APT50GP60B APT50GP60S 600V ® POWER MOS 7 IGBT TO-247 The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs. Using Punch Through Technology this IGBT is ideal for many high frequency, high voltage switching applications and has been optimized for high frequency switchmode power supplies. • Low Conduction Loss • 200 kHz operation @ 400V, 26A • Low Gate Charge • 100 kHz operation @ 400V, 41A • Ultrafast Tail Current shutoff • SSOA rated D3PAK G C C E G E C G E MAXIMUM RATINGS Symbol All Ratings: TC = 25°C unless otherwise specified. Parameter APT50GP60B_S VCES Collector-Emitter Voltage 600 VGE Gate-Emitter Voltage ±20 Gate-Emitter Voltage Transient ±30 VGEM 7 I C1 Continuous Collector Current I C2 Continuous Collector Current @ TC = 110°C I CM Pulsed Collector Current SSOA PD TJ,TSTG TL 1 UNIT Volts 100 @ TC = 25°C Amps 72 190 @ TC = 150°C 190A@600V Safe Operating Area @ TJ = 150°C Watts 625 Total Power Dissipation -55 to 150 Operating and Storage Junction Temperature Range Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. °C 300 STATIC ELECTRICAL CHARACTERISTICS BVCES Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 500µA) 600 VGE(TH) Gate Threshold Voltage VCE(ON) I CES I GES TYP MAX 4.5 6 Collector-Emitter On Voltage (VGE = 15V, I C = 50A, Tj = 25°C) 2.2 2.7 Collector-Emitter On Voltage (VGE = 15V, I C = 50A, Tj = 125°C) 2.1 3 (VCE = VGE, I C = 1mA, Tj = 25°C) Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C) Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C) 2 500 2 Gate-Emitter Leakage Current (VGE = ±20V) Volts µA 2500 ±100 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. APT Website - http://www.advancedpower.com UNIT nA 2-2004 MIN Rev B Characteristic / Test Conditions 050-7434 Symbol APT50GP60B_S DYNAMIC CHARACTERISTICS Symbol Characteristic Test Conditions 5700 VGE = 0V, VCE = 25V 465 Reverse Transfer Capacitance f = 1 MHz 30 Gate-to-Emitter Plateau Voltage Gate Charge VGE = 15V 7.5 165 VCE = 300V 40 I C = 50A 50 Input Capacitance Coes Output Capacitance Cres VGEP Qge Qgc SSOA TYP Capacitance Cies Qg MIN Total Gate Charge 3 Gate-Emitter Charge Gate-Collector ("Miller ") Charge Safe Operating Area TJ = 150°C, R G = 5Ω, VGE = MAX UNIT pF V nC 190 A 15V, L = 100µH,VCE = 600V td(on) tr td(off) tf Eon1 Eon2 Turn-on Delay Time Current Rise Time Turn-on Switching Energy Turn-on Delay Time I C = 50A 60 R G = 5Ω 837 Inductive Switching (125°C) VCC = 400V 19 VGE = 15V 116 I C = 50A 86 Current Fall Time Turn-on Switching Energy (Diode) 36 R G = 5Ω 4 Eon2 µJ 637 Turn-off Delay Time Turn-on Switching Energy ns 465 TJ = +25°C 5 Current Rise Time Turn-off Switching Energy 36 6 Eon1 Eoff 83 4 Turn-on Switching Energy (Diode) td(on) tf VGE = 15V Current Fall Time Turn-off Switching Energy td(off) 19 Turn-off Delay Time Eoff tr Inductive Switching (25°C) VCC = 400V 5 ns 465 TJ = +125°C 1261 6 µJ 1058 THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic MIN TYP MAX RΘJC Junction to Case (IGBT) .20 RΘJC Junction to Case (DIODE) N/A Package Weight 5.90 WT UNIT °C/W gm 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. (See Figure 24.) 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. A Combi device is used for the clamping diode as shown in the Eon2 test circuit. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) 7 Continuous current limited by package lead temperature. 050-7434 Rev B 2-2004 APT Reserves the right to change, without notice, the specifications and information contained herein. TYPICAL PERFORMANCE CURVES APT50GP60B_S 70 70 TC=25°C 20 TC=-55°C 10 TC=125°C 0 VGE, GATE-TO-EMITTER VOLTAGE (V) TJ = 125°C 20 2 3 4 5 6 7 8 9 10 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 3.5 TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE 3 IC =100A 2.5 IC = 50A 2 IC = 25A 1.5 1 0.5 0 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage BVCES, COLLECTOR-TO-EMITTER BREAKDOWN VOLTAGE (NORMALIZED) 6 1.2 1.15 1.10 1.05 1.0 0.95 0.9 0.85 0.8 -50 -25 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Breakdown Voltage vs. Junction Temperature IC = 50A TJ = 25°C 14 VCE=120V 12 VCE=300V 10 VCE=480V 8 6 4 2 0 1 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 0 TC=-55°C TC=125°C 10 FIGURE 2, Output Characteristics (VGE = 10V) 16 0 20 40 60 80 100 120 140 160 180 GATE CHARGE (nC) FIGURE 4, Gate Charge 3 IC =100A 2.5 IC = 50A 2 IC = 25A 1.5 1 0.5 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 0 -50 -25 0 25 50 75 100 125 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 200 IC, DC COLLECTOR CURRENT(A) IC, COLLECTOR CURRENT (A) TJ = 25°C 40 0 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) TJ = -55°C 60 TC=25°C 20 0 0.5 1 1.5 2 2.5 3 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics(VGE = 15V) 100 80 30 0 0 0.5 1 1.5 2 2.5 3 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) 250µs PULSE TEST <0.5 % DUTY CYCLE 40 180 160 140 120 100 80 60 40 20 0 -50 -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature 2-2004 30 50 Rev B 40 60 050-7434 IC, COLLECTOR CURRENT (A) 50 IC, COLLECTOR CURRENT (A) VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 60 VGE = 10V. 250µs PULSE TEST <0.5 % DUTY CYCLE APT50GP60B_S TYPICAL PERFORMANCE CURVES 140 35 VGE= 10V 30 25 VGE= 15V 20 15 10 VCE = 400V TJ = 25°C or 125°C RG = 5Ω L = 100 µH 05 td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 40 20 VCE = 400V RG = 5Ω L = 100 µH 120 TJ = 125°C, VGE = 10V or 15V 100 70 tf, FALL TIME (ns) tr, RISE TIME (ns) VGE =10V,TJ=25°C 40 TJ = 25 or 125°C,VGE = 10V 60 50 40 30 3500 60 TJ = 25°C, VGE = 10V or 15V 40 20 RG =5Ω, L = 100µH, VCE = 400V 0 3500 VCE = 400V L = 100 µH RG = 5 Ω TJ =125°C, VGE=15V 3000 TJ =125°C,VGE=10V 2500 2000 1500 1000 TJ = 25°C, VGE=15V 500 TJ = 25°C, VGE=10V RG =5Ω, L = 100µH, VCE = 400V 20 30 40 50 60 70 80 90 100 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current EOFF, TURN OFF ENERGY LOSS (µJ) 4000 80 TJ = 25 or 125°C,VGE = 15V 0 20 30 40 50 60 70 80 90 100 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 3000 VCE = 400V L = 100 µH RG = 5 Ω TJ = 125°C, VGE = 10V or 15V 2500 2000 1500 1000 500 T = 25°C, VGE = 10V or 15V J 0 10 20 30 40 50 60 70 80 90 100 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 20 30 40 50 60 70 80 90 100 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current 6000 4000 VCE = 400V VGE = +15V TJ = 125°C 5000 Eon2 100A 4000 Eoff 100A 3000 2000 Eon2 50A 1000 Eon2 25A Eoff 50A Eoff 25A 0 0 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance 0 SWITCHING ENERGY LOSSES (µJ) EON2, TURN ON ENERGY LOSS (µJ) VGE =15V,TJ=25°C 100 10 SWITCHING ENERGY LOSSES (µJ) 60 20 30 40 50 60 70 80 90 100 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 20 2-2004 80 0 80 Rev B VGE =10V,TJ=125°C 100 0 20 30 40 50 60 70 80 90 100 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 90 050-7434 VGE =15V,TJ=125°C 120 3500 3000 VCE = 400V VGE = +15V RG = 5 Ω Eon2 100A 2500 Eoff 100A 2000 1500 1000 500 0 -50 Eon2 50A Eon2 25A Eoff 50A Eoff 25A -25 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature TYPICAL PERFORMANCE CURVES 10,000 APT50GP60B_S 200 IC, COLLECTOR CURRENT (A) Cies C, CAPACITANCE ( F) 5,000 P 1,000 500 Coes 100 50 Cres 180 160 140 120 100 180 160 140 120 0 10 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 0 100 200 300 400 500 600 700 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18, Minimim Switching Safe Operating Area 0.20 0.16 0.7 0.12 0.5 Note: 0.08 0.3 PDM ZθJC, THERMAL IMPEDANCE (°C/W) 0.9 t1 t2 0.04 0.1 Duty Factor D = t1/t2 0.05 Peak TJ = PDM x ZθJC + TC SINGLE PULSE 0 10 -5 -4 -3 10 10 10-1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19A, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 10 -2 1.0 RC MODEL Power (Watts) 0.0658343 0.1055619 0.0142175 0.345873 Case temperature FIGURE 19B, TRANSIENT THERMAL IMPEDANCE MODEL 50 TJ = 125°C TC = 75°C D = 50 % VCE = 400V RG = 5 Ω 10 10 20 30 40 50 60 70 80 90 100 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current Fmax = min(f max1 , f max 2 ) f max1 = 0.05 t d (on ) + t r + t d(off ) + t f f max 2 = Pdiss − Pcond E on 2 + E off Pdiss = TJ − TC R θJC 2-2004 Junction temp. ( ”C) 0.0021766 100 Rev B 0.0192963 0.0046253 050-7434 0.0090806 FMAX, OPERATING FREQUENCY (kHz) 210 APT50GP60B_S TYPICAL PERFORMANCE CURVES APT30DF60 10% Gate Voltage TJ = 125 C td(on) V CE IC V CC Collector Current tr 90% A D.U.T. 10% 5% 5 % Collector Voltage Switching Energy Figure 21, Inductive Switching Test Circuit Figure 22, Turn-on Switching Waveforms and Definitions 90% VTEST Gate Voltage td(off) *DRIVER SAME TYPE AS D.U.T. TJ = 125 C A tf V CE Collector Voltage IC 90% 100uH V CLAMP B 0 Switching Energy 10% A Collector Current D.U.T. DRIVER* Figure 24, EON1 Test Circuit Figure 23, Turn-off Switching Waveforms and Definitions 3 TO-247 Package Outline 15.49 (.610) 16.26 (.640) Collector 6.15 (.242) BSC 2-2004 Rev B 4.98 (.196) 5.08 (.200) 1.47 (.058) 1.57 (.062) 20.80 (.819) 21.46 (.845) 2.87 (.113) 3.12 (.123) 1.65 (.065) 2.13 (.084) 0.40 (.016) 0.79 (.031) 19.81 (.780) 20.32 (.800) 1.01 (.040) 1.40 (.055) Gate Collector Emitter 15.95 (.628) 16.05 (.632) Revised 4/18/95 3.50 (.138) 3.81 (.150) 4.50 (.177) Max. 050-7434 5.38 (.212) 6.20 (.244) Collector (Heat Sink) 4.69 (.185) 5.31 (.209) 1.49 (.059) 2.49 (.098) D PAK Package Outline 1.04 (.041) 1.15 (.045) 13.79 (.543) 13.99 (.551) 0.46 (.018) 0.56 (.022) 0.020 (.001) 0.178 (.007) 2.67 (.105) 2.84 (.112) 1.22 (.048) 1.32 (.052) 1.27 (.050) 1.40 (.055) 1.98 (.078) 2.08 (.082) 5.45 (.215) BSC {2 Plcs.} 13.41 (.528) 13.51 (.532) Revised 8/29/97 3.81 (.150) 4.06 (.160) (Base of Lead) Heat Sink (Collector) and Leads are Plated Emitter Collector Gate Dimensions in Millimeters and (Inches) Dimensions in Millimeters (Inches) APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved. 2.21 (.087) 2.59 (.102) 5.45 (.215) BSC 2-Plcs. 11.51 (.453) 11.61 (.457)