TYPICAL PERFORMANCE CURVES APT60GU30B APT60GU30S APT60GU30B_S 300V POWER MOS 7 IGBT ® TO-247 The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs. Using Punch Through Technology this IGBT is ideal for many high frequency, high voltage switching applications and has been optimized for high frequency switchmode power supplies. • Low Conduction Loss C G • SSOA rated D3PAK G C E C E • Low Gate Charge G • Ultrafast Tail Current shutoff E MAXIMUM RATINGS Symbol All Ratings: TC = 25°C unless otherwise specified. Parameter APT60GU30B_S VCES Collector-Emitter Voltage 300 VGE Gate-Emitter Voltage ±20 VGEM Gate-Emitter Voltage Transient ±30 IC1 Continuous Collector Current @ IC2 Continuous Collector Current @ TC = 100°C ICM Pulsed Collector Current SSOA PD TJ,TSTG TL 1 7 UNIT Volts 100 TC = 25°C 60 Amps 200 @ TC = 150°C 200A @ 300V Switching Safe Operating Area @ TJ = 150°C 417 Total Power Dissipation Watts -55 to 150 Operating and Storage Junction Temperature Range °C 300 Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. STATIC ELECTRICAL CHARACTERISTICS BVCES Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 250µA) 300 VGE(TH) Gate Threshold Voltage VCE(ON) I CES I GES TYP MAX 4.5 6 Collector-Emitter On Voltage (VGE = 15V, I C = 30A, Tj = 25°C) 1.5 2.0 Collector-Emitter On Voltage (VGE = 15V, I C = 30A, Tj = 125°C) 1.5 3 (VCE = VGE, I C = 1mA, Tj = 25°C) Collector Cut-off Current (VCE = VCES, VGE = 0V, Tj = 25°C) 2 Collector Cut-off Current (VCE = VCES, VGE = 0V, Tj = 125°C) 250 2 Gate-Emitter Leakage Current (VGE = ±20V) Volts µA 2500 ±100 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. APT Website - http://www.advancedpower.com UNIT nA 3-2004 MIN Rev A Characteristic / Test Conditions 050-7464 Symbol APT60GU30B_S DYNAMIC CHARACTERISTICS Symbol Characteristic Test Conditions 2990 VGE = 0V, VCE = 25V 275 Reverse Transfer Capacitance f = 1 MHz 21 Gate-to-Emitter Plateau Voltage Gate Charge VGE = 15V 7.0 100 VCE = 150V 20 30 Input Capacitance Coes Output Capacitance Cres VGEP Qge TYP Capacitance Cies Qg MIN Total Gate Charge 3 Gate-Emitter Charge Qgc Gate-Collector ("Miller ") Charge I C = 30A SSOA Switching Safe Operating Area TJ = 150°C, R G = 5Ω, VGE = MAX UNIT pF V nC 200 A 15V, L = 100µH,VCE = 300V td(on) tr td(off) tf Turn-on Delay Time Current Rise Time Eoff Turn-off Switching Energy td(on) Turn-on Delay Time Eon2 Eoff 48 VGE = 15V 250 20 I C = 30A Current Fall Time 5 ns 155 R G = 20Ω 4 Turn-on Switching Energy (Diode) µJ 240 Inductive Switching (125°C) VCC = 200V Turn-off Delay Time Turn-off Switching Energy 130 6 Current Rise Time Turn-on Switching Energy TBD TJ = +25°C 5 ns 85 R G = 20Ω 4 Turn-on Switching Energy (Diode) Eon1 215 20 I C = 30A Eon2 tf VGE = 15V Current Fall Time Turn-on Switching Energy td(off) 48 Turn-off Delay Time Eon1 tr Inductive Switching (25°C) VCC = 200V TBD TJ = +125°C 200 6 µJ 340 THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic MIN TYP MAX RΘJC Junction to Case (IGBT) 0.30 RΘJC Junction to Case (DIODE) N/A Package Weight 5.90 WT UNIT °C/W gm 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. (See Figure 24.) 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. A Combi device is used for the clamping diode as shown in the Eon2 test circuit. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) 7 Countinous current limited by package lead temperature. 050-7464 Rev A 3-2004 APT Reserves the right to change, without notice, the specifications and information contained herein. TYPICAL PERFORMANCE CURVES 60 IC, COLLECTOR CURRENT (A) VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 50 TC=25°C 40 30 20 TC=125°C 10 TC=125°C 10 120 100 80 TJ = -55°C 60 TJ = 25°C 40 20 TJ = 125°C 2 3 4 5 6 7 8 9 10 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 4 TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE 3.5 3 2.5 IC= 60A 2 IC= 30A 1.5 IC= 15A 1 0.5 5 6 7 8 9 10 11 12 13 14 15 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage 12 4 2 0.9 0.85 0.8 -50 -25 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Breakdown Voltage vs. Junction Temperature 20 40 60 80 100 GATE CHARGE (nC) FIGURE 4, Gate Charge 120 IC = 60A IC = 30A 1.5 IC = 15A 1.0 0.5 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 0 -50 -25 0 25 50 75 100 125 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 140 0.95 0 2 1.15 1.0 VCE = 240V 6 160 1.05 VCE = 150V 8 1.2 1.10 VCE = 60V 10 0 1 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 0 IC = 30A TJ = 25°C 120 100 80 60 Lead Temperature Limited 40 20 0 -50 -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature 3-2004 140 14 Rev A 160 IC, DC COLLECTOR CURRENT(A) IC, COLLECTOR CURRENT (A) 20 FIGURE 2, Output Characteristics (VGE = 10V) 16 VGE, GATE-TO-EMITTER VOLTAGE (V) 250µs PULSE TEST <0.5 % DUTY CYCLE 180 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) TC=25°C 30 0 0.5 1 1.5 2 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics(VGE = 15V) 200 BVCES, COLLECTOR-TO-EMITTER BREAKDOWN VOLTAGE (NORMALIZED) TC=-55°C 40 0 0 0.5 1 1.5 2 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) 0 VGE = 10V. 250µs PULSE TEST <0.5 % DUTY CYCLE TC=-55°C 0 0 50 APT60GU30B_S 050-7464 IC, COLLECTOR CURRENT (A) 60 VGE= 15V 50 40 30 20 VCE = 200V TJ = 25°C, TJ =125°C RG = 20Ω L = 100 µH 10 0 10 20 30 40 50 60 70 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 60 APT60GU30B_S 300 td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 60 250 200 VGE =15V,TJ=25°C VGE =15V,TJ=125°C 150 100 VCE = 200V RG = 20Ω L = 100 µH 50 0 10 20 30 40 50 60 70 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 180 RG = 20Ω, L = 100µH, VCE = 200V 160 50 40 tf, FALL TIME (ns) tr, RISE TIME (ns) 140 30 20 TJ = 25 or 125°C,VGE = 15V 60 0 TJ = 25°C, VGE = 10V or 15V RG = 20Ω, L = 100µH, VCE = 200V 20 30 40 50 60 70 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current 10 1200 EOFF, TURN OFF ENERGY LOSS (µJ) VCE = 200V L = 100 µH RG = 20Ω TJ =125°C, VGE=15V 400 300 200 100 TJ = 25°C, VGE=15V TJ = 125°C, VGE = 10V or 15V 1000 800 VCE = 200V L = 100 µH RG = 20Ω 600 400 200 TJ = 25°C, VGE = 10V or 15V 0 10 20 30 40 50 60 70 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 10 20 30 40 50 60 70 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current 1400 1200 VCE = 200V VGE = +15V TJ = 125°C 1200 1000 Eoff 60A 800 Eon2 60A 600 400 Eoff 30A 200 0 Eoff 15A 5 Eon2 30A Eon2 15A 10 15 20 25 30 35 40 45 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance 0 SWITCHING ENERGY LOSSES (µJ) EON2, TURN ON ENERGY LOSS (µJ) SWITCHING ENERGY LOSSES (µJ) 3-2004 Rev A 050-7464 80 20 0 10 20 30 40 50 60 70 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 500 100 40 10 600 TJ = 125°C, VGE = 10V or 15V 120 VCE = 200V VGE = +15V RG = 20Ω 1000 Eoff 60A 800 600 Eon2 60A 400 Eoff 30A 200 0 Eon2 30A Eoff 15A Eon2 15A 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature TYPICAL PERFORMANCE CURVES 5,000 APT60GU30B_S 250 Cies IC, COLLECTOR CURRENT (A) P C, CAPACITANCE ( F) 200 1,000 500 Coes 100 50 Cres 10 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 150 100 50 0 0 50 100 150 200 250 300 350 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18, Minimim Switching Safe Operating Area 0.30 0.9 0.25 0.7 0.20 0.5 0.15 0.10 0.3 0.05 0.1 0.05 Note: PDM t1 t2 10-4 10-3 10-2 10-1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19A, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 400 Power (watts) 0.119 0.160 0.00450F 0.0119F 0.121F Case temperature FIGURE 19B, TRANSIENT THERMAL IMPEDANCE MODEL FMAX, OPERATING FREQUENCY (kHz) RC MODEL Junction temp. ( C) 0.0218 1.0 100 Fmax = min(f max1 , f max 2 ) 50 10 TJ = 125°C TC = 75°C D = 50 % VCE = 200V RG = 5 Ω 10 f max1 = 0.05 t d (on ) + t r + t d(off ) + t f f max 2 = Pdiss − Pcond E on 2 + E off Pdiss = 20 30 40 50 60 70 80 90 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current TJ − TC R θJC 3-2004 10-5 Peak TJ = PDM x ZθJC + TC SINGLE PULSE Rev A 0 Duty Factor D = t1/t2 050-7464 ZθJC, THERMAL IMPEDANCE (°C/W) 0.35 APT60GU30B_S APT15DS30 Gate Voltage 10% TJ = 125 C td(on) Collector Current tr V CE IC V CC 90% 5% 5% 10% Collector Voltage A Switching Energy D.U.T. Figure 21, Inductive Switching Test Circuit Figure 22, Turn-on Switching Waveforms and Definitions VTEST *DRIVER SAME TYPE AS D.U.T. 90% Gate Voltage td(off) TJ = 125 C tf Collector Current A V CE 90% IC 100uH V CLAMP 10% Collector Voltage 0 B A Switching Energy D.U.T. DRIVER* Figure 24, EON1 Test Circuit Figure 23, Turn-off Switching Waveforms and Definitions 3 TO-247 Package Outline 15.49 (.610) 16.26 (.640) 6.15 (.242) BSC Collector 3-2004 Rev A 5.38 (.212) 6.20 (.244) 4.98 (.196) 5.08 (.200) 1.47 (.058) 1.57 (.062) 20.80 (.819) 21.46 (.845) 0.40 (.016) 0.79 (.031) 19.81 (.780) 20.32 (.800) 2.21 (.087) 2.59 (.102) 2.87 (.113) 3.12 (.123) 1.65 (.065) 2.13 (.084) 1.01 (.040) 1.40 (.055) Gate Collector Emitter 15.95 (.628) 16.05 (.632) Revised 4/18/95 3.50 (.138) 3.81 (.150) 4.50 (.177) Max. 050-7464 D PAK Package Outline Collector (Heat Sink) 4.69 (.185) 5.31 (.209) 1.49 (.059) 2.49 (.098) 1.04 (.041) 1.15 (.045) 13.79 (.543) 13.99 (.551) 0.46 (.018) 0.56 (.022) 0.020 (.001) 0.178 (.007) 2.67 (.105) 2.84 (.112) 1.22 (.048) 1.32 (.052) 5.45 (.215) BSC 2-Plcs. Dimensions in Millimeters and (Inches) 1.27 (.050) 1.40 (.055) 1.98 (.078) 2.08 (.082) 5.45 (.215) BSC {2 Plcs.} Emitter Collector Gate Dimensions in Millimeters (Inches) APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved. 13.41 (.528) 13.51 (.532) Revised 8/29/97 11.51 (.453) 11.61 (.457) 3.81 (.150) 4.06 (.160) (Base of Lead) Heat Sink (Collector) and Leads are Plated