ADPOW APT13GP120SG

1200V APT13GP120B_S(G)
APT13GP120B
APT13GP120S
APT13GP120BG* APT13GP120SG*
TYPICAL PERFORMANCE CURVES
®
*G Denotes RoHS Compliant, Pb Free Terminal Finish.
POWER MOS 7 IGBT
®
B
TO
The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs. Using Punch
Through Technology this IGBT is ideal for many high frequency, high voltage switching
applications and has been optimized for high frequency switchmode power supplies.
• Low Conduction Loss
• 100 kHz operation @ 600V, 10A
• Low Gate Charge
• 50 kHz operation @ 600V, 16A
• Ultrafast Tail Current shutoff
• RBSOA Rated
-2
D3PAK
47
S
C
G
G
C
E
E
C
G
E
MAXIMUM RATINGS
Symbol
All Ratings: TC = 25°C unless otherwise specified.
Parameter
APT13GP120B_S(G)
VCES
Collector-Emitter Voltage
1200
VGE
Gate-Emitter Voltage
±30
I C1
Continuous Collector Current @ TC = 25°C
41
I C2
Continuous Collector Current @ TC = 110°C
20
I CM
RBSOA
PD
TJ,TSTG
TL
Pulsed Collector Current
1
UNIT
Volts
Amps
50
Reverse Bias Safe Operating Area @ TJ = 150°C
50A @ 960V
Total Power Dissipation
Watts
250
Operating and Storage Junction Temperature Range
-55 to 150
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
°C
300
STATIC ELECTRICAL CHARACTERISTICS
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 500µA)
VGE(TH)
Gate Threshold Voltage
VCE(ON)
I CES
I GES
MAX
4.5
6
3.3
3.9
Units
1200
(VCE = VGE, I C = 1mA, Tj = 25°C)
3
Collector-Emitter On Voltage (VGE = 15V, I C = 13A, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, I C = 13A, Tj = 125°C)
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C)
TYP
3.0
2
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C)
Volts
500
2
Gate-Emitter Leakage Current (VGE = ±20V)
3000
±100
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
µA
nA
1-2006
V(BR)CES
MIN
Rev E
Characteristic / Test Conditions
050-7412
Symbol
DYNAMIC CHARACTERISTICS
Symbol
APT13GP120B_S(G)
Test Conditions
Characteristic
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
3
Qg
Total Gate Charge
Qge
Gate-Emitter Charge
Qgc
Gate-Collector ("Miller ") Charge
RBSOA
td(on)
tr
td(off)
tf
Eon1
15
Gate Charge
7.5
VGE = 15V
55
115
165
Inductive Switching (125°C)
9
VCC = 600V
12
VGE = 15V
70
RG = 5Ω
200
225
I C = 13A
Eon1
Turn-on Switching Energy
Eon2
Turn-on Switching Energy (Diode)
Eoff
Turn-off Switching Energy
44
55
µJ
330
6
Current Fall Time
ns
34
TJ = +25°C
Turn-off Delay Time
nC
28
RG = 5Ω
Current Rise Time
V
A
12
I C = 13A
Turn-on Delay Time
pF
50
9
5
UNIT
26
VCC = 600V
4
MAX
8
Inductive Switching (25°C)
Current Fall Time
Turn-off Switching Energy
tf
f = 1 MHz
TJ = 150°C, R G = 5Ω, VGE =
Turn-off Delay Time
Eoff
td(off)
90
VGE = 15V
Turn-on Switching Energy (Diode)
tr
VGE = 0V, VCE = 25V
15V, L = 100µH,VCE = 960V
Current Rise Time
Eon2
td(on)
1145
I C = 13A
Turn-on Delay Time
TYP
Capacitance
VCE = 600V
Reverse Bias Safe Operating Area
Turn-on Switching Energy
MIN
TJ = +125°C
ns
µJ
710
6
840
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
TYP
MAX
RθJC
Junction to Case (IGBT)
.50
RθJC
Junction to Case (DIODE)
N/A
WT
Package Weight
5.9
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
050-7412
Rev E
1-2006
4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
APT Reserves the right to change, without notice, the specifications and information contained herein.
40
40
35
35
IC, COLLECTOR CURRENT (A)
TJ = -55°C
20
15
TJ = 125°C
10
TJ = 25°C
5
0
1
2
3
4
5
6
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
20
TJ = -55°C
15
TJ = 25°C
10
TJ = 125°C
5
2
3
4
5
6
7
8
9
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
6
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
5
IC = 26A
4
IC = 13A
3
IC = 6.5A
2
1
0
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
BVCES, COLLECTOR-TO-EMITTER BREAKDOWN
VOLTAGE (NORMALIZED)
6
1.00
0.95
0.90
-50
-25
0
25
50
75
100 125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Breakdown Voltage vs. Junction Temperature
J
VCE = 240V
12
VCE = 600V
10
8
VCE = 960V
6
4
2
0
10
20
30
40
GATE CHARGE (nC)
50
60
FIGURE 4, Gate Charge
5
IC = 26A
4
IC = 13A
3
IC = 6.5A
2
1
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
0
-55
-25
0
25
50
75 100 125
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
60
1.10
1.05
I = 13A
C
T = 25°C
14
0
1
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
0
TJ = 25°C
5
FIGURE 2, Output Characteristics (TJ = 125°C)
VGE, GATE-TO-EMITTER VOLTAGE (V)
25
TJ = 125°C
10
16
IC, DC COLLECTOR CURRENT(A)
IC, COLLECTOR CURRENT (A)
30
0
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
250µs PULSE
TEST<0.5 % DUTY
CYCLE
15
0
1
2
3
4
5
6
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(TJ = 25°C)
35
TJ = -55°C
20
0
0
40
25
50
40
30
20
10
0
-50
-25
0
25 50 75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
1-2006
25
30
Rev E
30
APT13GP120B_S(G)
050-7412
IC, COLLECTOR CURRENT (A)
TYPICAL PERFORMANCE CURVES
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
10
VGE = 15V
8
6
4
VCE = 600V
TJ = 25°C or 125°C
RG = 5Ω
L = 100 µH
2
0
30
20
VCE = 600V
10 RG = 5Ω
200
15
TJ = 25 or 125°C,VGE = 15V
TJ = 125°C, VGE = 15V
100
50
0
0
1200
30
25
20
15
10
5
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
1600
G
TJ = 125°C
1000
800
600
400
TJ = 25°C
200
RG = 5Ω, L = 100µH, VCE = 600V
150
5
V
= 600V
CE
V
= +15V
GE
R = 5Ω
VGE =15V,TJ=25°C
L = 100 µH
TJ = 25°C, VGE = 15V
EOFF, TURN OFF ENERGY LOSS (µJ)
EON2, TURN ON ENERGY LOSS (µJ)
40
20
10
VGE =15V,TJ=125°C
50
250
0
1400
= 600V
V
CE
= +15V
V
GE
R = 5Ω
G
TJ = 125°C
1200
1000
800
600
400
200
TJ = 25°C
0
30
25
20
15
10
5
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
30
25
20
15
10
5
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
1800
1600
Eoff,26A
1600
Eon2,26A
1400
1200
Eoff,13A
1000
800
Eon2,13A
600
Eoff,6.5A
400
= 600V
V
CE
= +15V
V
GE
T = 125°C
200
0
Eon2,6.5A
J
50
40
30
20
10
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
0
SWITCHING ENERGY LOSSES (µJ)
SWITCHING ENERGY LOSSES (µJ)
60
25
1400
1-2006
70
300
RG = 5Ω, L = 100µH, VCE = 600V
30
25
20
15
10
5
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
Rev E
80
30
25
20
15
10
5
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
tf, FALL TIME (ns)
tr, RISE TIME (ns)
30
90
0
30
25
20
15
10
5
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
050-7412
APT13GP120B_S(G)
100
12
1400
= 600V
V
CE
= +15V
V
GE
R = 5Ω
G
1200
1000
800
600
Eon2,26A
Eoff,13A
Eoff,26A
Eon2,13A
400
Eon2,6.5A
200
0
25
Eoff,6.5A
125
100
75
50
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
3,000
IC, COLLECTOR CURRENT (A)
Cies
1,000
P
C, CAPACITANCE ( F)
500
100
Coes
50
Cres
10
APT13GP120B_S(G)
60
50
40
30
20
10
1
0
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0
200
400
600
800
1000
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18,Minimim Switching Safe Operating Area
0.50
0.9
0.40
0.7
0.30
0.5
0.20
Note:
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
0.60
0.3
t1
t2
0.10
0
t
0.1
0.05
10-5
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
10-4
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
1.0
0.284
0.161F
Case temperature. (°C)
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
= min (fmax, fmax2)
0.05
fmax1 =
td(on) + tr + td(off) + tf
10
T = 125°C
J
T = 75°C
C
D = 50 %
V
= XXXV
CE
R = 5Ω
max
fmax2 =
Pdiss - Pcond
Eon2 + Eoff
Pdiss =
TJ - TC
RθJC
G
5
10
15
20
25
30
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
1-2006
0.006F
F
50
Rev E
0.216
Power
(watts)
100
050-7412
RC MODEL
Junction
temp. (°C)
FMAX, OPERATING FREQUENCY (kHz)
181
APT13GP120B_S(G)
Gate Voltage
APT15DQ120
10%
TJ = 125°C
td(on)
IC
V CC
tr
V CE
Collector Current
90%
5%
A
5%
10%
Collector Voltage
Switching Energy
D.U.T.
Figure 22, Turn-on Switching Waveforms and Definitions
Figure 21, Inductive Switching Test Circuit
90%
Gate Voltage
TJ = 125°C
td(off)
Collector Voltage
90%
tf
10% 0
Collector Current
Switching Energy
Figure 23, Turn-off Switching Waveforms and Definitions
TO-268 (D3) Package Outline
TO-247 Package Outline
e3 SAC: Tin, Silver, Copper
e1 SAC: Tin, Silver, Copper
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
6.15 (.242) BSC
Collector
20.80 (.819)
21.46 (.845)
1-2006
Rev E
4.98 (.196)
5.08 (.200)
1.47 (.058)
1.57 (.062)
15.95 (.628)
16.05(.632)
3.50 (.138)
3.81 (.150)
4.50 (.177) Max.
050-7412
5.38 (.212)
6.20 (.244)
Collector
(Heat Sink)
15.49 (.610)
16.26 (.640)
0.40 (.016)
0.79 (.031)
19.81 (.780)
20.32 (.800)
2.87 (.113)
3.12 (.123)
1.65 (.065)
2.13 (.084)
1.01 (.040)
1.40 (.055)
Revised
4/18/95
1.04 (.041)
1.15(.045)
13.79 (.543)
13.99(.551)
0.46 (.018)
0.56 (.022) {3 Plcs}
0.020 (.001)
0.178 (.007)
2.67 (.105)
2.84 (.112)
Gate
Collector
13.41 (.528)
13.51(.532)
1.27 (.050)
1.40 (.055)
1.22 (.048)
1.32 (.052)
1.98 (.078)
2.08 (.082)
5.45 (.215) BSC
{2 Plcs.}
Emitter
2.21 (.087)
2.59 (.102)
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
Emitter
Collector
Gate
Dimensions in Millimeters (Inches)
APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.
Revised
8/29/97
11.51 (.453)
11.61 (.457)
3.81 (.150)
4.06 (.160)
(Base of Lead)
Heat Sink (Collector)
and Leads are Plated