ADPOW APT25GP120B

APT25GP120B
1200V
®
POWER MOS 7 IGBT
A new generation of high voltage power IGBTs. Using punch-through
technology and a proprietary metal gate, this IGBT has been optimized for
very fast switching, making it ideal for high frequency, high voltage switchmode power supplies and tail current sensitive applications. In many cases,
the POWER MOS 7® IGBT provides a lower cost alternative to a Power
MOSFET.
• Low Conduction Loss
• 100 kHz operation @ 800V,11A
• Low Gate Charge
• 50 kHz operation @ 800V, 19A
• Ultrafast Tail Current shutoff
• RBSOA Rated
MAXIMUM RATINGS
Symbol
TO-247
G
C
E
C
G
E
All Ratings: TC = 25°C unless otherwise specified.
Parameter
APT25GP120B
VCES
Collector-Emitter Voltage
1200
VGE
Gate-Emitter Voltage
±20
Gate-Emitter Voltage Transient
±30
VGEM
I C1
Continuous Collector Current @ TC = 25°C
69
I C2
Continuous Collector Current @ TC = 110°C
33
I CM
Pulsed Collector Current
RBSOA
PD
TJ,TSTG
TL
1
UNIT
Volts
Amps
90
@ TC = 25°C
90A @ 960V
Reverse Bias Safe Operating Area @ TJ = 150°C
Watts
417
Total Power Dissipation
-55 to 150
Operating and Storage Junction Temperature Range
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
°C
300
STATIC ELECTRICAL CHARACTERISTICS
BVCES
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 250µA)
1200
VGE(TH)
Gate Threshold Voltage
VCE(ON)
I CES
I GES
TYP
MAX
4.5
6
Collector-Emitter On Voltage (VGE = 15V, I C = 25A, Tj = 25°C)
3.3
3.9
Collector-Emitter On Voltage (VGE = 15V, I C = 25A, Tj = 125°C)
3.0
3
(VCE = VGE, I C = 1mA, Tj = 25°C)
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C)
2
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C)
250
2
Gate-Emitter Leakage Current (VGE = ±20V)
Volts
µA
2500
±100
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
UNIT
nA
4-2003
MIN
Rev B
Characteristic / Test Conditions
050-7411
Symbol
APT25GP120B
DYNAMIC CHARACTERISTICS
Symbol
Characteristic
Test Conditions
MIN
TYP
Cies
IInput Capacitance
Capacitance
2090
Coes
Output Capacitance
VGE = 0V, VCE = 25V
200
Cres
Reverse Transfer Capacitance
f = 1 MHz
40
VGEP
Gate-to-Emitter Plateau Voltage
Gate Charge
VGE = 15V
7.5
110
VCE = 600V
15
I C = 25A
50
Qg
Qge
Qgc
RBSOA
Total Gate Charge
3
Gate-Emitter Charge
Gate-Collector ("Miller ") Charge
Reverse Bias Safe Operating Area
TJ = 150°C, R G = 5Ω, VGE =
MAX
UNIT
pF
V
nC
90
A
15V, L = 100µH,VCE = 960V
td(on)
tr
td(off)
tf
Turn-on Delay Time
Current Rise Time
Turn-on Switching Energy (Diode)
Eoff
Turn-off Switching Energy
td(on)
Turn-on Delay Time
Eon1
Eon2
Eoff
70
I C = 25A
39
µJ
438
Inductive Switching (125°C)
VCLAMP(Peak) = 600V
12
VGE = 15V
109
I C = 25A
88
Turn-off Delay Time
Current Fall Time
Turn-off Switching Energy
1092
6
14
R G = 5Ω
4
Turn-on Switching Energy (Diode)
ns
500
TJ = +25°C
5
Current Rise Time
Turn-on Switching Energy
14
R G = 5Ω
4
Eon2
tf
VGE = 15V
Current Fall Time
Turn-on Switching Energy
td(off)
12
Turn-off Delay Time
Eon1
tr
Inductive Switching (25°C)
VCLAMP(Peak) = 600V
5
ns
500
TJ = +125°C
1577
6
µJ
1187
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
TYP
MAX
RΘJC
Junction to Case (IGBT)
.30
RΘJC
Junction to Case (DIODE)
N/A
Package Weight
5.90
WT
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. (See Figure 24.)
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance wtih JEDEC standard JESD24-1. (See Figures 21, 23.)
050-7411
Rev B
4-2003
APT Reserves the right to change, without notice, the specifications and information contained herein.
TYPICAL PERFORMANCE CURVES
APT25GP120B
60
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
TC=25°C
TC=125°C
10
0
1
2
3
4
5
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
40
TJ = 25°C
20
0
2 3
4 5 6
7 8 9 10
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
5
4.5
IC= 50A
4
IC= 25A
3.5
IC= 12.5A
3
2.5
2
1.5
1
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
0.5
0
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
BVCES, COLLECTOR-TO-EMITTER BREAKDOWN
VOLTAGE (NORMALIZED)
6
1.10
1.05
1.0
0.95
0.90
0.85
0.8
-50
-25
0
25
50
75
100 125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Breakdown Voltage vs. Junction Temperature
IC = 25A
TJ = 25°C
14
VCE= 240V
VCE= 600V
12
10
8
VCE= 960V
6
4
2
0
20
40
60
80
100
GATE CHARGE (nC)
FIGURE 4, Gate Charge
120
5
4.5
IC= 50A
4
3.5
IC= 25A
3
2.5
IC=12.5A
2
1.5
1
0.5
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
0
-25
0
25
50
75
100
125
TJ, JUNCTION TRMPERATURE (°C)
FIGURE 6, On State Voltage vs Junction Temperature
100
1.2
1.15
TC=25°C
10
0
1
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
0
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
TJ = 125°C
VGE, GATE-TO-EMITTER VOLTAGE (V)
TJ = -55°C
TC=125°C
FIGURE 2, Output Characteristics (VGE = 10V)
16
IC, DC COLLECTOR CURRENT(A)
IC, COLLECTOR CURRENT (A)
60
20
0
1
2
3
4
5
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(VGE = 15V)
100
80
30
0
0
250µs PULSE TEST
<0.5 % DUTY CYCLE
40
90
80
70
60
50
40
30
20
10
0
-50
-25
0
25
50
75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
4-2003
20
50
Rev B
30
VGE = 10V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
050-7411
40
IC, COLLECTOR CURRENT (A)
IC, COLLECTOR CURRENT (A)
50
60
APT25GP120B
140
20
VGE= 10V
VGE= 15V
15
10
VCE = 600V
TJ = 25°C, TJ =125°C
RG = 5Ω
L = 100 µH
5
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
25
VGE =15V,TJ=125°C
120
VCE = 600V
RG = 5Ω
L = 100 µH
100
VGE =15V,TJ=25°C
80
VGE =10V,TJ=125°C
60
VGE =10V,TJ=25°C
40
20
0
0
10
15
20 25 30 35
40 45 50
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
100
R = 5Ω, L = 100µH, VCE = 600V
G
10 15 20 25 30
35 40 45 50
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
120
RG = 5Ω, L = 100µH, VCE = 600V
100
80
tf, FALL TIME (ns)
tr, RISE TIME (ns)
TJ = 25° or 125°C,VGE = 10V
60
40
20
TJ = 125°C, VGE = 10V or 15V
80
60
40
TJ = 25°C, VGE = 10V or 15V
20
TJ = 25° or 125°C,VGE =15V
0
0
10
15
20
25
30
35
40
45
50
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
3000
3000
VCE = 600V
VGE = +15V
RG = 5 Ω
2500
TJ = 25°C,VGE =10V
TJ = 125°C,VGE =10V
2000
1500
TJ = 125°C,VGE =15V
1000
TJ = 25°C,VGE =15V
500
EOFF, TURN OFF ENERGY LOSS (µJ)
EON2, TURN ON ENERGY LOSS (µJ)
3500
10
20
30
40
50
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
TJ = 125°C, VGE = 10V or 15V
2000
1500
1000
500
TJ = 25°C, VGE = 10V or 15V
10 15
20
25 30
35
40 45 50
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
10 15
20
25
30
35
40
45 50
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
4500
3500
VCE = 600V
VGE = +15V
RG = 5 Ω
4000
3500
3000
Eoff, 50A
2500
Eon2, 25A
2000
Eoff, 25A
1500
Eon2, 12.5A
1000
500
0
VCE = 600V
VGE = +15V
RG = 5 Ω
Eon2, 50A
Eoff, 12.5A
SWITCHING ENERGY LOSSES (µJ)
SWITCHING ENERGY LOSSES (µJ)
4-2003
Rev B
2500
0
0
050-7411
VCE = 600V
VGE = +15V
RG = 5 Ω
3000
Eon2,50A
2500
2000
Eon2,25A
1500
Eoff,50A
Eoff, 25A
1000
500
Eon2,12.5A
Eoff,12.5A
0
0
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
APT25GP120B
100
10,000
5,000
90
80
IC, COLLECTOR CURRENT (A)
P
C, CAPACITANCE ( F)
Cies
1,000
500
Coes
100
Cres
10
70
60
50
40
20
0
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0
200
400
600
800
1000
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18, Minimim Switching Safe Operating Area
0.30
0.9
0.25
0.7
0.20
0.3
0.10
t1
t2
Duty Factor D = t1/t2
0.05
0
Note:
0.5
0.15
PDM
Z JC, THERMAL IMPEDANCE (°C/W)
θ
0.35
Peak TJ = PDM x ZθJC + TC
0.1
0.05
10-5
SINGLE PULSE
10-4
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (SECONDS)
FIGURE 1, MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs PULSE DURATION
1.0
0.00833F
Power
(watts)
0.173
0.171F
Case temperature(°C)
FIGURE 19B, TRANSIENT THERMAL IMPEDANCE MODEL
Fmax = min(f max1 , f max 2 )
50
TJ = 125°C
TC = 75°C
D = 50 %
VCE = 800V
RG = 5 Ω
10
5
f max1 =
0.05
t d (on ) + t r + t d(off ) + t f
f max 2 =
Pdiss − Pcond
E on 2 + E off
Pdiss =
TJ − TC
R θJC
10
15 20 25 30 35 40 45 50
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector
Current
4-2003
0.128
Rev B
Junction
temp (°C)
100
050-7411
RC MODEL
FMAX, OPERATING FREQUENCY (kHz)
182
APT25GP120B
APT15DF120
Gate Voltage
10%
T J = 125 C
t d(on)
V CE
IC
V CC
tr
A
Collector Current
90%
D.U.T.
5%
5%
10%
Collector Voltage
Switching Energy
Figure 21, Inductive Switching Test Circuit
Figure 22, Turn-on Switching Waveforms and Definitions
90%
VTEST
Gate Voltage
*DRIVER SAME TYPE AS D.U.T.
T J = 125 C
td(off)
A
tf
Collector Voltage
V CE
IC
90%
100uH
0
V CLAMP
10%
A
Switching Energy
DRIVER*
Figure 24, EON1 Test Circuit
Figure 23, Turn-off Switching Waveforms and Definitions
T0-247 Package Outline
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
15.49 (.610)
16.26 (.640)
Collector
6.15 (.242) BSC
3.50 (.138)
3.81 (.150)
0.40 (.016)
0.79 (.031)
4-2003
2.21 (.087)
2.59 (.102)
2.87 (.113)
3.12 (.123)
1.65 (.065)
2.13 (.084)
19.81 (.780)
20.32 (.800)
1.01 (.040)
1.40 (.055)
Rev B
5.38 (.212)
6.20 (.244)
20.80 (.819)
21.46 (.845)
4.50 (.177) Max.
050-7411
B
Collector Current
Gate
Collector
Emitter
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.
D.U.T.