1200V APT13GP120B_S(G) APT13GP120B APT13GP120S APT13GP120BG* APT13GP120SG* TYPICAL PERFORMANCE CURVES ® *G Denotes RoHS Compliant, Pb Free Terminal Finish. POWER MOS 7 IGBT ® B TO The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs. Using Punch Through Technology this IGBT is ideal for many high frequency, high voltage switching applications and has been optimized for high frequency switchmode power supplies. • Low Conduction Loss • 100 kHz operation @ 600V, 10A • Low Gate Charge • 50 kHz operation @ 600V, 16A • Ultrafast Tail Current shutoff • RBSOA Rated -2 D3PAK 47 S C G G C E E C G E MAXIMUM RATINGS Symbol All Ratings: TC = 25°C unless otherwise specified. Parameter APT13GP120B_S(G) VCES Collector-Emitter Voltage 1200 VGE Gate-Emitter Voltage ±30 I C1 Continuous Collector Current @ TC = 25°C 41 I C2 Continuous Collector Current @ TC = 110°C 20 I CM RBSOA PD TJ,TSTG TL Pulsed Collector Current 1 UNIT Volts Amps 50 Reverse Bias Safe Operating Area @ TJ = 150°C 50A @ 960V Total Power Dissipation Watts 250 Operating and Storage Junction Temperature Range -55 to 150 Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. °C 300 STATIC ELECTRICAL CHARACTERISTICS Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 500µA) VGE(TH) Gate Threshold Voltage VCE(ON) I CES I GES MAX 4.5 6 3.3 3.9 Units 1200 (VCE = VGE, I C = 1mA, Tj = 25°C) 3 Collector-Emitter On Voltage (VGE = 15V, I C = 13A, Tj = 25°C) Collector-Emitter On Voltage (VGE = 15V, I C = 13A, Tj = 125°C) Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C) TYP 3.0 2 Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C) Volts 500 2 Gate-Emitter Leakage Current (VGE = ±20V) 3000 ±100 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. APT Website - http://www.advancedpower.com µA nA 1-2006 V(BR)CES MIN Rev E Characteristic / Test Conditions 050-7412 Symbol DYNAMIC CHARACTERISTICS Symbol APT13GP120B_S(G) Test Conditions Characteristic Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance VGEP Gate-to-Emitter Plateau Voltage 3 Qg Total Gate Charge Qge Gate-Emitter Charge Qgc Gate-Collector ("Miller ") Charge RBSOA td(on) tr td(off) tf Eon1 15 Gate Charge 7.5 VGE = 15V 55 115 165 Inductive Switching (125°C) 9 VCC = 600V 12 VGE = 15V 70 RG = 5Ω 200 225 I C = 13A Eon1 Turn-on Switching Energy Eon2 Turn-on Switching Energy (Diode) Eoff Turn-off Switching Energy 44 55 µJ 330 6 Current Fall Time ns 34 TJ = +25°C Turn-off Delay Time nC 28 RG = 5Ω Current Rise Time V A 12 I C = 13A Turn-on Delay Time pF 50 9 5 UNIT 26 VCC = 600V 4 MAX 8 Inductive Switching (25°C) Current Fall Time Turn-off Switching Energy tf f = 1 MHz TJ = 150°C, R G = 5Ω, VGE = Turn-off Delay Time Eoff td(off) 90 VGE = 15V Turn-on Switching Energy (Diode) tr VGE = 0V, VCE = 25V 15V, L = 100µH,VCE = 960V Current Rise Time Eon2 td(on) 1145 I C = 13A Turn-on Delay Time TYP Capacitance VCE = 600V Reverse Bias Safe Operating Area Turn-on Switching Energy MIN TJ = +125°C ns µJ 710 6 840 THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic MIN TYP MAX RθJC Junction to Case (IGBT) .50 RθJC Junction to Case (DIODE) N/A WT Package Weight 5.9 UNIT °C/W gm 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 050-7412 Rev E 1-2006 4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode. 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) APT Reserves the right to change, without notice, the specifications and information contained herein. 40 40 35 35 IC, COLLECTOR CURRENT (A) TJ = -55°C 20 15 TJ = 125°C 10 TJ = 25°C 5 0 1 2 3 4 5 6 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) 20 TJ = -55°C 15 TJ = 25°C 10 TJ = 125°C 5 2 3 4 5 6 7 8 9 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 6 TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE 5 IC = 26A 4 IC = 13A 3 IC = 6.5A 2 1 0 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage BVCES, COLLECTOR-TO-EMITTER BREAKDOWN VOLTAGE (NORMALIZED) 6 1.00 0.95 0.90 -50 -25 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Breakdown Voltage vs. Junction Temperature J VCE = 240V 12 VCE = 600V 10 8 VCE = 960V 6 4 2 0 10 20 30 40 GATE CHARGE (nC) 50 60 FIGURE 4, Gate Charge 5 IC = 26A 4 IC = 13A 3 IC = 6.5A 2 1 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 0 -55 -25 0 25 50 75 100 125 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 60 1.10 1.05 I = 13A C T = 25°C 14 0 1 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 0 TJ = 25°C 5 FIGURE 2, Output Characteristics (TJ = 125°C) VGE, GATE-TO-EMITTER VOLTAGE (V) 25 TJ = 125°C 10 16 IC, DC COLLECTOR CURRENT(A) IC, COLLECTOR CURRENT (A) 30 0 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 250µs PULSE TEST<0.5 % DUTY CYCLE 15 0 1 2 3 4 5 6 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics(TJ = 25°C) 35 TJ = -55°C 20 0 0 40 25 50 40 30 20 10 0 -50 -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature 1-2006 25 30 Rev E 30 APT13GP120B_S(G) 050-7412 IC, COLLECTOR CURRENT (A) TYPICAL PERFORMANCE CURVES td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 10 VGE = 15V 8 6 4 VCE = 600V TJ = 25°C or 125°C RG = 5Ω L = 100 µH 2 0 30 20 VCE = 600V 10 RG = 5Ω 200 15 TJ = 25 or 125°C,VGE = 15V TJ = 125°C, VGE = 15V 100 50 0 0 1200 30 25 20 15 10 5 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current 1600 G TJ = 125°C 1000 800 600 400 TJ = 25°C 200 RG = 5Ω, L = 100µH, VCE = 600V 150 5 V = 600V CE V = +15V GE R = 5Ω VGE =15V,TJ=25°C L = 100 µH TJ = 25°C, VGE = 15V EOFF, TURN OFF ENERGY LOSS (µJ) EON2, TURN ON ENERGY LOSS (µJ) 40 20 10 VGE =15V,TJ=125°C 50 250 0 1400 = 600V V CE = +15V V GE R = 5Ω G TJ = 125°C 1200 1000 800 600 400 200 TJ = 25°C 0 30 25 20 15 10 5 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 30 25 20 15 10 5 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current 1800 1600 Eoff,26A 1600 Eon2,26A 1400 1200 Eoff,13A 1000 800 Eon2,13A 600 Eoff,6.5A 400 = 600V V CE = +15V V GE T = 125°C 200 0 Eon2,6.5A J 50 40 30 20 10 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance 0 SWITCHING ENERGY LOSSES (µJ) SWITCHING ENERGY LOSSES (µJ) 60 25 1400 1-2006 70 300 RG = 5Ω, L = 100µH, VCE = 600V 30 25 20 15 10 5 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current Rev E 80 30 25 20 15 10 5 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current tf, FALL TIME (ns) tr, RISE TIME (ns) 30 90 0 30 25 20 15 10 5 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 050-7412 APT13GP120B_S(G) 100 12 1400 = 600V V CE = +15V V GE R = 5Ω G 1200 1000 800 600 Eon2,26A Eoff,13A Eoff,26A Eon2,13A 400 Eon2,6.5A 200 0 25 Eoff,6.5A 125 100 75 50 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature TYPICAL PERFORMANCE CURVES 3,000 IC, COLLECTOR CURRENT (A) Cies 1,000 P C, CAPACITANCE ( F) 500 100 Coes 50 Cres 10 APT13GP120B_S(G) 60 50 40 30 20 10 1 0 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 0 200 400 600 800 1000 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18,Minimim Switching Safe Operating Area 0.50 0.9 0.40 0.7 0.30 0.5 0.20 Note: PDM ZθJC, THERMAL IMPEDANCE (°C/W) 0.60 0.3 t1 t2 0.10 0 t 0.1 0.05 10-5 Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC SINGLE PULSE 10-4 10-3 10-2 10-1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 1.0 0.284 0.161F Case temperature. (°C) FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL = min (fmax, fmax2) 0.05 fmax1 = td(on) + tr + td(off) + tf 10 T = 125°C J T = 75°C C D = 50 % V = XXXV CE R = 5Ω max fmax2 = Pdiss - Pcond Eon2 + Eoff Pdiss = TJ - TC RθJC G 5 10 15 20 25 30 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current 1-2006 0.006F F 50 Rev E 0.216 Power (watts) 100 050-7412 RC MODEL Junction temp. (°C) FMAX, OPERATING FREQUENCY (kHz) 181 APT13GP120B_S(G) Gate Voltage APT15DQ120 10% TJ = 125°C td(on) IC V CC tr V CE Collector Current 90% 5% A 5% 10% Collector Voltage Switching Energy D.U.T. Figure 22, Turn-on Switching Waveforms and Definitions Figure 21, Inductive Switching Test Circuit 90% Gate Voltage TJ = 125°C td(off) Collector Voltage 90% tf 10% 0 Collector Current Switching Energy Figure 23, Turn-off Switching Waveforms and Definitions TO-268 (D3) Package Outline TO-247 Package Outline e3 SAC: Tin, Silver, Copper e1 SAC: Tin, Silver, Copper 4.69 (.185) 5.31 (.209) 1.49 (.059) 2.49 (.098) 6.15 (.242) BSC Collector 20.80 (.819) 21.46 (.845) 1-2006 Rev E 4.98 (.196) 5.08 (.200) 1.47 (.058) 1.57 (.062) 15.95 (.628) 16.05(.632) 3.50 (.138) 3.81 (.150) 4.50 (.177) Max. 050-7412 5.38 (.212) 6.20 (.244) Collector (Heat Sink) 15.49 (.610) 16.26 (.640) 0.40 (.016) 0.79 (.031) 19.81 (.780) 20.32 (.800) 2.87 (.113) 3.12 (.123) 1.65 (.065) 2.13 (.084) 1.01 (.040) 1.40 (.055) Revised 4/18/95 1.04 (.041) 1.15(.045) 13.79 (.543) 13.99(.551) 0.46 (.018) 0.56 (.022) {3 Plcs} 0.020 (.001) 0.178 (.007) 2.67 (.105) 2.84 (.112) Gate Collector 13.41 (.528) 13.51(.532) 1.27 (.050) 1.40 (.055) 1.22 (.048) 1.32 (.052) 1.98 (.078) 2.08 (.082) 5.45 (.215) BSC {2 Plcs.} Emitter 2.21 (.087) 2.59 (.102) 5.45 (.215) BSC 2-Plcs. Dimensions in Millimeters and (Inches) Emitter Collector Gate Dimensions in Millimeters (Inches) APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved. Revised 8/29/97 11.51 (.453) 11.61 (.457) 3.81 (.150) 4.06 (.160) (Base of Lead) Heat Sink (Collector) and Leads are Plated