APT25GP120B 1200V ® POWER MOS 7 IGBT A new generation of high voltage power IGBTs. Using punch-through technology and a proprietary metal gate, this IGBT has been optimized for very fast switching, making it ideal for high frequency, high voltage switchmode power supplies and tail current sensitive applications. In many cases, the POWER MOS 7® IGBT provides a lower cost alternative to a Power MOSFET. • Low Conduction Loss • 100 kHz operation @ 800V,11A • Low Gate Charge • 50 kHz operation @ 800V, 19A • Ultrafast Tail Current shutoff • RBSOA Rated MAXIMUM RATINGS Symbol TO-247 G C E C G E All Ratings: TC = 25°C unless otherwise specified. Parameter APT25GP120B VCES Collector-Emitter Voltage 1200 VGE Gate-Emitter Voltage ±20 Gate-Emitter Voltage Transient ±30 VGEM I C1 Continuous Collector Current @ TC = 25°C 69 I C2 Continuous Collector Current @ TC = 110°C 33 I CM Pulsed Collector Current RBSOA PD TJ,TSTG TL 1 UNIT Volts Amps 90 @ TC = 25°C 90A @ 960V Reverse Bias Safe Operating Area @ TJ = 150°C Watts 417 Total Power Dissipation -55 to 150 Operating and Storage Junction Temperature Range Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. °C 300 STATIC ELECTRICAL CHARACTERISTICS BVCES Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 250µA) 1200 VGE(TH) Gate Threshold Voltage VCE(ON) I CES I GES TYP MAX 4.5 6 Collector-Emitter On Voltage (VGE = 15V, I C = 25A, Tj = 25°C) 3.3 3.9 Collector-Emitter On Voltage (VGE = 15V, I C = 25A, Tj = 125°C) 3.0 3 (VCE = VGE, I C = 1mA, Tj = 25°C) Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C) 2 Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C) 250 2 Gate-Emitter Leakage Current (VGE = ±20V) Volts µA 2500 ±100 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. APT Website - http://www.advancedpower.com UNIT nA 4-2003 MIN Rev B Characteristic / Test Conditions 050-7411 Symbol APT25GP120B DYNAMIC CHARACTERISTICS Symbol Characteristic Test Conditions MIN TYP Cies IInput Capacitance Capacitance 2090 Coes Output Capacitance VGE = 0V, VCE = 25V 200 Cres Reverse Transfer Capacitance f = 1 MHz 40 VGEP Gate-to-Emitter Plateau Voltage Gate Charge VGE = 15V 7.5 110 VCE = 600V 15 I C = 25A 50 Qg Qge Qgc RBSOA Total Gate Charge 3 Gate-Emitter Charge Gate-Collector ("Miller ") Charge Reverse Bias Safe Operating Area TJ = 150°C, R G = 5Ω, VGE = MAX UNIT pF V nC 90 A 15V, L = 100µH,VCE = 960V td(on) tr td(off) tf Turn-on Delay Time Current Rise Time Turn-on Switching Energy (Diode) Eoff Turn-off Switching Energy td(on) Turn-on Delay Time Eon1 Eon2 Eoff 70 I C = 25A 39 µJ 438 Inductive Switching (125°C) VCLAMP(Peak) = 600V 12 VGE = 15V 109 I C = 25A 88 Turn-off Delay Time Current Fall Time Turn-off Switching Energy 1092 6 14 R G = 5Ω 4 Turn-on Switching Energy (Diode) ns 500 TJ = +25°C 5 Current Rise Time Turn-on Switching Energy 14 R G = 5Ω 4 Eon2 tf VGE = 15V Current Fall Time Turn-on Switching Energy td(off) 12 Turn-off Delay Time Eon1 tr Inductive Switching (25°C) VCLAMP(Peak) = 600V 5 ns 500 TJ = +125°C 1577 6 µJ 1187 THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic MIN TYP MAX RΘJC Junction to Case (IGBT) .30 RΘJC Junction to Case (DIODE) N/A Package Weight 5.90 WT UNIT °C/W gm 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. (See Figure 24.) 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance wtih JEDEC standard JESD24-1. (See Figures 21, 23.) 050-7411 Rev B 4-2003 APT Reserves the right to change, without notice, the specifications and information contained herein. TYPICAL PERFORMANCE CURVES APT25GP120B 60 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE TC=25°C TC=125°C 10 0 1 2 3 4 5 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) 40 TJ = 25°C 20 0 2 3 4 5 6 7 8 9 10 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 5 4.5 IC= 50A 4 IC= 25A 3.5 IC= 12.5A 3 2.5 2 1.5 1 TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE 0.5 0 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage BVCES, COLLECTOR-TO-EMITTER BREAKDOWN VOLTAGE (NORMALIZED) 6 1.10 1.05 1.0 0.95 0.90 0.85 0.8 -50 -25 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Breakdown Voltage vs. Junction Temperature IC = 25A TJ = 25°C 14 VCE= 240V VCE= 600V 12 10 8 VCE= 960V 6 4 2 0 20 40 60 80 100 GATE CHARGE (nC) FIGURE 4, Gate Charge 120 5 4.5 IC= 50A 4 3.5 IC= 25A 3 2.5 IC=12.5A 2 1.5 1 0.5 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 0 -25 0 25 50 75 100 125 TJ, JUNCTION TRMPERATURE (°C) FIGURE 6, On State Voltage vs Junction Temperature 100 1.2 1.15 TC=25°C 10 0 1 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 0 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) TJ = 125°C VGE, GATE-TO-EMITTER VOLTAGE (V) TJ = -55°C TC=125°C FIGURE 2, Output Characteristics (VGE = 10V) 16 IC, DC COLLECTOR CURRENT(A) IC, COLLECTOR CURRENT (A) 60 20 0 1 2 3 4 5 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics(VGE = 15V) 100 80 30 0 0 250µs PULSE TEST <0.5 % DUTY CYCLE 40 90 80 70 60 50 40 30 20 10 0 -50 -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature 4-2003 20 50 Rev B 30 VGE = 10V. 250µs PULSE TEST <0.5 % DUTY CYCLE 050-7411 40 IC, COLLECTOR CURRENT (A) IC, COLLECTOR CURRENT (A) 50 60 APT25GP120B 140 20 VGE= 10V VGE= 15V 15 10 VCE = 600V TJ = 25°C, TJ =125°C RG = 5Ω L = 100 µH 5 td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 25 VGE =15V,TJ=125°C 120 VCE = 600V RG = 5Ω L = 100 µH 100 VGE =15V,TJ=25°C 80 VGE =10V,TJ=125°C 60 VGE =10V,TJ=25°C 40 20 0 0 10 15 20 25 30 35 40 45 50 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 100 R = 5Ω, L = 100µH, VCE = 600V G 10 15 20 25 30 35 40 45 50 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 120 RG = 5Ω, L = 100µH, VCE = 600V 100 80 tf, FALL TIME (ns) tr, RISE TIME (ns) TJ = 25° or 125°C,VGE = 10V 60 40 20 TJ = 125°C, VGE = 10V or 15V 80 60 40 TJ = 25°C, VGE = 10V or 15V 20 TJ = 25° or 125°C,VGE =15V 0 0 10 15 20 25 30 35 40 45 50 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 3000 3000 VCE = 600V VGE = +15V RG = 5 Ω 2500 TJ = 25°C,VGE =10V TJ = 125°C,VGE =10V 2000 1500 TJ = 125°C,VGE =15V 1000 TJ = 25°C,VGE =15V 500 EOFF, TURN OFF ENERGY LOSS (µJ) EON2, TURN ON ENERGY LOSS (µJ) 3500 10 20 30 40 50 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current TJ = 125°C, VGE = 10V or 15V 2000 1500 1000 500 TJ = 25°C, VGE = 10V or 15V 10 15 20 25 30 35 40 45 50 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 10 15 20 25 30 35 40 45 50 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current 4500 3500 VCE = 600V VGE = +15V RG = 5 Ω 4000 3500 3000 Eoff, 50A 2500 Eon2, 25A 2000 Eoff, 25A 1500 Eon2, 12.5A 1000 500 0 VCE = 600V VGE = +15V RG = 5 Ω Eon2, 50A Eoff, 12.5A SWITCHING ENERGY LOSSES (µJ) SWITCHING ENERGY LOSSES (µJ) 4-2003 Rev B 2500 0 0 050-7411 VCE = 600V VGE = +15V RG = 5 Ω 3000 Eon2,50A 2500 2000 Eon2,25A 1500 Eoff,50A Eoff, 25A 1000 500 Eon2,12.5A Eoff,12.5A 0 0 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature TYPICAL PERFORMANCE CURVES APT25GP120B 100 10,000 5,000 90 80 IC, COLLECTOR CURRENT (A) P C, CAPACITANCE ( F) Cies 1,000 500 Coes 100 Cres 10 70 60 50 40 20 0 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 0 200 400 600 800 1000 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18, Minimim Switching Safe Operating Area 0.30 0.9 0.25 0.7 0.20 0.3 0.10 t1 t2 Duty Factor D = t1/t2 0.05 0 Note: 0.5 0.15 PDM Z JC, THERMAL IMPEDANCE (°C/W) θ 0.35 Peak TJ = PDM x ZθJC + TC 0.1 0.05 10-5 SINGLE PULSE 10-4 10-3 10-2 10-1 RECTANGULAR PULSE DURATION (SECONDS) FIGURE 1, MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs PULSE DURATION 1.0 0.00833F Power (watts) 0.173 0.171F Case temperature(°C) FIGURE 19B, TRANSIENT THERMAL IMPEDANCE MODEL Fmax = min(f max1 , f max 2 ) 50 TJ = 125°C TC = 75°C D = 50 % VCE = 800V RG = 5 Ω 10 5 f max1 = 0.05 t d (on ) + t r + t d(off ) + t f f max 2 = Pdiss − Pcond E on 2 + E off Pdiss = TJ − TC R θJC 10 15 20 25 30 35 40 45 50 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current 4-2003 0.128 Rev B Junction temp (°C) 100 050-7411 RC MODEL FMAX, OPERATING FREQUENCY (kHz) 182 APT25GP120B APT15DF120 Gate Voltage 10% T J = 125 C t d(on) V CE IC V CC tr A Collector Current 90% D.U.T. 5% 5% 10% Collector Voltage Switching Energy Figure 21, Inductive Switching Test Circuit Figure 22, Turn-on Switching Waveforms and Definitions 90% VTEST Gate Voltage *DRIVER SAME TYPE AS D.U.T. T J = 125 C td(off) A tf Collector Voltage V CE IC 90% 100uH 0 V CLAMP 10% A Switching Energy DRIVER* Figure 24, EON1 Test Circuit Figure 23, Turn-off Switching Waveforms and Definitions T0-247 Package Outline 4.69 (.185) 5.31 (.209) 1.49 (.059) 2.49 (.098) 15.49 (.610) 16.26 (.640) Collector 6.15 (.242) BSC 3.50 (.138) 3.81 (.150) 0.40 (.016) 0.79 (.031) 4-2003 2.21 (.087) 2.59 (.102) 2.87 (.113) 3.12 (.123) 1.65 (.065) 2.13 (.084) 19.81 (.780) 20.32 (.800) 1.01 (.040) 1.40 (.055) Rev B 5.38 (.212) 6.20 (.244) 20.80 (.819) 21.46 (.845) 4.50 (.177) Max. 050-7411 B Collector Current Gate Collector Emitter 5.45 (.215) BSC 2-Plcs. Dimensions in Millimeters and (Inches) APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved. D.U.T.