496) 38.2 (1.504) * Emitter Gate Dimensions in Millimeters and (Inches) APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved. D.U.T.